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A B S T R A C T

The 2.5D PEBI (PErpendicular BIsector) grid, which is the projection or extrusion of the 2D PEBI gird, has ad-
vantages on practical reservoir modeling. However, to appropriately handle the geological features, especially the
reverse faults in reservoir, remains a difficult problem. To address this issue, we propose a local PEBI grid gen-
eration method in this paper. By constructing the Voronoi cell of a seed based on the search of its neighboring
seeds in a background grid, our method is demonstrated to be efficient and adaptable to reverse fault constraints.
In addition, the vertical and horizontal well constraints are also tackled and the cell quality is improved through
the Centroidal Voronoi Tessellations (CVT) principle. The results demonstrated that our method enables the
formation of high-quality grids and guarantees the conformity to the geological features in reservoirs.
1. Introduction

The computing accuracy, speed and convergence of the reservoir
simulation are largely dependent on the grids. Compared to the Cartesian
and Corner Point grids, which are commonly utilized in industry, the
PEBI grid, also known as the constrained Voronoi Tessellation, com-
mands much attention as it can reduce the orientation effect and adapt to
complex structures. After reviewing early studies on reservoir simulation,
Heinemann et al. (1991) claimed that the performance of PEBI grids on
overcoming the grid-orientation effect is generally as good as the
nine-point Cartesian grids and better than the five-point scheme. Palagi
and Aziz (1994) presented the use of Voronoi grids for field scale simu-
lations in combination with pre-defined geometrical modules that can be
located, scaled and rotated in the domain, allowing a good representation
of the major geological features in reservoirs.

A Voronoi cell is, by definition, always associated with a certain point,
also knownas the seed of the cell (Bertin et al., 1994). Since the aspect ratio
of thehorizontal scale to vertical in the reservoirfield is often several orders
of magnitude, the 2.5D Voronoi grids are usually used in reservoir simu-
lation (Branets et al., 2009). These grids are constructed by projecting or
extruding the 2D Voronoi grids in the vertical or nearly vertical directions
(Gunasekera et al., 1997). In contrast to the direct generation of the Vor-
onoi grids, such as the divide-and-conquer method (Shamos and Hoey,
1975) and plane sweep algorithm (Fortune, 1987), indirect schemes
derived from the dual of a Delaunay mesh (Verma, 1996; Verma et al.,
nd Engineering, Beihang University, B
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1997), arebetterappreciatedowing to thegradualprogress of theDelaunay
triangulations. However, one of the key challenges is that the generated 2D
grids are required to conform to some geological features, including
boundaries, faults, vertical and horizontal wells, and pinch-outs. These
structural constraints pose inconveniences for the PEBI grid generation. To
resolve the faultswith arbitrary size andorientation throughVoronoi faces,
in particular, becomes a more daunting task.

In the scheme that handles the faults proposed by Gunasekera et al.
(1997), Voronoi seeds were set symmetrically on both sides of the faults so
that the path of the faults would be part of theVoronoi cell edges. To resolve
more complex structures in reservoir, Branets et al. (2009) suggested
defining circular disks surrounding the constraints, where both the inside
andoutsideof these protection areas canbe split byDelaunay triangulations.
In this way, a consistent dual constrained Voronoi grid is obtained. In
addition, an approach to generate 3D PEBI grids was also introduced by
Merland et al. (2014). They optimized the positions of the seeds by mini-
mizinganobjective functiondesigned tomeet the3Dstructural features.The
cells were strictly Voronoi yet the constraints were not exactly recovered.

To the best of our knowledge, most of the 2D PEBI grid generation al-
gorithms tend to conduct a global tessellation according to the dual rela-
tionship between the Voronoi diagram and theDelaunay triangulation and
improve the mesh quality through the Centroidal Voronoi Tessellations
(CVT) concept (Du et al., 1999, 2010; Merland et al., 2011). However, the
complexities of the faults sometimes render the global tessellation quite
cumbersome to express in terms of constraints. This is especially true if the
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Fig. 1. Reverse fault and the 2D projection.

Fig. 2. Voronoi cell of o and the related MVN.
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reservoir contains the reverse faults (Fig. 1),which it is difficult to avoid the
overlapping after the projection or other simple mapping. The generation
of the PEBI grids adapting to these faults becomes a tough problem due to
the interference of the Voronoi seeds in the upper and lower parts of the
fault area. As far as we know, none of these previous algorithms has
addressed the reverse fault constraints in the PEBI grid construction.

PEBI grids have a local property, i.e., the shape and size of a PEBI cell are
merely correlational with points neighboring the seed of the cell. Based on
this characteristic,wepresent in this paper anovelmethod tobuild thePEBI
grid that can conform to the reverse fault features. Every PEBI cell is con-
structed after the neighbors of its seed are searched with the help of back-
ground grid. The search strategy overcomes the interference of the seeds in
the upper and lower parts of the overlapping in the reverse fault areas.
Incorporating the CVT principle, we devise a strategy to generate the PEBI
grids with both high quality and the conformity to the complex structures.

2. Local generation of PEBI grids

In this section, we present our local approach to the Voronoi grid
generation with the basic idea of constructing the Voronoi cell of a seed
according to its neighboring seeds. For a Voronoi cell, the neighbors of its
seed are corresponding to its adjacent cells, which we define as the
Minimum Voronoi Neighbors of the seed.

Definition 1. Let S and M be the set of the seeds and M⊆S. As to a
single point o 2 S, M is said to be the Minimum Voronoi Neighbors (MVN)
of o if and only if o∉M and M contains ∀p 2 S that sat-
isfies VorðpÞ∩VorðoÞ≠∅.

Under the definition above, Vorð�Þ means the Voronoi cell related to
the seed and S is assumed to be in general position (Guibas and Mitchell,
1992). As is shown in Fig. 2, the Minimum Voronoi Neighbors of o
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is fa; b; c; d; eg.
According to the dual relationship between the Voronoi diagram and

the Delaunay triangulation, the triangles, which are formed by con-
necting seeds related to adjacent Voronoi cells and sharing the same
vertex o, are part of a Delaunay triangulation (Cheng et al., 2012). We call
the set of these triangles the local Delaunay triangle set of o, denoted by
LDTSet (illustrated with the dashed lines in Fig. 2). No seed, as the
Delaunay triangulation is defined, falls strictly inside the circumcircle of
any triangle in the LDTSet. In light of this fact, we design an incremental
algorithm that successively adds the other seeds to the plane and replaces
the elements in the MVN and LDTSet to guarantee that the circumcircles
of the triangles in the LDTSet contain no seed.

Aswe show the instance in Fig. 3, the added seeds are pið0 � i � 6Þ and
before the LDTSet is closed (the triangles in LDTSet fully cover the neigh-
borhood of point o), there are two seeds pl and pr where the ray opl and opr

witness the triangles on only one side. The two rays divide the space into
sectorAand sectorBwhileA is theone that contains the triangles inLDTSet.
The signed areas SΔðpi ;o;plÞ and SΔðpr ;o;piÞ are calculated to determine which
sector pi is located in. It is noted that if any of the signed areas is positive, pi
will fall into sectorB.Weassume that pl is identical to pr and sectorA covers
the entire region after the LDTSet is closed (after Fig. 3(c)).

If the new seed pi lies in sector B, we will connect it with the point o
and pl or pr , with one or two new triangles brought in the LDTSet
(Fig. 3(a) and (c)). Yet, if the seed is located in the circumcircles of the
triangles in sector A, it will witness the replacement of old triangles with
the new ones (Fig. 3(b) and (d)). Besides, as shown in Fig. 3(e), a few flips
may also be executed to remove illegal edges for every added triangle in
the LDTSet to maintain a Delaunay triangulation (Guibas et al., 1992).
The final MVN set is the vertices of the triangles in the LDTSet except o,
which is fp0; p2; p3; p4; p6g in Fig. 3(f). Afterwards, the Voronoi cell
related to o can be constructed by collecting the perpendicular bisectors
of the connected lines between o and its neighbors.

Finally, the procedure to adjust theMVN and LDTSet according to the
added seed, which is depicted as the algorithm MVNTestForp and
edgeLegalization, is explicated as follows.



g the Minimum Voronoi Neighbors.

X. Meng et al. Computers and Geosciences 110 (2018) 73–80
The key of our MVN search strategy for seed o is to adjust the local

Fig. 3. Procedure for searchin
Fig. 4. MVN search with the background grids. The triangles in the LDTSet are rendered
with black edges and the black dots are the seeds in the final MVN set. The background
cells are rendered with deep green edges, including those in the search queue L that are
filled in green. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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triangulation based on the theory of the Delaunay triangulation, yet it has
to consider various cases when a new seed is added. Moreover, the
computational complexity to calculate the MVN for every seed can be
Oðn2Þ if the algorithmMVNTestForp is conducted for all the other points.
To accelerate the search process, we propose using background grids in
this paper to add other seeds from near to far and theMVN search can be
terminated earlier when it is certain that no more seeds appear as
element of the MVN set.

As shown in Fig. 4, the background grid used is a triangular mesh and
every seed must be located in one of the background cells. In our method,
a linear queue L is set to record the background cells that have been
searched and the one that contains o is first added into the queue. For a
cell in L, if a seed falls into its edge-adjacent cells, the MVNTestForp al-
gorithm is conducted to test if it is a member of the Minimum Voronoi
Neighbors and adjust the current MVN and LDTSet if needed. If those
edge-adjacent cells outside the queue contain seeds in the MVN set or
intersect with the circumcircles of the triangles in the LDTSet, they will
Fig. 5. Edge-cutting for the cells around the border features.
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also be added into the search queue L. The search will terminate if the
queue L stops increasing. In other words, there are no cells outside L that
intersect with the circumcircles of the triangles in the LDTSet after the
finite search around o. The detailed procedure for theMVN search based
on the background grids is depicted as the algorithm BMVNSearch.

The size of theMVN set is often limited and the expectation is 6 as it is
the degree of the point after the Delaunay triangulation for the region (de
Berg et al., 2008). With the use of the background grids as the search
index, our MVN search process, more often than not, involves only a
small part of the other seeds nearby. Compared with the other generation
methods of Voronoi grids, which the computational complexities are
often OðnlognÞ, our Voronoi tessellation strategy using the algorithm
Fig. 6. Treatment for

Fig. 7. Revision of the MVN search in v
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BMVNSearch exhibits better adaptability and we design to address the
complex constraints in reservoirs in the later section. We estimate that
the computational complexity of our method is mostly approximate to
OðnlognÞ depending on the seed distribution.

3. PEBI tessellation on geological surface

In the field of geology, a fine grid is often employed to capture more
details of the model (Khvoenkova and Delorme, 2011). This fine grid
could not be directly used as it will be difficult to conduct the simulation
within a reasonable period of time (Mlacnik et al., 2004, 2006). This
provides a scenario for the application of our method since the original
fine grid can be chosen as the background mesh to generate coarse PEBI
grids. However, the geological constraints, which result from tectonic
movements and reservoir engineering, merit serious considerations.

The border features in reservoir, are brought about by internal faults
or reservoir bound. As shown in Fig. 5, the PEBI cells around the border
features usually stretch to infinity in their directions while the remaining
finite parts often maintain an acceptable shape after the cut with the
border edges (red edges in the figure). On this account, we adopt direct
edge-cuttingmeans to handle the border constraints in the reservoir field,
as it is a simple yet efficient approach in dealing with complex geometric
structures.

The main problem with the edge cut is the serious concave cells. In
fact, these concave cells can be prevented by making the sharp points of
the borders the constrained vertexes of the generated PEBI grids. To
achieve this effect, we intend to place the stationary seeds on the pro-
tected circles whose centers are the sharp points (Branets et al., 2009).
The defined protected circles contain no seeds inside. As shown in
Fig. 6(b), several PEBI cells share the same sharp pointm and the concave
cells like a in Fig. 6(a) are avoided.

In addition, the border features also contribute to a revision to our
original MVN search algorithm. Once the background cells with the
the concave cells.

iew of the border-edge obstruction.



X. Meng et al. Computers and Geosciences 110 (2018) 73–80
border edges are pushed into the search queue L, a barrier test should be
performed for theMVN candidate seeds. If the seeds are separated from o
by these border edges, they will be excluded from the MVN set. Fig. 7
shows the normal and reverse fault cases for the new revised MVN
strategy. The border edges are displayed in red and seedm could not be in
the MVN of o due to the obstruction. Then the background cell that
contains m will not be pushed into the search queue L and the MVN
search stops in this direction. Therefore, n is also excluded from theMVN
of o.
Fig. 10. Generated PEBI grids using the BMVNSearch algorithm without the CVT optimization.
in (a). (c) A few of the cells around reverse fault 3, enclosed by the red rectangle in (a). (d) The P
and marked with the green rounded rectangle in (d). (For interpretation of the references to c

Fig. 8. Stationary seeds for well constraints. (a) The seeds and the radial grids

Fig. 9. Synthetic layer for the PEBI tessellation. (a) The panoramic view of the ge
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This revision solves the problem of the PEBI tessellation for the
reverse fault region. If the border is caused by a reverse fault, the back-
ground mesh will also overlap in the vicinity. The seeds in the upper part,
in contrast to those in the lower parts, will be associated with different
background cells. Therefore, it is unlikely for the seeds in different parts
to be mutual MVN members due to the border partition.

Well constraints are another issue of grid generation for the reservoir
simulation (Noetinger, 2016). To reflect these physical features, Palagi
and Aziz (1994) proposed combining several pre-defined modules in
(a) The 2D PEBI grids. (b) The cells around normal fault 1, enclosed by the green rectangle
EBI grids mapped on the layer. (e) The cells around fault 2 and 3, displayed in the 3D scene
olour in this figure legend, the reader is referred to the web version of this article.)

around the vertical wells. (b) The stationary seeds for the horizontal well.

ological domain. (b) The background triangular mesh and the chosen seeds.
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reservoir domain. In their work, radial grids were set around the vertical
wells and hexagonal or Cartesian grids were located and rotated to
conform to the longitudinal direction of the horizontal wells. In our
method, the radial grids can be achieved by simply putting stationary
seeds on a series of concentric circles with the well position as the center
(Fig. 8(a)). For the horizontal well, we set a series of protection circles
and choose some points on the well trace and the circles as the stationary
seeds (Fig. 8(b)). This enables the generation of local hexagonal grids,
which adapt to the flow information around the horizontal well.

4. Centroidal Voronoi optimization

The cut with the border edges discussed in the last section may lead to
inconsistency between the PEBI elements and the definition of the Vor-
onoi diagram. This inconsistency exerts little impact as the border areas
Fig. 12. Generated PEBI grids after the CVT optimization. (a) The 2D CVT optimized PEBI grid
PEBI cells around fault 3, enclosed by the red rectangle in (a). (d) The CVT optimized PEBI grids
with the rounded rectangle in (d). (f) The cells around reverse fault 4, marked with the red clo
reader is referred to the web version of this article.)

Fig. 11. Background triangles in the search queue L for one seed (marked in blue in the
left picture) and the PEBI cells around the reverse fault 4 (right picture, enclosed by the
red ellipse in Fig. 10(d)). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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are set with the boundary conditions and do not strictly require the local
orthogonality. However, the initial seeds with non-optimized co-
ordinates often lead to cells with too small a size or bad shapes, which
adversely affect the accuracy and convergence of the reservoir
simulation.

Following the line of thought that to meliorate the PEBI grids consists
in optimizing the positions of the seeds, the methodology of Centroidal
Voronoi Tessellations (Du et al., 1999, 2010), is adopted in this paper. As
some stationary seeds are placed to avoid the concave cells or resolve the
vertical and horizontal well constraints, we continuously move the other
movable seeds to the centroids of the related cells and re-conduct the
PEBI tessellation with our PEBI grid generation strategy. The iteration of
the seed movement and grid reconstruction are continually executed
until the distances between the centroids and the seeds comply with the
approximated requirements.

Based on the aforesaid details, our main procedure to generate the
PEBI grids for the reservoir is specified as follows:

1. Select the initial set of seeds S on the background mesh while setting
the stationary seeds for the sharp points of the faults as well as the
vertical and horizontal wells.

2. Search the MVN and LDTSet for every single seed o via the algorithm
BMVNSearch and construct the corresponding PEBI cells.

3. Calculate the centroids of the constructed PEBI cells. If the centroids
and the seeds meet the convergence criterion, terminate and record
the seeds and the PEBI cells related to them; otherwise, let the cen-
troids and the stationary seeds form the new set S and go to step 2.

5. Applications in geology

We have implemented our method of the PEBI grid generation in the
geological domain to test its adaptability to complex structural features.
At first, the PEBI tessellation on a synthetic layer model is executed to
s. (b) The cells around normal fault 1, enclosed by the green rectangle in (a). (c) A few of
mapped on the layer surface. (e) The cells around fault 2 and 3 displayed in 3D and marked
sed ellipse in (d). (For interpretation of the references to colour in this figure legend, the



Fig. 13. Statistic angles of the generated cells. (a) Un-optimized. (b) Optimized for
180 times.
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demonstrate how our algorithm handles the normal and reverse fault
constraints. As shown in Fig. 9, the layer contains two normal faults
(marked with 1 and 2) and two reverse faults (marked with 3 and 4). The
background grid to describe this layer is a triangular mesh of 2565 tri-
angles with 2569 seeds inside (Fig. 9(b)).

Fig. 10(a) presents the 2D generated PEBI grids using our algorithm
while Fig. 10(b) and (c) present some of the 2D cells around fault con-
straints. These PEBI cells have not undergone the CVT optimization.
Besides, as shown in Fig. 10(d), we also vertically projected the PEBI cells
back to the layer surface. Owing to the projection, in Fig. 10(e), the cells
around the fault 2 and 3 can be observed from a different point of view in
the 3D scene compared with those in Fig. 10(d). It can be seen that the
PEBI grids constructed by our method can resolve all these normal and
reverse fault constraints. In addition, none of the PEBI cells around the
sharp points is spotted as a concave polygon due to the placed station-
ary seeds.
Fig. 14. Real reservoir and the distributed seeds. (a) The panoramic view of
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Fig. 11 illustrates an instance how our method prevents the seeds in
the upper and lower parts from interfering when handling the reverse
fault constraints. In the figure, the left image presents all the triangles in
the background search queue L after the MVN search for one seed near
the fault. These triangles are marked in blue and are observed at a
different point of view together with the PEBI cells on the right compared
to Fig. 10(d) and (e). The figure shows that our MVN search strategy is
able to exclude the background cells on the other side of the borders.

Fig. 12 presents the generated PEBI grids we optimized for 180 times
with the CVT principle. Similar to Fig. 10, Fig. 12(a) and (d) show the
overall view of the grids and Fig. 12(b), (c), (e) and (f) display the local
cells around the fault features. Moreover, the cells in Fig. 12(d), (e) and
(f) are observed at different points of view in 3D scene. Like the un-
optimized cells, the CVT-optimized grids can also resolve the con-
straints. Furthermore, the quality of the cells, including those around the
borders, is significantly improved.

Fig. 13 shows the proportions of the cell angles in the neighborhood
of some certain angle sizes we recorded before and after the optimiza-
tion. It was observed that more angles tend to be around the peak 120∘

after the CVT optimization, indicating that more cells are close to a
regular hexagon. As the border edges of the cells around the faults and
the boundary are nearly perpendicular to the other edges, a few of the
cell angles are approximately 90∘ as shown in Figs. 12 and 13(b). All
these experimental results farther proved our method ensures the gen-
eration of correct and qualified grids for the reservoir simulations.

Another geological domain for our PEBI tessellation is a real 3D
reservoir. As is shown in Fig. 14, the reservoir is described by 1617 tri-
angles with 1677 seeds inside. The real reservoir contains not only
normal and reverse faults but also vertical and horizontal well con-
straints. Besides, the borders of the faults are more arbitrary.

Fig. 15(a) shows our 2D CVT optimized PEBI grids for this reservoir.
For the grids in thefigure, the CVToptimizationwas conducted 100 times.
Fig. 15(b) and (c) demonstrate some of the PEBI cells around the fault and
well constraints. Evidently, the PEBI grids constructed by our algorithm
successfully adapt to all features. Not onlywere the fault constraints on the
reservoir appropriately handled, the radial and local hexagonal gridswere
also, as expected, generated around the vertical and horizontal wells.
Fig. 15(d) shows the 2.5D PEBI grids constructed by extruding the 2DCVT
optimized PEBI grids generated for the reservoir. This clearly demon-
strates the fault and well features in different layers. More information
about the construction of the 2.5D grids, which is beyond the scope of this
paper, is available in the work of Gunasekera et al. (1997).

6. Conclusions

In this paper, we introduce a new approach for the PEBI grid gener-
ation as a solution to the reverse fault. The essential of our methodology
the reservoir. (b) The background triangular mesh and the picked seeds.



Fig. 15. CVT optimized PEBI grids for the reservoir and the generated 2.5D PEBI grids. (a) The 2D optimized PEBI grids. (b) A few of the cells around the faults and the vertical well,
marked with A1 in (a). (c) A few of the cells around the horizontal well, marked with A2 in (a). (d) The generated 2.5D PEBI grids.
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is to search the Voronoi neighbors of every seed efficiently and build the
associated cells. During the searches, the background grids are used to
involve only a small number of other seeds around and the barrier of the
internal boundaries rule out the possibility for the points in the upper and
lower parts of the reverse fault areas of becoming mutual neighbors. This
helps construct reasonable cells around the reverse fault features. Our
grid generation process is automatic after the seed set is identified, and
its application in geology shows that the generated PEBI grids can
effectively resolve all of the features, including the reverse and normal
faults and well constraints. Meanwhile, the quality of the cells is
considerably improved with the use of CVT principle. The local PEBI grid
generation approach is found elastic and adaptable to the complex
structural features in reservoir. Yet, the application of our method to
more complex topologies and geometries remains an issue for future
investigations.
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