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A B S T R A C T

Reservoir modeling is a very important task that permits the representation of a geological region of interest, so
as to generate a considerable number of possible scenarios. Since its inception, many methodologies have been
proposed and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This
methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are
called patterns. In this paper, we propose a new MPS method that combines the application of a technique
called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target
one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming
similarity. Experiments with both categorical and continuous images show that LSHSIM is computationally
efficient and produce good quality realizations. In particular, for categorical data, the results suggest that
LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.

1. Introduction

In the last few decades, multiple-point geostatistics (MPS) became
very popular. It provides a variety of techniques to model and generate
scenarios of reservoirs for a given geological region. In contrast to
traditional parametric techniques based on variogram, which make use
of two points statistics, MPS is non-parametric and based on higher-
order statistics to describe complex structures. It generates less
artificial simulations, having more realistic geological characteristics
(Mariethoz and Caers, 2014).

The source of these statistics and a fundamental concept in this area
is the training image (TI), which typically represents a specific
geological region of interest. The TI could be a hand draw made by a
specialist, such as a geologist, or obtained by the application of another
type of technique, such as a Boolean model realization (Caers, 2011).

The aim is to generate simulations following the geometry of facies
associations seen in the TI while honoring specific constraints related
to reservoir data (Chilès and Delfiner, 2012). In fact, these constraints
correspond to real measurements (a.k.a. hard data) made in the regions
of interest using some suitable equipment. When the hard data are not
used/available, the process is called unconditional; otherwise, it is
called conditional and every realization must honor these data.

The first methods in literature were based on simulating each pixel
(or node) of the realization, while more recent ones follow an approach

that is called patch-based, because it's highly focused in the extraction
and reproduction of a contiguous group of pixels from the TI.

In the geostatistical field, Arpat and Caers (2007) were the first to
propose working with patterns. Generally, in a pattern-based MPS
approach, a realization (scenario) is built through the execution of a
loop where the two following steps are performed several times: (i) a
location of a certain size/shape of the realization under construction is
selected; (ii) this location is replaced with a similar pattern of the same
size/shape from the TI. The locations selected from the realization are
known in the MPS literature as data events. The similarity between
patterns and data events is defined according to some similarity/
distance measure (e.g. Euclidean distance) (Arpat and Caers, 2007).

Fig. 1 illustrates this process by considering a TI containing black
and white facies. From left to right, it shows a realization, a data event
defined at a given location and its comparison with patterns of the TI.
One of these patterns is chosen and pasted at that location. Note that
blue values in realization correspond to regions that are not yet filled.

In typical applications where MPS is employed, a large number of
realizations have to be generated, so that the time taken to perform
each one should be as low as possible. This is a very sensitive problem
and a central point when performing a geostatistical study. Therefore,
this motivates the study and application of new algorithmic techniques
to speed up the process.

In this paper, we introduce LSHSIM, a new method that generates
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realizations faster than MS-CCSIM (Tahmasebi et al., 2014), which is
currently the state-of-the-art method. The key innovations introduced
by LSHSIM are the application of the Locality Sensitive Hashing
(LSH) technique to filter patterns similar to a given data event and the
use of a compression technique, based on Run-Length Encoding
(RLE), to speed up the calculation of similarity between patterns when
the image is categorical. Our experimental study suggests that our
method produces realizations with similar quality in almost one order
of magnitude faster than MS-CCSIM. In addition, LSHSIM also
guarantees a good variability among the generated realizations.

Our paper is organized as follows: in Section 2, we briefly present
previous related works, following their evolution since the inception of
MPS, and discuss in more details the MS-CCSIM method. In Section 3
we give some background that is necessary for the understanding of our
proposal. In Section 4, we introduce LSHSIM, describing each of its
components. In its turn, in Section 5, we discuss our computational
experiments, regarding computational time, realization's quality and
variability. Finally, in Section 6 we present our conclusions.

2. Related work

The first MPS methods followed a pixel by pixel motivation
(Guardiano and Srivastava, 1993). The adoption of pattern-based
approaches lowered the computational time and improved the quality
of realizations. However, they introduced a new difficulty, the high
dimension of the patterns. SIMPAT (Arpat and Caers, 2007) indexed in
a list all possible patterns in a TI, so as to cope with this issue. In its
turn, the FILTERSIM method (Zhang et al., 2006) proposed a
clusterization based on image features.

DISPAT (Honarkhah and Caers, 2010), which can be seen as an
extension of SIMPAT and FILTERISM, is another important method in
the development of MPS algorithms.

In the CCSIM method, Tahmasebi et al. (2012) proposed the use of
the cross-correlation distance (convolution) in association with a raster
path simulation. In this kind of simulation, patterns that have an
overlap area similar to a given data event are pasted in realization. As
an example, for the data event shown in Fig. 1, its non-blue values
correspond to an overlap area of size 2. They also claimed that the
adopted distance captures better the similarity between patterns and
its calculation is performed in the spatial domain, i.e., applying a naive
convolution directly from the formula. In this way, they were able to
generate better simulations than previous methods. Concerning the
conditioning, the method performs sequential subdivisions in the
template size, so as to find a pattern honoring the hard data.

The work of Gardet et al. (2016) also applies a K-Means technique

to cluster patterns and thus accelerate its search. It also proposes the
use of a wavelet decomposition to reduce the time required to compute
distances, defining a similarity measure over the decomposed patterns.
They compared their method with CCSIM and reported a wider
variability, but a worse pattern reproduction.

Recently, Abdollahifard (2016) proposed the FPSIM method which
explores two points: (i) a new path strategy that prioritizes data-events
placed in the contour between the filled and empty regions of a
realization; (ii) a search scheme that is based on the gradient vector
of the central pixel of data-events. This search first compares this
gradient vector with the gradient of each TI's pixel, in order to obtain a
set of candidate patterns, and then performs a search in this set using
the Euclidean distance. The authors claim to reduce the search space
up to hundreds of times.

The search phase of LSHSIM resembles that of FPSIM in the sense
that it first filters patterns that are likely to be similar to a given data
event and then it looks for a good candidate in the filtered set. Besides,
the reduction on the search space can be controlled by a parameter α.
As an example, for the experiments with 2D categorical TI's, presented
in Section 5, we use α = 0.5%, which reduces the original space of
patterns by a factor of at least 200 and, hence, is comparable to the
reduction of hundreds of times reported in Abdollahifard (2016). In
Section 1 of the Supplementary Material, we discuss the relation of our
methods with those presented in the recent papers by Yang et al.
(2016) and Abdollahifard and Nasiri (2017).

2.1. Review of the MS-CCSIM algorithm

The MS-CCSIM (Tahmasebi et al., 2014) is an extension of the
CCSIM method that introduces two new ideas that accelerate the
search for a pattern and the convolution's calculation: (i) the use of a
multi-scale approach, in which the TI is represented in increasingly
different resolutions and so the search space of a query is reduced; and
(ii) the calculation of the cross-correlation function in the frequency
domain using the fast Fourier transform (FFT) (Cooley and Tukey,
1965).

In addition to that, the MS-CCSIM adopts a raster path, which
brings some problems when dealing with hard data. For this reason,
the method employs the idea of a co-template, such as proposed by
Parra and Ortiz (2011). It is a way of “looking ahead”, trying to verify if
there is some hard data lying ahead of the path. It selects then training
patterns whose co-patterns satisfy these constraints.

Another important issue brought by this method was the approach to
the patchiness problem, which typically brings discontinuities to gener-
ated realizations. Aiming to deal with this question, it applies the

Fig. 1. General structure of a pattern-based approach.
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technique of minimum error boundary cut, originally proposed in the
Image Quilting method by Efros and Freeman (2001), which was tailored
for the texture synthesis area. However, this approach has some limita-
tions and this fact was later discussed and addressed by Tahmasebi and
Sahimi (2016a), who applied a graph network formulation to this
problem. Tahmasebi and Sahimi (2016b) describe some of the advantages
and disadvantages of raster path algorithms, as well as other strategies for
dealing with hard data, other than co-template. Mahmud et al. (2014) also
worked on this issue, proposing an extension of the Image Quilting
method to conditioning and to 3D images, while having other similar
characteristics to the CCSIM method.

3. Background

In this section we discuss some concepts that are required to
understand our work. We first discuss how to address the problem of
finding similar patterns using LSH and then we discuss the Hamming
similarity and how to calculate it over patterns compressed with RLE.
Those acquainted with the LSH scheme may skip the Section 3.1.

3.1. Locality Sensitive Hashing

As mentioned in Section 2, one of the challenges to implement the
pattern-based approach is the high dimensionality of data. To address
this issue, we propose the application of the so called Locality Sensitive
Hashing (LSH).

In order to explain the technique we first recall that a hash table is a
data structure that implements an associative array: given an object x, a
hash function h(·) is used to determine the position in the structure/
array where we can find information about x (see Cormen et al., 2009).

The LSH was first proposed by Indyk and Motwani (1998) and
Gionis et al. (1999). Given a set of elements S and a set of buckets B, a
family of functions h S B: → , together with a distribution probability

over the functions in , is a LSH for a similarity measure s(·, ·) if,
for any x y S, ∈ , we have

Pr h x h y s x y[ ( ) = ( )] = ( , ),

where the probability is taken according to the distribution . This way
similar elements have large probability to be assigned to the same
bucket while non-similar ones have a small probability.

One of the main applications of LSH is as a tool to address the
Approximate Nearest Neighbor (ANN) problem (Gionis et al., 1999).
This problem admits the following formulation:

Input. A set of points S, a query point q and a value ϵ > 0.
Output. A point p S∈ such that s q p s q S( , ) ≥ (1 − ϵ) ( , ), where

s q S( , ) is the similarity of q to its most similar point in S.
The ANN problem naturally arises in the context of pattern based

simulation since a key operation in this kind of simulation consists of
finding patterns that are (very) similar to a given data event.

To address the ANN problem, via the LSH approach, we have two
phases:

• Preprocessing Phase. In this phase K hash functions are randomly
selected from using the probability distribution . Let h h h, … K1 2
be the chosen functions and h h h h= … K1 2 be the function obtained
by the concatenation of these functions. Then, h is used to build a
hash table that maps each x S∈ into a bucket h x B( ) ∈ . This
procedure is repeated L times so that we end up with L hash tables,
each of them storing all the elements in S.

• Search Phase. Given a point q, we find its bucket/position in each
one of the L hash tables using the hash function h. Let Cq be the set
of points that are mapped to the same bucket of q in at least one of
the L hash tables. Then, we can either return an arbitrarily chosen
point in Cq or return the most similar element to q among those in
Cq. The latter possibility increases the chance of returning patterns
that are more similar to q but it is more expensive in terms of

computational time. Another possibility in the search phase is to
return the most similar point after inspecting some fraction of the
points in Cq. This way we trade-off between the quality of the
returned point and the computational time.

By choosing the values of K and L properly it is possible to
guarantee a high probability of returning a point that is among the
most similar to the query q with respect to the similarity s(·, ·).

3.2. LSH for Hamming and Euclidean distance

A natural way to measure similarity among categorical data is
through the Hamming similarity (Hamming, 1950). For two vectors
p p p= ( , …, )n1 and q q q= ( , …, )n1 , the Hamming similarity is defined as
the ratio between the number of coordinates in which p and q match
and n (e.g. if p = (a,b,b) and q = (a,c,b), then Hamming(p q, ) = 2/3).

Let S be a set of points in a n-dimensional space. In addition, for i =
1,…,n, let h S R: ↦i be a function that maps each x S∈ into xi, which is
the i-th coordinate of x. A well known result in the theory of LSH states
that the family h h= { , …, )n1 , together with a uniform distribution
over , is a LSH scheme for the Hamming similarity. This scheme is
used by LSHSIM for categorical images, so as to filter patterns that are
similar to a given data event.

On the other hand, for continuous data, we employ the Euclidean
distance, which has been used in pattern-based methods since the work
of Arpat and Caers (2007). In the LSH scheme for the Euclidean
distance, each hash function h in the family is associated with a
random line in the n-dimensional space. Given a constant a, this line is
divided into segments of length a, which correspond to the buckets.
Each x S∈ is then projected onto the line and hashed to the bucket
concerning the segment in which it lies.

3.3. Computing similarities over compressed patterns

One important characteristic of categorical TI's is that they contain
a small number of facies. This means that its pixels assume few distinct
values, which contributes to their compressibility. This scenario
motivates the application of compression techniques that have a special
structure for speeding up the calculation of similarities between
patterns. In Laber et al. (2016), an in-depth study was carried on
and it was concluded that for a certain range of template sizes, that are
reasonable to use in practice, the calculation of the cross-correlation
between training images and templates compressed with the RLE
technique is even faster than a FFT based convolution. Here, we show
how to extend this technique to efficiently compute the Hamming
similarity between data events and patterns.

The RLE is a simple technique used for compressing sequences that
have many repetitions among consecutive symbols. As an example, the
Fig. 2 exhibits a small TI, with facies 0 and 1, and a pattern (or block) P of
size 4 × 4 delimited by the red dashed line. If we scan P row by row
continuously, its RLE is {(5, 1), (3, 0), (3, 1), (5, 0)}, where the first value
in each pair denotes the number of repetitions and the second one
denotes the facie. When compressing P, we followed a horizontal
continuous scan of the block. However, depending on the image's
characteristics, other types of scanning orders would result in a better
compression of its blocks. This issue was explored in Laber et al. (2016).

By storing the RLE representation of the patterns of a TI, we can
calculate the Hamming similarity between a data event D and each
pattern in a given list P P( , …, )m1 in time proportional to D p| | + ∑i

m
i
R

=1 ,
where D| | is the size of D and pRi is the size of the RLE representation for
Pi. For that, it is enough to preprocess D to obtain a 3-dimensional
structure Sum where Sum f i j[ , , ] stores the number of times facie f
occurs between the i-th and the j-th position of D. Then, the Hamming
similarity between a data event D and a pattern P, with RLE
representation c v c v{( , ), …, ( , )}k k1 1 , is given by

P. Moura et al. Computers & Geosciences 107 (2017) 49–60

51



⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥∑ ∑ ∑HammingSimilarity P D Sum v c c( , ) = , , − 1 .

i

k

i
j

i

j
j

i

j
=1 =1

−1

=1

As an example, for the data eventD and the pattern P of Fig. 2, we have

HammingSimilarity P D Sum Sum Sum
Sum

( , ) = [1, 0, 4] + [0, 5, 7] + [1, 8, 10]
+ [0, 11, 15] = 8

4. LSHSIM

Two points are often considered by MPS methods available in the
literature: (i) the choice of the similarity measure and (ii) how to

efficiently find a pattern in the TI that is (very) similar to a given data
event. To address (i), we use the Hamming similarity for categorical
images and the Euclidean distance for continuous images. With regard to
the second point, we propose the application of the LSH scheme to filter
patterns that are likely to be similar to a given data event, followed by an
exhaustive search. This search is used to find the most similar patterns
among the filtered ones and is based on the RLE similarity calculation
when the TI is categorical. Our techniques can be adapted to work
together with different types of simulation paths as random or raster
paths. Here, we explain how they are used with raster paths.

The pseudocode of our method for categorical TI's is presented in
Algorithm 4.1. Further, we explain how to modify it for handling
continuous TI's. In line 2, the set of hash tables for the LSH scheme is
built. The details of how LSHSIM applies this scheme are given in
Sections 4.1 and 3.2. In line 3 each pattern of the TI is compressed
using the RLE method described in Section 3.3. We observe that these
two lines, that are computationally expensive, just need to be executed
once in the usual case where multiple realizations are generated.

In line 4, a raster path is defined based on the template size, sizeT , and
the overlap size, sizeOL. In this step, our method chooses a random corner
of the realization as a starting point, as well as a random direction (between
horizontal or vertical), to generate the path. For each location u defined
along the path, the corresponding data event dataEventu is extracted from
the realization R and then the search phase of the LSH scheme is executed
(lines 6 and 7) so that the set cand, which is supposed to contain patterns
similar to dataEventu, is obtained. Note that the size of this set cand is
limited to at most the value of α times the number of TI patterns, where α is
a positive value smaller than 1. If this set is not empty, the Hamming
similarity is calculated between the data event and each of the filtered
patterns using the RLE approach (lines 8–9). Otherwise, the same
approach is applied over the compressed TI, considering only a fraction α
of all the patterns of the TI (lines 10–12), thus reducing the search space. In
both cases, the subset bestCand, containing the MaxCandidates most
similar candidates, is obtained. Finally, in lines 13 and 14, a random
pattern from this set is chosen and pasted in realization at location u. Fig. 3
provides an overview of our method.

For continuous data, the Algorithm 4.1 requires some small
changes: line 3 is not executed, because the RLE method does not
apply for this case. Lines 8 and 9 perform a non-compressed search,
calculating the Euclidean distance between the data event and each
filtered pattern. Lines 10 - 12 perform a non-compressed search in the
original TI, considering only a fraction α of all its patterns.

Algorithm 4.1. Pseudocode for LSHSIM.

Result: Realization R
1 LSHSIM (ti, sizeT , size LO , maxCandidates, K, L, α)
2 PreprocessLSH(ti, sizeT , sizeOL, K, L)
3 compressedTI ← PreprocessRLE(ti, sizeT , sizeOL)
4 path ← generateRasterPath(sizeT , sizeOL)
5 for each location u ∈ path do
6 dataEvent ← Ru (u)
7 cand ← applyLSH(dataEventu, K, L, α)
8 if cand ≠∅
9 bestCand ← exhaustiveSearchCandidatesSet(dataEventu,

cand, maxCandidates)
10 else
11 bestCand ← exhaustiveSearchTrainingImage(dataEventu,

compressedTI, α, maxCandidates)
12 end if
13 chosenPat ← drawRandom(bestCand)
14 R(u) ← chosenPat
15 end for
16 return R

Fig. 2. An example TI and a possible pattern. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article).

Fig. 3. General search procedure of LSHSIM.

Fig. 4. Preprocessing phase of LSHSIM.
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4.1. Filtering patterns via LSH

In the preprocessing phase (line 2 of Algorithm 4.1), LSHSIM
builds 3 sets of LSH tables as explained in Section 3.1. Each set
corresponds to one of the 3 possible types of overlap regions described
in Tahmasebi et al. (2012). Thus, for each pattern of a given size in the
TI, the method extracts three regions and inserts each of them in the
corresponding set of LSH tables. Fig. 4 illustrates this phase using a TI
with two facies (black and white), template size of 5 × 5 and overlap

Fig. 5. Search phase of LSHSIM.

Fig. 6. Training images adopted in our experiments: available in TrainingImagesLibrary (2016).

Table 1
Main features of the images used for the experimental study.

TI Image size Dimensions Type

(A) Strebelle 250 × 250 2D Binary
(B) Bangladesh 768 × 243 2D Binary
(C) C_Wlticat 400 × 400 2D Ternary
(D) Stonewall 200 × 200 2D Continuous
(E) Checker 50 × 50 × 50 3D Binary
(F) Fold_Categorical 180 ×150× 120 3D Binary
(G) Maules_Creek 340 × 200× 80 3D Binary
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size of 2. The second image, from left to right, is an arbitrarily chosen
pattern, say P, from the TI. On its right side, we have three images, in
each of them the non-gray values represent a possible overlap area of P.
These areas are inserted in the corresponding LSH table.

In the search phase (line 7 of Algorithm 4.1), it first verifies the type
of overlap of the data event dataEventu and then search in the
corresponding set of LSH tables, such as illustrated in Fig. 5. In order
to speed up the search, the size of the returned set, cand, is limited by a
fraction α of all possible patterns of the TI.

It can be proved that the probability of including a pattern P in the
set cand (line 7) is given by

Sim P1 − (1 − ( , dataEvent ) )u
K L

Thus, K and L shall be defined in order to guarantee that patterns
similar (non-similar) to dataEventu have a large (small) probability of
being included in cand. As an example, by setting K = 10 and L = 30,
the probability of including a pattern with similarity 0.8 is 95% while
the probability of including a pattern with similarity 0.5 is less than 3%.

The extension of LSHSIM to 3D TI's makes use of 7 sets of LSH
tables, each set corresponding to one of the 7 possible types of overlap
regions. Apart from that, the preprocessing and search phases proceed
analogously as described above.

4.2. Conditioning

We adapted LSHSIM so as to consider conditioning data. In this
sense, we introduced an additional filter when searching for a given
data event. After applying the LSH scheme and obtaining the set of
candidate patterns, we filter this set to those patterns which honor all
the hard data associated with the data event. Finally, we perform a RLE
based search in this reduced set of candidates, looking for the most
similar ones to the data event in the overlap region. In case this
reduced set of candidate patterns is empty, we perform a RLE search in
the training image.

It shall be noted that, in order to avoid low quality realizations, the
α parameter should be increased with respect to unconditional
simulations, since we now have this additional filter that restricts the
set of candidate patterns to those which honor the hard data.

The experiments performed showed that LSHSIM is able to achieve
good quality realizations while honoring conditioning points. The
computational times are higher than those for unconditional realiza-
tions due to the increased value of α used. These experiments are
described in details in Section 2 of the Supplementary material.

5. Experimental study

In our experiments, we considered a set of four 2D and three 3D
TI's available in (TrainingImagesLibrary, 2016), so as to evaluate our
proposed solution. The images are presented in Fig. 6, while their main
features are described in Table 1. The image (A) is the well known TI
proposed by Strebelle (2002), while the image (C) is a ternary and less
compressible one.

The Stonewall image (D) was selected to validate our method with
continuous data. Lastly, the images (E), (F) and (G) are categorical 3D
TI's used to validate our method with 3D models.

All experiments were executed under the following settings of
hardware and software: Intel Core i7-3960X CPU @ 3.30 GHz running
Windows 7 64 bits, with 32 GB of memory. All codes of our method

Table 2
Average realization time in milliseconds for 2D categorical images.

Image Real. size Temp. size Overlap LSHSIM MS-CCSIM Ratio

Strebelle 256 × 256 16 × 16 4 11.85 106.62 9.00
Strebelle 256 × 256 32 × 32 4 3.82 29.40 7.70
Strebelle 256 × 256 32 × 32 8 4.91 36.34 7.40
Strebelle 400 × 400 16 × 16 4 29.64 262.31 8.85
Strebelle 400 × 400 32 × 32 4 9.59 71.68 7.47
Strebelle 400 × 400 32 × 32 8 12.79 93.60 7.32
Bangladesh 256 × 256 16 × 16 4 32.29 272.92 8.45
Bangladesh 256 × 256 32 × 32 4 11.46 56.86 4.96
Bangladesh 256 × 256 32 × 32 8 14.11 70.90 5.02
Bangladesh 400 × 400 16 × 16 4 78.78 671.19 8.52
Bangladesh 400 × 400 32 × 32 4 28.47 139.93 4.91
Bangladesh 400 × 400 32 × 32 8 35.88 183.92 5.13
C_Wlticat 256 × 256 16 × 16 4 40.17 254.90 6.35
C_Wlticat 256 × 256 32 × 32 4 23.08 50.46 2.19
C_Wlticat 256 × 256 32 × 32 8 26.36 65.98 2.50
C_Wlticat 400 × 400 16 × 16 4 100.38 597.56 5.95
C_Wlticat 400 × 400 32 × 32 4 55.53 130.02 2.34
C_Wlticat 400 × 400 32 × 32 8 58.81 169.96 2.89

Table 3
Preprocessing time in milliseconds for 2D categorical images.

Image Real. size Temp. size Overlap Preprocessing time

Strebelle 256 × 256 16 × 16 4 418.08
Strebelle 256 × 256 32 × 32 4 510.90
Strebelle 256 × 256 32 × 32 8 519.48
Strebelle 400 × 400 16 × 16 4 426.66
Strebelle 400 × 400 32 × 32 4 509.34
Strebelle 400 × 400 32 × 32 8 520.26
Bangladesh 256 × 256 16 × 16 4 1460.95
Bangladesh 256 × 256 32 × 32 4 1948.45
Bangladesh 256 × 256 32 × 32 8 1878.25
Bangladesh 400 × 400 16 × 16 4 1469.53
Bangladesh 400 × 400 32 × 32 4 1909.45
Bangladesh 400 × 400 32 × 32 8 1853.29
C_Wlticat 256 × 256 16 × 16 4 1835.35
C_Wlticat 256 × 256 32 × 32 4 2666.06
C_Wlticat 256 × 256 32 × 32 8 2737.04
C_Wlticat 400 × 400 16 × 16 4 1830.67
C_Wlticat 400 × 400 32 × 32 4 2650.46
C_Wlticat 400 × 400 32 × 32 8 2695.7

Table 4
Preprocessing and realization times in milliseconds for 2D continuous image.

Image Real. size Temp. size Overlap Preproc.
Time

Real.
time

Stonewall 256 × 256 16 × 16 4 4034.97 101.40
Stonewall 256 × 256 32 × 32 4 6442.84 31.98
Stonewall 256 × 256 32 × 32 8 9906.84 67.08
Stonewall 400 × 400 16 × 16 4 4197.21 278.46
Stonewall 400 × 400 32 × 32 4 6364.06 79.56
Stonewall 400 × 400 32 × 32 8 9773.46 180.18
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were implemented in C++. Regarding the MS-CCSIM method, we
adopted the following strategy: we used the MATLAB code available in
(MS-CCSIM, 2016) to generate realizations and we also implemented a
version in C++, employing the OpenCV library (OPENCV, 2016), in
order to compare its computational time with LSHSIM's time. Note
that this library is an optimized code belonging to the computer vision
area, having very efficient implementations for some of the techniques
required to implement MS-CCSIM as the fast Fourier transform (FFT)
and multi-scale algorithms.

For parameterization of the MS-CCSIM method, both in MATLAB
and C++ implementations, we set the number of scales to 3, which is
the highest in its MATLAB code. Regarding LSHSIM, when dealing
with categorical TI's, we defined L and K, the LSH parameters, to 30
and 10, respectively. On the other hand, for continuous TI's, we set L
and K to 30 and 8, respectively. For both methods, we also set
MaxCandidates to 10, while varying template and overlap sizes
according to the experiment being made.

To determine a suitable value of the α parameter, that is to say, the
one that achieves a good balance between computational time and
realization's quality, we performed several experiments for different
configurations of template and overlap sizes. We end up with α equals
to 0.5% for categorical 2D TI's, 1% for categorical 3D TI's and 5% for
the continuous 2D TI.

Both MATLAB and C++ implementations of MS-CCSIM apply the
minimum-error boundary cut approach to the patchiness problem. For
the sake of a fair comparison, we also employ this method in our
implementation of LSHSIM.

5.1. CPU performance

In this subsection, we evaluate the performance of our method
regarding the computational time for generating realizations. More
specifically, for each TI under consideration, we generated 20 realiza-
tions for different configurations of template and overlap sizes.

We then measured the time taken for performing each realization
and calculated its average. For 2D categorical TI's, we compare the
performance of LSHSIM with our implementation of the MS-CCSIM in
C++. Table 2 shows these times in milliseconds, where the best one for
each configuration is in bold.

For binary images, LSHSIM was able to outperform MS-CCSIM by
a factor of approximately 7 on average. The difference was bigger for
the Strebelle image, the most compressible one, for which our method
was 8 times faster. Regarding the ternary one, our method was 3.70
times faster than MS-CCSIM on average, ranging from 2.19 to 6.35

times. This difference is explained by the fact that this image is less
compressible and hence each exhaustive search, which uses the RLE
similarity calculation, takes longer. We shall note that we are not taking
into account the preprocessing time in this specific evaluation.

Table 3 exhibits, for the same configurations, the preprocessing
time required for building the LSH data structure and applying the
RLE compression to the training image. This preprocessing time is on
average equivalent to the time of 48 realizations, which yields a non-
negligible overhead for applications that only require the generation of
a few realizations. For applications that involve a large number of
simulations the preprocessing time of LSHSIM becomes almost
irrelevant. The results of the experiments discussed so far, with MS-
CCSIM and LSHSIM, suggest that the latter outperforms the former for
applications where more than a dozen of realizations have to be
generated. Moreover, the larger the number of realizations the larger
is the advantage towards LSHSIM.

With regard to continuous data, Table 4 exhibits, for the same
configurations as above, the preprocessing and realization times in
milliseconds using LSHSIM for the Stonewall TI. It can be noted that
our method was able to obtain satisfactory realization times for this
continuous TI.

Finally, Table 5 gives the preprocessing and realization times in
seconds obtained by applying LSHSIM to the 3D TI's for some selected
configurations. These times are three to four orders of magnitude
larger than the ones exhibited in Table 2, for 2D images. However, this
is not surprising since the sizes of the 3D realizations are about two to
three orders of magnitude larger than the one for 2D images. We shall
remark that, for these 3D images, the preprocessing time of our
method is generally much smaller than the time taken for performing
a single realization.

5.2. Realization's quality

We now analyse LSHSIM concerning simulation's quality. For this
purpose, we compare LSHSIM's simulations with MS-CCSIM's for the
configurations defined in the last section. In addition, we also show
realizations of MS-CCSIM using only 1 scale, since it improves its
quality, although at the cost of increasing the computational time by a
factor of approximately 10 with respect to the times presented in the
previous section.

Fig. 7 (A), (B) and (C) shows two realizations generated with
LSHSIM, MS-CCSIM with 3 scales and MS-CCSIM with 1 scale,
respectively, for the Strebelle TI. Each realization has 256 × 256 pixels,
template size of 32 × 32 and overlap of 4. Moreover, Fig. 8 (A), (B) and

Table 5
Preprocessing and realization times in seconds for 3D images.

Image Real. size Temp. size Overlap Preproc. time Real. time

Checker 256 × 256 × 256 10 × 10 × 10 2 1.88 3.88
Checker 256 × 256 × 256 12 × 12 × 12 4 1.84 5.67
Checker 256 × 256 × 256 16 × 16 × 16 4 1.53 2.69
Checker 400 × 400 × 400 10 × 10 × 10 2 1.89 15.37
Checker 400 × 400 × 400 12 × 12 × 12 4 1.85 22.43
Checker 400 × 400 × 400 16 × 16 × 16 4 1.52 10.24
Fold_Categorical 256 × 256 × 256 10 × 10 × 10 2 76.82 165.75
Fold_Categorical 256 × 256 × 256 12 × 12 × 12 4 81.18 221.04
Fold_Categorical 256 × 256 × 256 16 × 16 × 16 4 91.99 102.85
Fold_Categorical 400 × 400 × 400 10 × 10 × 10 2 74.20 651.95
Fold_Categorical 400 × 400 × 400 12 × 12 × 12 4 71.09 804.84
Fold_Categorical 400 × 400 × 400 16 × 16 × 16 4 84.47 394.16
Maules_Creek 256 × 256 × 256 10 × 10 × 10 2 128.76 379.24
Maules_Creek 256 × 256 × 256 12 × 12 × 12 4 143.82 467.81
Maules_Creek 256 × 256 × 256 16 × 16 × 16 4 188.30 242.48
Maules_Creek 400 × 400 × 400 10 × 10 × 10 2 145.97 1588.56
Maules_Creek 400 × 400 × 400 12 × 12 × 12 4 153.37 1937.34
Maules_Creek 400 × 400 × 400 16 × 16 × 16 4 172.87 877.82
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(C) shows two realizations for the Bangladesh TI using LSHSIM, MS-
CCSIM with 3 scales and MS-CCSIM with 1 scale, respectively. Both
have 256 × 256 pixels, and they were generated using template size of
32 × 32 and overlap size of 4. Note that these images are resized to
better fit the paper.

For these two binary TI's, Strebelle and Bangladesh, we notice that
LSHSIM generated realizations with good quality, in the sense that it
reproduced well the spatial continuity of the TI's. Both LSHSIM and
MS-CCSIM generated realizations containing low level of patchiness,
since they employ the minimum-error boundary cut approach.

Fig. 9 (A), (B) and (C) presents two realizations generated with
LSHSIM, MS-CCSIM with 3 scales and MS-CCSIM with 1 scale,
respectively, for the C_Wlticat image, setting the realization size to
400 × 400 pixels, template size to 16 × 16 and overlap to 4. Again,

LSHSIM was able to achieve a good quality, that is to say, representing
well the image's characteristics.

LSHSIM was also able to produce realizations with good quality for
continuous data. In this sense, Fig. 10 (B) and (C) shows two
realizations generated with LSHSIM for the Stonewall TI (A). Each of
them has 256 × 256 pixels, template size of 16 × 16 and overlap of 4.
One can notice that LSHSIM was able to express well the TI's spatial
continuity.

Finally, LSHSIM was also successful for 3D images. Fig. 11 presents
realizations for the Checker TI (A), for the Fold_Categorical TI (B) and for
the Maules_Creek TI (C), setting the realization size to 256 × 256 × 256,
template size to16 × 16 × 16 and overlap size to 4. Analogously, Fig. 12
exhibits realizations for the same TI's with 400 × 400 × 400 pixels,
template size of 16 × 16 × 16 and overlap of 4.

Fig. 7. Unconditional realizations for the TI of Fig. 6 (A): using LSHSIM, using MS-CCSIM with 3 scales (B) and using MS-CCSIM with 1 scale (C).
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5.3. Comparing uncertainty space

We now analyse LSHSIM's uncertainty space following the analysis
of distance (ANODI) method proposed by Tan et al. (2014).

We focus on ANODI's visual approach, which consists of the MDS
technique with the Jensen-Shannon divergence as a measure of
distance. It represents the realizations and the TI as points in a two
or three-dimensional space, where the relative distances between
each realization and the TI are preserved as much as possible. We
used a MATLAB implementation of ANODI available in ANODI
(2016).

We generated 50 realizations with both methods for two TI's.
Fig. 13 shows the MDS plot for the Strebelle TI with the following
settings: realization size of 256 × 256 pixels, template size of 32 × 32
and overlap of 4. Similarly, Fig. 14 shows the MDS plot for C_Wlticat,

which is a ternary image, using a realization of 400 × 400 pixels, a
template size of 16 × 16 and an overlap of 4. In each plot, the black dot
denotes the TI, while the green and blue points represent realizations
generated with LSHSIM and MS-CCSIM, respectively. The numbers
close to some points indicate the rank of that realization, among the
ones generated by the same method, with respect to the distance to the
TI. Note that the axis are not shown because the focus is on the relative
distances between points.

One can observe that, for Fig. 13, LSHSIM achieved a good pattern
reproduction such that its realizations are close to the TI. In addition,
both LSHSIM and MS-CCSIM had similar spreading of their realiza-
tions. Concerning the plot depicted in Fig. 14, LSHSIM generated
realizations close to the TI, thus reproducing well the TI patterns.
Again, both methods had a similar variability, since LSHSIM's space of
uncertainty is almost as large as MS-CCSIM's.

Fig. 8. Unconditional realizations for the TI of Fig. 6 (B): using LSHSIM, using MS-CCSIM with 3 scales (B) and using MS-CCSIM with 1 scale (C).
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Fig. 9. Unconditional realizations for the TI of Fig. 6 (D): using LSHSIM, using MS-CCSIM with 3 scales (B) and using MS-CCSIM with 1 scale (C).

Fig. 10. Unconditional realizations using LSHSIM for continuous data: the Stonewall TI (A) and two generated realizations (B) and (C).
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6. Conclusions

In this paper, we presented LSHSIM, a new and fast method to
generate realizations that are based on the characteristics of a given
training image. The method introduces new ideas to accelerate the
simulation process such as the use of the LSH technique and the RLE
based similarity computation. Experiments carried over a set of 7
selected TI's indicate that LSHSIM is almost one order of magnitude
faster than MS-CCSIM for categorical images. In addition, the quality
of our realizations is competitive with those generated by MS-CCSIM,
in the sense that the spatial continuity of the TI's was well expressed.
Our MDS plots depicted that LSHSIM's space of uncertainty has a good

spread and the realizations are close to the TI. Lastly, as a potential
disadvantage, LSHSIM may not be suitable for quickly generating a
small number of realizations due to its non-negligible preprocessing
time.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.cageo.2017.06.013.

Fig. 11. Unconditional realizations using LSHSIM for 3D data: for the Checker TI (A), for the Fold_Categorical TI (B) and for the Maules_Creek TI (C).

Fig. 12. Unconditional realizations using LSHSIM for 3D data: for the Checker TI (A), for the Fold_Categorical TI (B) and for the Maules_Creek TI (C).

Fig. 13. MDS plot illustrating the variability of LSHSIM and MS-CCSIM methods by
using the TI in Fig. 6 (A). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article).

Fig. 14. MDS plot exposing the variability of both methods by using the TI in Fig. 6 (C).
(For interpretation of the references to color in this figure, the reader is referred to the
web version of this article).
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