
Computers & Geosciences 90 (2016) 179–188
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
Mineral

E-m
sky0610
journal homepage: www.elsevier.com/locate/cageo
Case study
Matched filtering method for separating magnetic anomaly using
fractal model

Guoxiong Chen a,b,n, Qiuming Cheng a,b,n, Henglei Zhang c

a State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, Beijing 100083, China
b Department of Earth and Space Science and Engineering, York University, Toronto, Canada M3J 1P3
c Institution of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
a r t i c l e i n f o

Article history:
Received 16 October 2015
Received in revised form
7 December 2015
Accepted 19 February 2016
Available online 21 February 2016

Keywords:
Fractal/multifractal
Spectral analysis
Magnetic field separation
Matched filtering
x.doi.org/10.1016/j.cageo.2016.02.015
04/& 2016 Elsevier Ltd. All rights reserved.

esponding authors at: State Key Laboratory
Resources, China University of Geosciences, W
ail addresses: chengxhg@163.com (G. Chen), q
@163.com (H. Zhang).
a b s t r a c t

Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from
spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of mag-
netic sources have already been considered in processing magnetic data such as the Spector and Grant
method for depth determination. In this study, the fractal-based matched filtering method is presented
for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal
natures of source distribution for data processing in magnetic exploration: the first is that the depth
determination can be improved by using multiscaling model to interpret the magnetic data power
spectrum; the second is that the matched filtering can be reconstructed by employing the difference in
scaling exponent together with the corrected depth and amplitude estimates. In the application of
synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of
China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as
well as improved separation between local anomalies (caused by volcanic rocks) and regional field
(crystalline basement) in comparison with the conventional matched filtering method.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of fractal geometry is introduced by Mandelbrot
(1967) to describe, model and analyze the complex phenomenon
or process manifesting self-similarity or scale invariance. The past
40 years have seen the extension of fractal concept from geometric
sets to multiscaling fields, which significantly increased its ap-
plicability (Mandelbrot, 1989; Cheng, 2007; Lovejoy and Schertzer,
2007; Chandrasekhar et al., 2013). A wide range of geofields have
been discussed in various power-law scaling or fractal terms, such
as radial-density of mineral deposits (Carlson, 1991), density-area
of geochemical concentrations (Cheng et al., 1994), magnitude-
frequency of earthquakes (Turcotte, 1997) and spectrum-frequency
of topography (Gagnon et al., 2006) and geochemical landscapes
(Chen et al., 2016), to name but few examples. Such scaling be-
haviors may represent the end products of numerous independent
or nonlinear geo-processes in the lithosphere (Cheng, 2007;
Lovejoy and Schertzer, 2007). In last two decades, growing body of
evidences from borehole susceptibility logs and magnetic surveys
of Geological Processes and
uhan 430074, China.

iuming@yorku.ca (Q. Cheng),
showed that the distribution of crustal magnetization exhibits
statistical self-similarity which depicts a power-law dependence of
power density spectrum on frequency, the so-called scaling ( βf1/ )
noise (e.g., Pilkington and Todoeschuck, 1993; Maus and Dimri,
1994; Lovejoy and Schertzer, 2007; Bansal and Dimri, 2014). The
scaling exponent (β) measures the correlation of adjacent values
within the series. βo0 indicates a anti-correlated series; β¼0
indicates a completely uncorrelated series (e.g., white noise); β40
indicates a correlated series; the series becomes more correlated
when β becomes more positive.

In magnetic exploration, the more commonly used assumption
in data interpretation is homogeneous source, certainly, standing
in contrast to its complex forms observed from well logs. From a
inhomogeneous distribution point of view, a random uncorrelated
(statistical) model was first used to model magnetization dis-
tribution and to interpret magnetic data using the spectral
methods (Naidu, 1968; Spector and Grant, 1970). Subsequently,
with the fractal nature of sources becoming evident, numerous
efforts have been made with an incentive of using fractal concept
to facilitate the interpretation of magnetic data. These applications
include the kriging interpolation using a fractal covariance model
(Pilkington et al., 1994), the inversion for fractal magnetic source
distributions (Maus and Dimri, 1995), the Curie depth estimation
using scaling spectral analysis (Maus et al., 1997; Ravat et al., 2007;
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Bouligand et al., 2009; Bansal et al., 2011; Bansal et al., 2013), the
model-based filtering method (Pilkington and Cowan, 2006) and
grid preparation using scaling noise (Pilkington and Keating,
2012). Specifically, fractal model helps to interpret the power
spectrum of magnetic data by considering a frequency power-law
(scaling) decay besides the depth-dependence exponential decay,
and it conducts and improves the depth determination of en-
semble source by employing a scaling exponent (β) to correct this
power-law decay before applying the Spector and Grant (1970)
method.

In this study, we are devoted to use the fractal/multifractal
model to facilitate the magnetic field separation of using matched
filtering (MF) method. The MF was proposed by Syberg (1972),
mainly employing the separation of layers and amplitude ratio to
construct the filtering transfer function. However, the conven-
tional MF method is based on the random uncorrelated model,
which ignored the fractal/multifractal nature of sources. With this
in mind, the proposed fractal-based MF method is centered on two
aspects for improving the transfer function: the first is to correct
the estimations of depth and amplitude by using scaling spectral
analysis. The second is to employ the difference in scaling ex-
ponent resulting from fractal/multifractal sources, which usually
show different statistical self-similarities in term of in-
homogeneous scaling exponent ranging between 1.5 and 5.0
(Bouligand et al., 2009; Pilkington and Keating, 2012). Finally, the
fractal-based MF method discussed in this paper is tested using
synthetic data generated by fractal modeling and real aero-
magnetic data from the Qikou district of China. In this study, we
assume that magnetic anomalies are purely caused by induced
magnetization without the effects of remanent magnetization.
2. Methodology

2.1. Fractal/scaling nature of sources

Fractals are natural consequence of self-similarity/self-affinity
associated with scale-invariance, which refers to the property of a
system that does not change by changing scales. This property, in
general, can be identified by a power-law relation between a
measure M (δ) and the measuring unit δ, δ δ( ) ∝ −M E D, where ∝
stands for proportionally. E, D and E�D represent topological di-
mension, fractal dimension and fractal codimension (scaling ex-
ponent), respectively. As mentioned previously, numerous power-
law type functions have been used to describe the fractal natures
in geosciences. Perhaps the most popular and simplest power-law
model to describe fractal geofields (e.g., topography, geochemical
landscapes, rains and clouds, etc) is the scaling noise. Recent
studies have shown many evidences to support the fractal or at
least scaling nature of magnetization distributions by using spec-
tral analysis (e.g., Leonardi and Kümpel, 1996; Zhou and Thybo,
1998; Bansal et al., 2010, etc.), depicting that the power density
spectrum ( ϕm) of magnetization variables has a power-law de-
pendence on the wavenumber (k)

ϕ ( ) ∝ ( )β−k k . 1m
m

The scaling exponent βm, as indicator of persistence or type of
correlation, could quantify the spatial statistic property of mag-
netization distributed within the crust. Using a stochastic fractal
distribution of 3D magnetization with an isotropic scaling ex-
ponent (βm), Pilkington and Todoeschuck (1993) deduced that the
power spectrum (S) of the resulting magnetic field can be written
as
π
β

β
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where u and v are the horizontal wavenumber, = +k u v2 2 is the
radial wavenumber, !! is the double factorial and z is the depth to
the top of source distribution. Above model suggests that a fractal
magnetic source with βm could produce fractal magnetic field (at
the top of source, i.e. z¼0) whose power spectrum possesses
frequency scaling decay with scaling exponent βf¼βm�1.

A review of publish data conducted by Bouligand et al. (2009)
showed a wide range of βm estimates between 1.5 and 5.0 for 3D
crustal magnetization, based on observation scale from 1 m to
1000 km. Also, their observations suggest that the range of βm-
value differs significantly among igneous (3.1rβmr5.0), meta-
morphic (2.4rβmr4.0) and sedimentary (1.5rβmr3.3) unit/
province. In general, the βm-value depends on heterogeneity
within the lithological units (Bansal et al., 2010), and measures the
composition and balance of stochastic and deterministic compo-
nents (Wu et al., 1994). For instance, sedimentary provinces gen-
erally show smaller βm-value due to the uncorrelated distributions
of magnetizations where stochastic components (e.g., hetero-
geneity and measurement errors) play a leading role, while ig-
neous provinces exhibit bigger βm-value due to the correlated
distribution of magnetizations where deterministic components
(e.g., lithological units and regional trend) play a leading role.
These facts seem to suggest that crustal magnetizations scale with
multiple scaling behaviors, the so-called multifractal/multiscaling.
Multifractal is a type of fractal in contrast to the monofractal that
shows a homogeneous scaling rule across scales, and the multi-
fractal natures of crustal magnetization have already been re-
ported and argued in numerous literatures (e.g., Fedi, 2003;
Lovejoy and Schertzer, 2007; Gettings, 2012).

2.2. Matched filtering method using fractal model

Regional–residual separation is a common issue in the inter-
pretation of magnetic data. The regional usually implies deep-
sources effects while residual/local implies shallow effects. Many
filtering methods have been designed to implement regional–re-
sidual separation, such as matched filtering (MF), wavelet de-
composition (Fedi and Quarta, 1998) and empirical model de-
composition (Huang et al., 2010), etc. The advantage of MF over
other kind of filters is that the MF has geologically constrained
benefits including a class of geological models and its depth de-
termination, whereas other methods do not have. Based on a
stochastic uncorrelated source distribution, the resulting magnetic
field power spectrum is simply characterized by a depth-depen-
dent exponential decay; therefore, the MF method was designed
for separating regional–residual components by using the natural
break in the spectrum slope (Spector and Grant, 1970; Syberg,
1972). For a simplest case of two ensemble sources, we have a
deep-seated source and a shallow source with average depth to
the top of the body H and h, respectively. The power spectrum of
magnetic field caused by deep (S1) and shallow (S2) sources can be
written as

( ) = ( )−S k A e , 3kH
1

2 2

( ) = ( )−S k a e . 4kh
2

2 2

where A2 and a2 are the intercept (amplitude) value of power
spectrum.

However, above simplified spectrum model ignored the addi-
tional frequency power-law (scaling) decay evidenced in real
power spectrum of magnetic data (Pilkington et al., 1994; Maus



Fig. 1. Synthetic 3D magnetic sources consisting of 64�64�4 blocks of 1 km size
with fractal magnetization distribution. (a) Upper layer, the depth to top surface (h)
is 1 km, magnetization (M) is 0.5 A/m, and scaling exponent βm¼2. (b) Lower layer,
H¼10 km, M¼2 A/m, and βm¼4.
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and Dimri, 1995; Bansal and Dimri, 2014). Although the scaling
distribution is only but one that lead to this specific form of power
spectrum and scaling magnetic field cannot guarantee the fractal
nature of sources because of the non-uniqueness of potential
fields, a scaling correlated model is more realistic to interpret the
spectra than the earlier assumption of random uncorrelated model
in Spector and Grant method (Fedi et al., 1997). According to Eq.
(2), the fractal distribution of sources would produce the magnetic
field whose power spectrum is dominated by both a depth-de-
pendent exponential and a frequency scaling decay. Therefore,
(Eqs. (3) and 4) can be rewritten as

( ) = ( )β− −S k A k e , 5kH
1

2 21

( ) = ( )β− −S k a k e , 6kh
2

2 22

where β1 and β2 are the scaling exponent of magnetic field, re-
sulting from the deep and shallow sources with fractal behaviors,
respectively.

Then the power spectrum (E) of combined magnetic anomalies
is given by

( ) ≈ ( + )
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where β β βΔ = −1 2 indicates the difference in scaling exponent
between deep and shallow sources. According to the general de-
finition of MF transfer function in Syberg (1972), the new transfer
function of fractal-based MF can be obtained as

( ) = + ( ) ( )
βΔ ( − ) −⎡⎣ ⎤⎦W k a A k e1 / , 8

k H h/2 1

for separating out the regional components from the mixed
magnetic field.

The transfer function of fractal-based MF achieves improve-
ments in two aspects compared with that of (conventional) ran-
dom-based MF. Firstly, the depth estimations (H, h) of deep and
shallow sources are corrected by using multiple scaling exponent
in light of multiscaling source distributions; accordingly, the am-
plitude ratio (a/A) also is corrected. The correction of depth de-
termination using fractal parameter has already been demon-
strated in many literatures (e.g., Fedi et al., 1997; Ravat et al., 2007;
Bouligand et al., 2009; Bansal et al., 2011), but a single scaling
exponent (indicating monofractal) is often used to interpret the
overall spectrum, which should not be appropriate since the
practical magnetic sources actually show multiscaling properties
(Lovejoy et al., 2001; Pecknold et al., 2001; Gettings, 2012). Mag-
netic field data arising from the superposition of ensemble sources
with different depths and multifractal properties shows a power
spectrum which may find with two or more combined regimes of
scaling and exponential model. Therefore, the fractal-based MF
method uses a more realistic model for interpreting the magnetic
data including depth estimation and field separation. Secondly, the
fractal-based MF transfer function in Eq. (8) employs the multi-
fractal nature of source distribution. It is known that in conven-
tional MF whether a good separation is possible is determined by
the separation between layers (H�h) and amplitude ratio (a/A).
For an extreme case of H�h¼0 and a/A¼1, the conventional MF
cannot work due to the constant filter response (viz. W¼0.5).
However, the fractal-based MF considers a new physical (fractal)
property, namely scaling-difference (Δβ/2) for regional–residual
separation, and the resulting filter response is capable of separ-
ating anomaly even if the deep and shallow sources only possess
scaling difference with same depth and amplitude.

Several studies suggested that a simultaneous estimation of
scaling exponent and depth is difficult to obtain from the power
spectrum curve by using inversion method (e.g., Bouligand et al.,
2009; Bansal and Dimri, 2014), and the algorithm would become
complicated for such estimations of multiple sources. Nonetheless,
the independent estimation of the average depth can be obtained
from seismic interpretation and other potential field methods (e.g.,
Euler deconvolution and analytic signal), also the scaling exponent
can be estimated from borehole susceptibility logs. As suggested by
Bouligand et al. (2009), once one of the two parameters is specified
then another becomes straightforward. In addition, Fedi et al. (1997)
proposed that a “blocky” distribution of magnetization (e.g., crystal-
line basement) could produce a inherent scaling decay rate of βE3
which is often found in published data, and the reported β estimates
in Bouligand et al. (2009) also imply that |Δβ/2| has a small range
between 0 and 1.75. These facts provide priori constraints for con-
structing the fractal-based MF. In the subsequent sections, the model
test and real case study are undertaken to validate the performance
of fractal-based MF method requiring the independent estimate of
scaling exponent or source depth.
3. Synthetic data

Fractal modeling presented in Pilkington and Todoeschuck
(1993) is used to simulate 3D fractal distribution of magnetization
and generate synthetic magnetic anomalies. Firstly, we generate
white noise of lognormal distribution in a 3D block. Then the 3D
magnetization values are Fourier transformed and multiplied by
( + + ) β−u v w2 2 2 /4m , where βm is the required scaling exponent and
w is the wavenumber in z-direction. Subsequently, inverse Fourier
transformation gives the desired fractal magnetization model. The



Fig. 2. Synthetic magnetic anomalies. (a) Upper layer anomaly, (b) lower layer anomaly and (c) combined anomaly.

Fig. 3. Radially averaged power spectrum of the combined magnetic data. (a) Model fits of spectrum data using an exponential decay, the so-called Spector and Grant model.
(b) Model fits of spectrum using fractal model integrating scaling and exponential decays.
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power spectrum of the product is therefore proportional to
( + + ) β−u v w2 2 2 /2m . Finally, this fractal distribution model is used to
generate the magnetic field, which possesses a frequency-scaling
decay ( β− +k 1m ) in its power spectrum.

For a common case of regional–residual components separation,
we simulate a two-layer model with fractal magnetization dis-
tribution, representing sedimentary sources (with heterogeneities)
overlaying a crystalline basement. From the previous discussion, we
assume that crystalline layer has a larger scaling exponent than
sedimentary layer. Specifically, the upper layer (Fig. 1a) extends
from 1 to 4 km depth and has an average magnetization M¼0.5 A/
m and a scaling exponent βm¼2. The lower layer (Fig. 1b) extends
from 10 to 14 km with M¼2 A/m and βm¼4. Fig. 2a and b shows
the magnetic field contributions from the upper and lower layers,
respectively. Fig. 2c shows the combined magnetic anomalies pro-
duced by this constructed two-layer model. From the spectral
analysis of synthetic anomalies (Fig. 2c), it is observed that the
power spectrum (Fig. 3a) produces two distinct segments. Lower
wavenumber portion implies the lower layer while intermediate-
higher wavenumbers implies the upper layer.
The break in the spectrum segments indicates that MF method
is suitable for separating the mixed anomalies between lower and
upper sources. Firstly, the model test is to validate the improve-
ment of depth determination of spectrum method using fractal
model over uncorrelated model. The top depths of lower and up-
per layers are estimated as H¼15 km and h¼1.8 km (Fig. 3a) using
the exponential decay to fit spectrum data based on uncorrelated
model, while these depth values are estimated as H¼9.7 km and
h¼1.1 km (Fig. 3b) by using the fractal model that integrates ex-
ponential and scaling decays to fit spectrum data. It suggests that
the fractal model obtaines improved depth estimation compared
with uncorrelated model. Note that we specified βf¼1 and 3 in
(Eqs. (5) and 6), respectively, to fit the spectrum data of lower and
higher wavenumber portions using the least square regression,
and the half of the slope is the estimation of depth. Additionally,
the amplitude value was obtained as a2¼e20 and A2¼e22 for fractal
models and a2¼e21 and A2¼e27 for uncorrelated models.

Secondly, this model test is to address the comparison among
conventional, monofractal-based and multifractal-based MF
method. Note that the monofractal model means no difference in
scaling exponent, viz., Δβ¼0 in Eq. (8). The parameters (H, h, a/A



Fig. 4. Transfer function of MF based on random (β¼0), monofractal (Δβ¼0) and
multifractal (Δβ¼2) source distribution.
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or Δβ) are then used to construct the MF transfer function for
separating magnetic anomalies (Fig. 2c). Fig. 4a shows the filter
response of conventional MF, where H, h, and a/A are obtained
using random uncorrelated model. Fig. 4b and c shows the filter
response of monofractal-based (Δβ¼0) and multifractal-based
(Δβ¼2) MF, respectively, where H, h, and a/A are obtained using
Fig. 5. Field separations between two layers. (a, b) Upper and lower components, respe
based MF; (e, f) obtained from multifractal-based MF.
fractal distribution in Fig. 3b. Then three groups of residual–re-
gional (upper–lower) separations are obtained in Fig. 5a–b, c–d
and e–f using the random-, monofractal- and multifractal-based
MF, respectively. Cursory comparison of patterns between
Figs. 2 and 5 suggests that multifractal-based MF obtains better
separation of the two different layer responses than that of
random� and monofractal�based MF, since Fig. 5a and c contains
long wavelengths that may be basement anomalies whereas
Fig. 5e does not. It also can be observed from the difference maps
(Fig. 6) of Fig. 5e–a and e–c showing distinct patterns of basement
response. Subsequently, the rms errors between the real con-
tribution of upper layer and separated residual component are
calculated as 55, 165 and 46 nT, respectively, corresponding to
Fig. 5a, c and e, and the correlation coefficients are 0.89, 0.76 and
0.93. This result suggests that the multifractal-based MF obtained
the best field separation between upper and lower layers. Note
that the conventional MF outperforms monofractal-based MF for
residual–regional separation. In fact, in case of mono-fractal and
conventional MF the value of Δβ becomes zero and response curve
of filter is controlled mainly by depth separation and amplitude
ratio. The depth values will be significantly lower in case of
monofractal than the conventional mainly for lower wavenumber
portion (see in Fig. 3). Therefore, filter response became worse as
compared with conventional MF since the conventional over-
estimated the depth separation value. All in all, the multifractal-
based MF improves the separation of magnetic field on one hand,
on the other hand obtaines more reliable depth estimation of
sources.
ctively, obtained from conventional MF method. (c, d) obtained from monofractal-



Fig. 6. Difference maps of (a) Fig. 5e subtracting Fig. 5a and (b) Fig. 5e subtracting Fig. 5c.

Fig. 7. Aeromagnetic anomaly reduced to the pole in Dagang district. Pentagrams
indicate the locations of drill holes that found volcanic rocks.

Fig. 8. Radially averaged power spectrum of RTP aeromagnetic field data. Spector
and Grant model (lines) was used to fit the power spectrum data (dots), then to
estimate the depth and amplitude values to construct the conventional MF transfer
function.
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4. Application to real case

4.1. Geological setting

The Qikou main sag is located in the northern central part of
the Huanghua depression of the Bohai Bay basin in eastern China.
To date, seven volcanic reservoirs and two oilfields producing ten
million tons of oil per year have been identified in the Qikou de-
pression. Cenozoic volcanic rocks (e.g. basalts, andesites, diabases,
and volcanic tuffs) occur extensively throughout the Qikou de-
pression and primarily in the sedimentary strata of Shahejie,
Dongying, and Guantao formations. The statistic on the magnetic
susceptibilities of rocks from Huanghua depression and adjacent
area have been conducted in Hao et al. (2008) and Yang et al.
(2010). Most volcanic rocks exhibit higher magnetic suscept-
ibilities that range between 200�10�5 SI and 4000�10�5 SI,
while the susceptibilities of the Mesozoic and Cenozoic basin se-
diments (mudstone and sandstone) range between 0�10�5 SI and
83�10�5 SI. The crystalline basement in this area is composed of
gneisses and amphibolites, which have strong magnetic suscept-
ibility bigger than 3500�10�5 SI, and its top surface corresponds
to the interface between Paleozoic and Archean stratums. Volcanic
rocks and crystalline basement are the main causative sources
producing magnetic anomalies. The drill holes have evidenced that
the volcanic rocks in Qikou depression are primarily buried at
depths between 1.9 km and 3.5 km (Wu et al., 2010; Yang et al.,
2010), and seismic reflection data suggestes that the average depth



Fig. 9. Estimation of β-value for crystalline basement (a) and volcanic layer (b). Dots represent the spectrum subtracting the depth-dependent exponential decay and lines
represent model fits using a power-law relation. β-value is estimated from the slope of spectrum against wavenumber in log-log scale.

Fig. 10. Model fits of radially averaged power spectrum using the combined model
of power-law and exponential decays, considering fractals nature of sources.

Fig. 11. Transfer function of MF based on random, monofractal (Δβ¼0) and mul-
tifractal (Δβ¼1.4) source distribution.
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to the top of crystalline basement (Archean stratum) is around
9 km (Hao et al., 2008).

4.2. Data processing result

Fig. 7 shows the aeromagnetic field reduced to the pole (RTP) in
the Qikou district. The regional magnetic inclination and declina-
tion are 56° and �6°, respectively. Long wavelength portion of the
observed field are produced by the crystalline basement; med-
ium–short wavelength portion anomalies may mainly arise from
volcanic rocks. From the locations of drill holes (Fig. 7) intersecting
volcanic, no significant anomaly patterns can be observed due to
the deep buried volcanic rocks as well as the interference of strong
background field. Therefore, identifying the weak anomalies of
volcanic rocks would help delineate the potential distribution of
volcanic oil reservoirs. Here, the MF method is undertaken to se-
parate magnetic anomalies between volcanic rocks and crystalline
basement, with intention to test the performance of the proposed
fractal-based MF.

The radially averaged power spectrum of RTP aeromagnetic
data is first calculated (Fig. 8), and it presents three segments that
may be interpreted as a three-ensemble case indicating crystalline
basement, volcanic rocks and near-surface sources (noise). Here,
we regard the volcanic intrusions distributed within the sedi-
mentary strata as an ensemble source (viz. magnetized layer) with
depth ranging from 1.9 km to 3.5 km. To construct the MF transfer
function, we need to specify the parameters H, h, a/A or Δβ. Using
the conventional MF, the depth values of three ensemble sources
are estimated as 16 km, 4.5 km and 0.6 km. From the observed
values from drill holes and seismic data it is known that the
conventional MF overestimated the top depth of volcanic layer and
crystalline basement, which may be due to the ignorance of fractal
nature of source distribution. The conventional MF transfer func-
tion (Fig. 11a) is then constructed using these overestimated
parameters, and the aeromagnetic data is decomposed into re-
gional and residual components (Fig. 12a and b). It can be observed
that the residual anomalies in volcanic area A (Fig. 12a) are still
buried, and in area B it contains obvious long wavelength com-
ponents indicating the regional field caused by crystalline
basement.

To construct the fractal-based MF transfer function, we need to
estimate the scaling exponents of sources. A priori knowledge of
top–depth of volcanic layer and crystalline basement makes the β
estimation become straightforward in this study. After subtracting
the exponential decay (e�4 and e�18 for deep and intermediate
portion of spectra, respectively), we can determine the scaling



Fig. 12. Field separations between volcanic rocks and crystalline basement. (a, b) residual and regional components, respectively, obtained from conventional MF method.
Similarly, (c, d) obtained from monofractal-based MF; (e, f) obtained from multifractal-based MF. Contours of (a), (c) and (e) have same color-bar. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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exponent value from the log-log plot of de-exponential spectrum
against wavenumber (Fig. 9). The scaling exponents of crystalline
basement and volcanic layer are then estimated as βfE3.0 and
βfE1.7 using the slope of de-exponential spectrum in Fig. 9a and
b, respectively. It can be observed that the spectrum curve in
Fig. 10 is better fitted using the fractal model involving scaling and
exponential decays compared with uncorrelated model (Fig. 8).
The volcanic layer has smaller scaling exponent due to the intru-
sions inhomogeneously distributed within the sedimentary strata,
while the crystalline basement shows higher scaling exponent
(βfE3.0) due to the “blocky” distribution of magnetization.

The new parameters (H, h, a/A or Δβ) are then used to re-
construct the transfer function for monofractal-based (Fig. 11b)
and multifractal-based MF (Fig. 11c). It is observed that mono-
fractal-based MF was failed to separate the anomalies between
volcanic layer and crystalline basement (Fig. 12c), whereas the
multifractal-based MF obtained a good separation since its re-
sidual map (Fig. 12e) shows significant patterns indicating the
distribution of volcanic rocks. In comparison with the residual
components (Fig. 12a) obtained by conventional MF, the multi-
fractal-based result also shows an improved separation between
volcanic layer and crystalline basement. For instance, residual
components (Fig. 12e) in volcanic area A present more significant
anomalies by multifractal-based MF, and in area B they have less
interferences of regional field. Furthermore, the difference maps
(Fig. 13) of Fig. 12e–a and e–c suggest that the volcanic anomalies
(area A) have been enhanced and basement interferences (area B)
have been reduced by multifractal-based MF.
5. Conclusions

Fractal/multifractal nature, as a portrayal of complex source
distribution, was considered in the interpretation of magnetic
data. Fractal-based matched filtering (MF) method for separating
the magnetic field has been presented in this contribution. We
used a combined model involving both depth-dependent ex-
ponential and frequency-scaling decays to interpret the power
spectrum of magnetic data. Multiscaling model helped to improve
the depth determination of fractal sources, and the scaling-dif-
ference was employed to reconstruct the transfer function of MF.
Although the fractal-based MF method requires the independent



Fig. 13. Difference maps of (a) Fig. 12e subtracting Fig. 12a and (b) Fig. 12e subtracting Fig. 12c.
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estimates of source depth or scaling exponent in practical data
analysis showing a complicated algorithm, it indeed provides a
more realistic model for interpreting the magnetic data compared
with the conventional MF using random uncorrelated model.
Moreover, both the model test and case study demonstrated that
the fractal-based MF obtained more reliable depth estimations as
well as improved separation between local anomalies (caused by
volcanic rocks) and regional field (crystalline basement).
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