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A B S T R A C T

Uncertainty in the location of stratigraphic boundaries in stratiform deposits has a direct impact on the
uncertainty of resource estimates. The interpretation of stratigraphic boundaries in banded iron formation
(BIF)-hosted deposits in the Hamersley province of Western Australia is made by recognizing shale markers
which have characteristic signatures from natural gamma wireline logs. This paper presents a novel application
of a probabilistic sequential model, named a continuous profile model, which is capable of jointly modelling the
uncertainty in the amplitude and alignment of characteristic signatures. We demonstrate the accuracy of this
approach by comparing three models that incorporate varying intensities of distortion and alignment in their
ability to correctly identify a shale band of the West Angelas member of the Wittenoom Formation which
overlies the Marra Mamba Iron Formation in the Hamersley Basin. Our experiments show that the proposed
approach recovers 98.72% of interpreted shale band intervals and importantly quantifies the uncertainty in
scale and alignment that contribute to probabilistic interpretations of stratigraphic boundaries.

1. Introduction

In the assessment of mineral resources the separation of a deposit
in to geological domains is crucial to its feasibility. Moreover, the
tendency of specifying domains based only on grade and not in unison
with other geological parameters such as stratigraphic relationships
and geometry can have detrimental consequences in final reserve
estimates (Srivastava, 2005). This can be more apparent in the
estimation of tabular ore bodies, such as stratiform iron ore bodies,
where blocks are commonly unfolded so that stratigraphic contacts are
horizontal before geostatistical estimation (Sommerville et al., 2014;
Abzalov, 2016). The Hamersley province in Western Australia presents
(Fig. 1) a useful case where the stratigraphic interpretation of drill
holes can be constrained by the natural gamma signature of the
borehole and is thus routinely collected in the exploration of the region
(Jones et al., 1973; Kneeshaw et al., 2003). The Brockman and Marra
Mamba iron formations are interbedded with shale bands that are
laterally consistent across the province and that have distinctive peaks
in the natural gamma signatures that are preserved through the
enrichment process. This has allowed standard references of natural
gamma responses for the mineralised sections of the Hamersley group
to be developed which have been used to correlate sections spread
across some 300 km (Jones et al., 1973; Blockley, 1979; Blockley et al.,

1993). Moreover, given the gamma logs use in correlating horizons
between drill holes, they also play a crucial role in evaluating the
structural setting of a deposit and hence their interpretation has a large
impact on the specification of the geological domains used in resource
estimation (Sommerville et al., 2014).

Natural gamma logs measure the radioactivity from naturally
occurring uranium, thorium and potassium (Russell, 1941). While
these elements are generally found in higher concentration in shales,
accounting for non-shale sources of natural gamma and the effect of
grain size is important when interpreting the logs (Rider, 1990). There
are also systematic variability for a given natural gamma shale peak
that can be caused by numerous geological factors, including surface
hydration from weathering, deformation, lateral discontinuities, varia-
tions in depositional energy, and sediment supply (Rider, 1996). The
natural gamma peaks of the Hamersley Group in the Pilbara, Western
Australia, have been shown to have a pattern that is consistent with the
stratigraphy of the region and are therefore considered a reliable
indicator for marker shale bands in the region (Murphy and
Silversides, 2017). For iron ore deposits hosted in the Hamersley
Group the enrichment of unmineralised banded iron formation (BIF)
to ore occurs through the oxidation and replacement of primary
magnetite and chert bands respectively that interbed the marker shale
bands (Clout and Simonson, 2005; Thorne et al., 2008). In Brockman-
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hosted ore bodies, this has the effect of thinning the stratigraphy due to
the volume loss associated with hydrothermal alteration, ultimately
causing variations in the distance between marker shales complicating
their identification (Taylor et al., 2001). Similar complications also
arise in Marra Mamba-hosted ore bodies where volume loss is
associated with supergene alteration (Clout, 2006). Additionally,
localised folding and faulting also distorts and misaligns gamma
signatures (Jones et al., 1973) so that manual interpretation can be
labour intensive and difficult to reproduce.

Previous work has focused on classifying gamma signatures corre-
sponding to shale bands and building training libraries using Gaussian
Processes (GP) (Silversides et al., 2011, 2015a; Silversides and
Melkumyan, 2016a) combined with Dynamic Time Warping (DTW)
(Silversides et al., 2015b; Silversides and Melkumyan, 2016b).
Silversides et al. (2015a) used the standard deviation of the stochastic
process underlying the signatures to drive an active learning approach
to identify uncertain signatures. These uncertain signatures were then
used to incrementally build a library of positive and negative examples
used to classify an 8 m interval. While this approach is effective in
modelling variations in signal amplitude, highly deformed and mis-
aligned signals—which are common in wireline logging—in the training
library can adversely affect its performance. To address this Silversides
et al. (2015b) combined the output from the DTW and GP as a
weighted sum for a prediction, which improved performance but could
not quantify uncertainty, and thus could not be used for active learning.
Uncertainty quantification was introduced by Silversides and
Melkumyan (2016b) using DTW distances rather than Euclidean
distances in the covariance function of the GP, which modelled the
distortion and variability in scale.

In this paper, we demonstrate how the variability in scale and
distortion can be jointly modelled in a single probabilistic graphical
model framework (Wainwright and Jordan, 2008). This involves the
novel application of a probabilistic sequence alignment model that can
create a single characteristic representation of a shale marker signature
from multiple gamma signatures. We apply a continuous profile model
(CPM) (Listgarten et al., 2004) that is able to incorporate parts of a
shale marker signature that are present in one sample but not another
by modelling the probability of states defined by the scale and sequence
position of a characteristic signature. An analogous approach is often

used in bioinformatics where a probabilistic profile of a protein family
is modelled using a profile hidden Markov model (profile HMM)
(Durbin, 1998). The alignment of a protein can then be made by
modelling the probability of a deletion, insertion or match state in a
sequence of amino acids. This is similar to the alignment of natural
gamma characteristic signatures in the Hamersley, where less compe-
tent shale bands are interbedded with more competent BIF. Thus, the
probability of localised stretching and scaling in the characteristic
signature as a result of folding or faulting will be based on the position
within the signature.

A common application of Markov chains in geology is for the
analysis of cyclic successions in stratigraphy (Doveton, 1971) and
spatial Markov chains in geostatistics (Carle and Fogg, 1997) .
Applications of hidden Markov models have mostly been limited to
lithology (Jeong et al., 2014) or facies prediction (Eidsvik et al., 2004;
Lindberg and Grana, 2015) where hidden states represent lithology
types and observed values are petrophysical measurements. Other
geological settings where automated lithology interpretation methods
from petrophysics have been developed include coal deposits (Borsaru
et al., 2006; Horrocks et al., 2015), carbonate sedimentary environ-
ments (Chang et al., 2000; Qi and Carr, 2006; Insua et al., 2015) , and
shale-gas plays (Wang and Carr, 2012; Schlanser et al., 2016). The goal
of natural gamma shale band signature characterization in iron ore
deposits differs from the lithology and facies labelling problem in that
the unobserved variable models how an observation is related to some
canonical representation of the signal, and is thus more closely related
to the problem of protein sequence alignment (Durbin, 1998). In a
profile HMM, as applied in protein sequence alignment, the hidden
state sequence represents operations that relate the observed sequence
to a consensus sequence through operations such as insertion, deletion
or matching. Analogously, in a CPM we relate an observed sequence to
what we call the characteristic signature through the hidden state
sequence. To our knowledge, the only existing work on probabilistic
sequence alignment in the geoscience literature is Lin et al. (2014) who
applied a profile HMM to align the sedimentation rates between ocean
sediment core.

This paper presents a study that focuses on modelling highly
variable gamma signature of the West Angelas shale member of the
Wittenoom Formation which overlay the Marra Mamba Iron

Fig. 1. Hamersley province geology (Geological Survey of Western Australia, 2016).
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Formation in the Hamersley Basin, Western Australia. To validate the
effect of misalignment, we compare three models of the West Angelas
AS1-AS2 shale member signatures: an unaligned average model, a
smooth aligned CPM, and a distorted aligned CPM. The unaligned
average model is calculated as the average of all the signatures once
they have been linearly interpolated to same length. The distorted
model is trained on gamma signatures from all holes while the smooth
model excludes the gamma signatures known a priori to be highly
distorted. The three models are then used to identify a section from a
drillhole’s complete gamma log by finding the minimum DTW measure
(Sakoe and Chiba, 1978) with a specific aim to generate a horizon of the
shale member. The uncertainty of the identified interval compared to
the model is then assessed using the DTW distance, warping factor and
log MAP Viterbi score (Forney, 1973) with the distorted model. A
diagram of this workflow highlighting the elements that are probabil-
istically modelled and the elements that are deterministic is outlined in
Fig. 2. The remainder of the paper is structured as follows: first, we
summarise our dataset; second, we outline the methods and results for
the modelling of the characteristic signature; third, we present the
methods and results for identifying intervals using the models; and
fourth, we provide a summary and future work.

1.1. Dataset

Our study used drill hole data from 11 exploration holes that cover
parts of the Turner Syncline within the Hamersley province. The data
has been made freely available by the Western Australian Department
of Mines and Petroleum.1 Their locations on a NearMap2 aerial image
are displayed in Fig. 3.

The data consists of 662 m of reverse-circulation drillholes that
were chemically sampled at 2 m intervals. The geophysical wireline logs
were measured at 10 cm intervals and included the natural gamma, the
gamma-gamma bulk density, magnetic susceptibility and resistivity. A
plot of the natural gamma logs in 3D is displayed in Fig. 4 with the
interpreted signatures for the AS1 and AS2 markers of the West
Angelas member in red.

2. Methods

2.1. Modelling shale marker signature

Since the Continuous Profile model (CPM) extends the concept of
Hidden Markov model (HMM) which is widely used in time series data
analysis, especially in the area of speech recognition (Rabiner, 1989).
We first outline the theory of HMMs before introducing the CPM.

2.1.1. Hidden Markov chain model
A hidden state sequence model is one where each observation (e.g.,

a gamma emission) in a sequence X={x , x ,…, x }N1 2 of length N has a
corresponding state, i.e., there exists a state sequence Z={z , z ,…, z }N1 2
that is not directly observed. Fig. 5a illustrates how a continuous-
valued observed sequence of length N = 10, i.e. a natural gamma log,
can be mapped to an unobserved state sequence. Each hidden state
variable z is a discrete variable that has K = 3 possible values, {L,M,H},
which in this example represents low, medium and high. The motiva-
tion for using a hidden state is that the optimal parameters that fit
some observed data Xwould be easier to compute if some intermediary
variable Z were already known. In our example this is demonstrated by
the fact that if we knew that an observation was low, medium or high, it
would be easier to compute the optimal parameters, for example the
mean μ and standard deviation σ of a Gaussian distribution. In a

HMM, the probability distribution of a state zn depends on the previous
state zn−1 only and therefore is given by p (z z )n n−1 . The possible state
transitions for the example are illustrated in Fig. 5b, where the edge
labels represent the probability of changing from state i to state j, so
that A p z j i≡ ( = z = )ij n n−1 . The transition matrix A in Fig. 5c demon-
strates how an estimate for the transition probabilities can be
calculated from the transition frequency divided by the total for the
row.

The joint probability over all observations and states p (x , z ):N N1 1:
can be calculated as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏ ∏p p p p p(x , z ) = (x ,…, x , z ,…, z ) = (z ) (z z ) (x z ).:N N N N
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N
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n

N

n n1 1: 1 1 1
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The three probabilities that need to be inferred are: p (z )1 the initial
state probability distribution, p (z z )n n−1 the state transition probability
distribution and p (x z )n n the emission probability distribution. The
parameters that need to be learnt for the three probabilities are: the
initial state priors π , the transition probabilities matrix A, and the
emission density parameters θ . Thus, an HMM is fully specified by the
set of parameters λ π A θ= { , , }.

In standard formulations of HMM the values for λ are learnt using
expectation-maximization (EM) (Dempster et al., 1977) which is also
known as the Baum-Welch algorithm (Baum et al., 1970). The
algorithm finds that λ which maximizes the log-likelihood p λlog (x ):N1
for the observed data. The EM algorithm starts with an initial selection
for the model parameters λold . The E-step of the algorithm infers the
posterior distribution for each zn where n N1 < < using the initial
estimate ofλold by Bayes’ rule:

p λ(z x , ) = =n N
old p λ

p λ
p

p1:
(z , x )

(x )
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(x )
n N old

N old
n N

N
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1:
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The conditional dependencies as illustrated in Fig. 6a allow the
joint marginal distribution p (z , x )n :N1 to be factored into component
α (z )n and β (z )n that can be recursively defined as

p p p(z , x ) = (z , x ) (x z , x ) .n N n n
α

n N n n
β

1: 1:
(z )

+1: 1:
(z )n n (3)

This allows the exact inference of the posterior distribution to be
efficiently calculated and is named the forward-backward algorithm
(Rabiner, 1989). The M-step then maximizes the log-likelihood

p λlog (x ):N
old

1 with respect to eachλold to update the parameter values
to λnew which are used in the next iteration. The algorithm terminates
when the change in the log-likelihood is below a certain threshold.

The conditional dependencies between successive zn imply that the
most probable sequence of states z N1: for a given observation x :N1 is
different from the set of states that give each maximum posterior
distribution p (z x )n :N1 . Instead the Viterbi algorithm (Forney, 1973),
which is a recursive backward maximizer, can be used to calculate the
maximum a posteriori (MAP) probability estimation of the state
sequence:

plog MAP Viterbi score ≡ max (z x ).N N
z

1: 1:
N1: (4)

It can be derived from the observation in Eq. (1) that for a fixedx :N1 ,
the value of the last hidden variable zN that maximizes the joint
probability, i.e. pmax (x , z ):N N

z
1 1:

N
, only depends on the hidden variable

zN−1 that precedes it. Thus, only K values (the size of the set of possible
values for the hidden state) are necessary to evaluate what the most
likely hidden state value is for any one position n. Each of theseKvalues
are thus recursively defined as ω p p ω(z ) = max (x z ) (z z ) (z )n n n n n n−1

z
−1

n
and

is calculated for n N2 ≤ ≤ with ω (z ) = 1N . The most likely sequence of

1 WAMEX A95838, Wee One Annual Technical Report 2012 http://geodocs.dmp.wa.-
gov.au/search.jsp?Report_Ref=A95838 & cabinetId=2301.
2Tom Price 2012-08-15 http://www.nearmap.com.au/.
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states then corresponds to evaluating p p ωz z= argmax (x z ) (z ) (z )∼ ∼
n n n n n n

z
−1

n
where p p ωz = argmax (x z ) (z ) (z )∼

1
z

1 1 1 1
1

.

2.1.2. Continuous profile model
The CPM extends the HMM so that there are two components for

the hidden state zn that correspond to a characteristic signature
position stateτn and scale state ϕn (Fig. 6b). This assumes that there
exists a latent sequence t t t t= { , ,…, }∼

M1 2 of length M N> that repre-
sents the characteristic signature, of which, each observation sequence
X={x , x ,…, x }N1 2 is a noisy transformation. To accommodate the
variations in alignment of the sample signatures, the length M of the
characteristic signature t∼ must be larger than the number of ob-

servationsN . The values that the variable τn can take are integers
between 1 and M so that the set of possible values is τ M= {1,2,…, }∼ .
The range of scaling ϕn is between 0.66 = 2−0.60 and 1.23 = 20.60 . We
specify Qpossible scale states so that are evenly spaced between −0.60
and 0.60 in logarithmic space, giving the set of possible values as
ϕ = {(2 ) , (2 ) ,…, (2 ) , (2 ) }∼ Q Q

Q Q
−0.60

1
−0.60+1/

2
0.60−1/

−1
0.60 . This results in

K QM= possible states for zn.
The state transition probability distribution p (z z )n n−1 is separated

into its scale state and characteristic signature position components so
that p p ϕ ϕ p τ τA ≡ (z z ) = ( ) ( )n n n n n nz ,z −1 −1 −1n n−1 . The transitions between
states are also restricted so that the characteristic signature position
state τn can move forward by a maximum of Jτ positions and that the

Fig. 2. An outline of the study workflow of generating the characteristic signature models, testing them by identifying the intervals that returns the minimal DTW distance, and
analysing the uncertainty of the identified interval. Elements of the workflow that are probabilistically modelled are in green, and elements that are deterministic are in brown. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Wee one site drill hole collar locations.
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scale state ϕn can only change in steps. The probability distributions of
p ϕ ϕ( )n n−1 and p τ τ( )n n−1 are multinomials that maintain the transition
restrictions such that

⎧

⎨
⎪⎪

⎩
⎪⎪

p τ a τ b

d if a b
d if a b

d if a b J
otherwise

( = | = ) =

, − = 1
, − = 2

⋮
, − =

0,

i i

J τ

−1

1

2

τ

(5)

⎧
⎨
⎪⎪

⎩
⎪⎪

p ϕ a ϕ b

s if a b no scale change
s if a b scale increase by

s if a b scale decrease by
otherwise

( = | = ) =

, − = 0,
, − = 1, 1

, − = −1, 1
0,

i i−1

0

1

1

(6)

We empirically set the value of J = 5τ and Q = 9. The value of M is
set to twice the value of N + ϵ where we set ϵ = 0.1.

The characteristic signature t∼ is incorporated into the model by
adjusting the emission probability distribution so that the probability
of the observation xn is conditioned on t∼ and the observation noise level
σ as well as the state zn (see Fig. 6b). In the CPM model, since the
observation X is assumed to be a scaled noisy transformation of the
characteristic signature t∼, the emission probability distribution of each
xn is normally distributed with mean μ t ϕ= τ nn and standard deviationσ
which is the signal noise.

p t σ t ϕ σ(x z , , ) ≡ (x ; , )∼
n n n τ nn (7)

The emission probability distribution in Eq. (7) allows the EM
algorithm to update the characteristic signature t∼ as any of the other

Fig. 4. Natural Gamma signatures facing NW with interpreted AS1-AS2 signatures in red. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. (a) an example of a gamma log X of length N 10= that has K 3= states {L, M, H}, (b) the corresponding state transition diagram, (c) a transition probabilities matrix A that is

calculated from the transitions in the state sequence Z.
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parametersλ. The parameters for the CPM are thusλ π A θ= { , , }, where
the initial state priors π is a K dimensional vector, the transition
probabilities A is a K K× matrix, and the emission density parameters
θ are the characteristic signature t∼ and signal noise σ . The initial value
of the signal noise σ is set as 15% of the range of values in the first
observation in the training set. The initial characteristic signature t∼ is
taken as the first observation in the training set with zero-mean
σ -variance2 Gaussian noise added. This is upsampled to a length N2
by repeating each value twice, with the values at the ends correspond-
ing to ε being set to the minimum value in the observation. The
maximum a posteriori state sequence estimation that results from the
Viterbi algorithm can then be used to align an observation to t∼ by
applying the scale states ϕ ϕ ϕϕ={ , ,…, }n1 2 and characteristic signature
position state τ τ ττ={ , ,…, }n1 2 . This implies that the scaling and aligning
is not applied to the observation samples but are taken as scaled and
aligned versions of the characteristic signature.

2.2. Testing the shale marker model

2.2.1. Dynamic time warping
Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978; Keogh and

Ratanamahatana, 2004) is a commonly used pattern matching algo-
rithm that measures similarity between series that may have non-linear
differences in alignment. We use DTW here to measure the similarities
between the observed gamma logs and the model to demonstrate how
the model could be used in prediction.

Given a query gamma log Q q q q= , ,…, N1 2 and a candidate gamma
log C c c c= , ,…, N1 2 of length N , a N N× matrix D of the squared
pairwise distance between the gamma values of Q and the gamma
values of C is calculated, where the element D i j( , ) corresponds to the
distance between qi and cj. A warping path W w w w= , ,…, K1 2 of length
K is defined as a set of the matrix elements that is constrained by three
conditions:

Fig. 6. (a) HMM graphical structure with hidden state variables z and observation variables x (b) CPM graphical structure where each hidden state variable zn maps to a scale state ϕn
and characteristic signature position stateτn, and where the observed value xn is dependent on the characteristic signature t∼ as well as zn.

Fig. 7. (left) an example of DTW alignment between two gamma logs, (right) the optimal warping path through the distance matrix D.
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• The boundary condition: w D= (1,1)1 and w D n m= ( , )K so that the
start and end of each series are mapped to each other.

• The continuity condition: given w D a b= ( , )k and w D a b= ( ′, ′)k−1 ,
then a a− ′≤1 and b b− ′≤1 so that the path can only move in step
changes.

• The monotonicity condition: given w D a b= ( , )k andw D a b= ( ′, ′)k−1 ,
then a a− ′≥0 and b b− ′≥0 so that the path can only move forwards.
This is a geologically plausible constraint as there is no faulting or
overturning present in the project area.

The optimal warping path is defined as the warping path that
minimizes the accumulated distance (see Fig. 7). To compare the
accumulated distances across different warping paths the distance is
normalized by the length of the path K (see Eq. (8)).

⎪

⎪

⎪

⎪

⎧⎨⎩
⎫⎬⎭DTW Q C( , ) = min

w

K

∑k
K

k=1

(8)

Another measure that can be used to assess the optimal path is the
warping factor which we use to compare the identified interval results
across drillholes (see Eq. (9)), where N is the query and candidate
sequence length and K is the warping path length.

WarpingFactor Q C( , ) = N K
N
−

(9)

To test the effectiveness of the learnt characteristic signal t ̃ we use it
to query each drillhole’s natural gamma log to identify the section of
the log that it is most like. A sliding-window of varying width was used
to find the nearest-neighbour section by selecting the section with the
smallest accumulated DTW distance. The window size varied from
6.0 − 16.0 m at 0.1 m increments. This was applied to all 11 holes
including those from which no interpreted section was possible.

3. Results

The interpreted AS1-AS2 section from eight drillholes were used to
train a characteristic signature. To compare the effect of distorted
signatures on the trained model, a separate characteristic signature was
learnt without the RC12WEE0004 section which is the most distorted
signature (see Fig. 8d). The characteristic signature trained on all eight
observations including RC12WEE0004 is described as the distorted
model (Fig. 8c) and the characteristic signature trained without

RC12WEE0004 is described as the smooth model (Fig. 8b). An
unaligned model was also tested to compare against the aligned
models. The unaligned average model was calculated by expanding
each interpreted AS1-AS2 interval by linear interpolation to the length
of the longest observation, and taking the average (see Fig. 8a).

The most likely aligned and scaled versions of the samples with the
distorted model are presented in the middle of Fig. 9. EM training was
run until the log-likelihood changed by a factor of at most 0.001. Each
of the samples used in training were linearly interpolated to the length
of the longest training sample. The scaled and aligned samples are
taken as the Viterbi alignment of the observed samples on the right.
The forwards-backwards algorithms has a time-complexity of O N K( ∙ )N

where N is the length of the sequence and K is the number of possible
states. The training of the 8 samples was approximately 9 min on a
standard laptop computer running an Intel i7-4710HQ CPU at
2.50 GHz. The DTW algorithm has a time-complexity of O N( )2 . The
identification of the section across all 11 holes was approximately
3 min on a standard laptop computer running an Intel i7-4710HQ CPU
at 2.50 GHz.

The results of the identified horizons using the learnt characteristic
signature are presented here in Tables 1 and Table 2.

The results of all identified sections are presented in Table 1. The
total length of the intervals together with the overlap of the identified
and actual intervals as a proportion of both the actual and identified
interval are presented in Table 2. For the calculations in Table 2, let

y y x y x y[ , ] = { ∈ ≤ ≤ }a a a a
bottom top bottom top be the actual shale marker interval

and y y[ , ]i i
bottom top be the identified shale marker interval. The overlap of

the two intervals is defined as y y y y y y[ , ] = [ , ]∩[ , ]o o a a i i
bottom top bottom top bottom top .

The actual proportion is calculated as

actual% = × 100#
y y

y y

−

−

o o

a a
top bottom

top bottom (10)

With the identified proportion calculated as

identified% = × 100
y y

y y

−

−

o o

i i
top bottom

top bottom (11)

The overlap as a proportion of the actual interval can be interpreted
as the true positive rate, and as a proportion of the identified interval
can be interpreted as the complement of the false positive rate. The
mean true positive rate (higher is better) for the average model was

Fig. 8. (a) The average of the 8 signatures after they have been linearly interpolated to the longest signature (b) Smooth learnt signal trained without RC12WEE0004, (c) Distorted
learnt signal trained with RC12WEE0004, (d) The distorted RC12WEE0004 AS1-AS2 signature.
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94.95%, for the smooth model 92.65%, and for the distorted model
98.72%. The mean false positive rate (lower is better) was 4.44%
(0.43 m) for the average model, 4.26% (0.41 m) for the smooth model

and 5.94% (0.66 m) for the distorted model.
The identified intervals for the three holes RC12WEE0003,

RC12WEE0004, and RC12WEE0008 with their natural gamma wire-

Fig. 9. (left) The learnt characteristic signal for the distorted model after training on 8 samples, (middle) Aligned and scaled versions of the samples with the distorted model, (right)
The 8 unaligned unscaled samples used for training.

Table 1
Results of smallest accumulated DTW distance horizon identified with search window between 6.0–16.0 m. The bold rows correspond to the holes used in Fig. 10.

HoleID AS2 top elevation (m) AS1 bottom elevation (m)

Actual Identified Actual Identified

Average Smooth Distorted Average Smooth Distorted

RC12WEE0001 – 748.7 748.8 748.6 – 741.0 741.0 741.0
RC12WEE0002 733.2 733.6 733.5 733.5 723.0 723.1 722.9 722.7
RC12WEE0003 727.1 726.7 726.5 727.0 718.4 718.1 719.6 718.2
RC12WEE0004 748.1 748.6 749.2 750.2 735.3 739.1 739.1 735.8
RC12WEE0005 743.4 743.2 743.2 743.2 732.9 732.6 732.6 732.6
RC12WEE0006 742.5 742.1 742.2 742.1 733.0 732.8 732.7 732.7
RC12WEE0007 – 762.0 762.0 762.1 – 755.3 756.0 755.3
RC12WEE0008 722.0 722.0 722.1 722.2 714.2 714.1 714.4 714.0
RC12WEE0009 724.9 725.5 725.5 725.5 716.6 716.5 716.4 716.6
RC12WEE0010 – 735.7 740.3 740.3 – 729.0 734.3 734.3
RC12WEE0011 738.2 738.6 738.4 738.6 728.6 728.0 728.6 728.2

Table 2
The overlap of the identified and actual interval as a proportion of the actual and identified interval (higher is better). The bold rows correspond to the holes used in Fig. 10.

HoleID AS1–AS2 Identified/actual

Total length (m) Interval overlap

Actual Identified % of actual % of identified

Average Smooth Distorted Average Smooth Distorted Average Smooth Distorted

RC12WEE0001 – 7.7 7.8 7.6 – – – – – –

RC12WEE0002 10.1 10.5 10.6 10.8 99.08 100.00 100.00 95.61 95.59 93.82
RC12WEE0003 8.7 8.6 6.9 8.8 95.57 78.99 99.01 97.07 100.00 98.28
RC12WEE0004 12.8 9.5 10.1 14.4 70.92 70.92 96.72 95.46 89.79 85.89
RC12WEE0005 10.6 10.6 10.6 10.6 97.30 97.30 97.30 96.87 96.87 96.87
RC12WEE0006 9.5 9.4 9.6 9.5 96.70 97.75 96.70 97.77 96.77 96.74
RC12WEE0007 – 6.7 6.0 6.8 – – – – – –

RC12WEE0008 7.8 7.9 7.7 8.2 100.00 96.56 100.00 99.08 98.16 95.46
RC12WEE0009 8.2 9.0 9.1 8.9 100.00 100.00 100.00 91.62 90.61 92.65
RC12WEE0010 – 6.7 6.0 6.0 – – – – – –

RC12WEE0011 9.6 10.6 9.8 10.4 100.00 99.68 100.00 90.99 98.10 92.74
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line logs are displayed in Fig. 10. While the inclusion of RC12WEE0004
in the distorted model does not improve or adversely affect the
identified section in RC12WEE008, it has improved the identified
sections in RC12WEE0003 and RC12WEE0004.

We also show a gridded 3D surface of the horizon in Fig. 11
calculated using the minimum curvature, together with a cross-section.
The cross-section shows how the complex natural gamma signature for
rocks intersected by the RC12WEE0004 drill hole is likely related to
the presence of an antiformal fold hinge.

For the holes which did not contain the characteristic signature, the
identified sections are presented in Fig. 12. Since the gamma logs in

holes RC12WEE0001 and RC12WEE0010 are incomplete the identi-
fied sections do not appear to correspond to a likely AS1-AS2 section,
while the identified section from RC12WEE0007 is likely to be the
bottom of the West Angelas member.

The uncertainty analysis of the identified sections is presented in
Table 3 using the DTW distance (see Eq. (8)), the warping factor (see
Eq. (9)), and the log MAP Viterbi score (see Eq. (4)). We note that for
gamma logs known not to contain the shale marker (RC12WEE0001,
RC12WEE0007, and RC12WEE0010), the identified sections have the
highest uncertainty across all gamma logs for four cases in Table 3: the
DTW Distance for the Smooth and Distorted model, and the log MAP

Fig. 10. Extracted AS1-AS2 interval for holes in the cross section using characteristic signature trained on all holes.

Fig. 11. (left) The bottom of the extracted AS1-AS2 marker surface and Cross-Section. NW facing. The colour of the surface corresponds to the elevation. (right) A cross-section of the
surface showing where RC12WEE0004 is positioned compared to RC12WEE0008 and RC12WEE0003. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Viterbi score for the Average and Smooth model. The uncertainties for
the DTW distance and log MAP Viterbi score do not appear to be
strongly impacted by the choice of model (average, smooth, or
distorted) and preserve the ordering of the hole uncertainty well
compared to the warping factor.

The plot of the actual % identification accuracy and against the
uncertainties is presented in Fig. 13. The distorted model log MAP
Viterbi uncertainty for RC12WEE0004 can be seen to be an outlier.
This shows how characteristic signature uncertainty can be used to
indicate the need for further geological investigation. Even though the
identified interval has increased in accuracy compared to the average
and smooth model, the uncertainty has also increased which indicates
that the interval is anomalous compared to the model. This corre-
sponds to the observation earlier that the anomalous natural gamma
signature for rocks intersected by the RC12WEE0004 drill hole is likely
related to the presence of an antiformal fold hinge.

4. Summary and future work

We present an application of a CPM that is capable of probabil-
istically modelling both the scale and alignment of a natural gamma

signature of a shale marker. The characteristic signature that is learnt
from this model can identify 98.72% of the gamma signatures of the
AS1-AS2 shale marker interval of the West Angelas formation. While
being limited to a dataset of 8 example signatures, the improvement
over both the unaligned average model and the smooth model of
identifying the entire interval for the RC12WEE0004 signature de-
monstrates the robustness of the model. This is also demonstrated by
the range of windows used to search for the minimal DTW distance
which were between 6.0 and 16.0 m at 0.1 m increments.

There are limitations and advantages of the profile HMM technique
used in this research. The use of expectation-maximization to deter-
mine the optimal parameters can only determine the maximum like-
lihood estimate that is locally optimal and thus depends on the initial
values. This also places limitations on having a measure of uncertainty
since the posterior probability depends on the initial characteristic
signature t ̃ and the emission noise σ . The Bayesian approach for the
inference of the posterior is usually in the form of Markov Chain Monte
Carlo sampling (Listgarten et al., 2006) or variational inference (Wang
and Blunsom, 2013), which would allow confidence intervals on the
alignment to be constructed.

Another aspect that requires further work is assessing the uncer-

Fig. 12. Identified AS1-AS2 interval for holes that were interpreted to not contain the section.

Table 3
Comparison of three uncertainty measures for the identified intervals: the minimal DTW distance, the warping factor, and the log MAP Viterbi score.

HoleID DTW distance Warping factor log MAP viterbi score

Average Smooth Distorted Average Smooth Distorted Average Smooth Distorted

RC12WEE0001 1.50 1.22 0.98 0.38 0.40 0.43 −2700.33 −2688.80 −2750.21
RC12WEE0002 0.25 0.12 0.10 0.39 0.46 0.46 −462.79 −461.12 −463.29
RC12WEE0003 0.27 0.13 0.07 0.40 0.39 0.36 −446.57 −453.18 −448.31
RC12WEE0004 0.34 0.22 0.17 0.47 0.44 0.51 −498.07 −506.32 −592.35
RC12WEE0005 0.44 0.29 0.23 0.50 0.44 0.46 −482.31 −482.31 −482.31
RC12WEE0006 0.29 0.17 0.14 0.50 0.42 0.46 −458.15 −459.54 −461.29
RC12WEE0007 0.36 0.29 0.25 0.43 0.55 0.49 −513.75 −519.02 −506.82
RC12WEE0008 0.27 0.10 0.08 0.43 0.41 0.43 −449.36 −450.76 −449.01
RC12WEE0009 0.19 0.10 0.08 0.45 0.47 0.43 −446.01 −446.00 −448.47
RC12WEE0010 0.44 0.33 0.27 0.43 0.54 0.55 −661.48 −530.36 −530.36
RC12WEE0011 0.33 0.21 0.17 0.43 0.54 0.51 −477.04 −464.40 −465.50
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tainty in signature identification, which is different from the uncer-
tainty of the characteristic signature using the CPM which is developed
in our work. Since we have made the identification of the signature by
taking the interval with the minimal DTW distance, it is necessary to
assume the existence of the characteristic signature in each log to
generate a shale band horizon. However, for future work, our approach
can be extended to test repeated or absent signatures in order to
accommodate geological constraints such as faulting, folding and large
erosional events. We suggest that the identification of these types of
signatures and the uncertainty associated with them is more suitably
framed as a propagation of geological prior information (Wood and
Curtis, 2004). How characteristic signature uncertainty can be incor-
porated with geological prior information –such as the shale bands dip
and strike measurements or the structural setting– for modelling is an
area we intend to further investigate.

The main benefits of using profile HMM in geological applications
is in the specification of a consensus sequence, which can be thought of
as analogous to a stratigraphic sequence. Existing approaches to
automated stratigraphic alignment are usually based on some variation
of DTW (Collins and Doveton, 1994), which while effective in measur-
ing sequence similarity, do not have a probabilistic formulation which
allows it to learn a characteristic signature or stratigraphic column.
This is due to DTW treating every position in a sequence as equally
likely to warp. The uncertainty in alignment can be calculated formally
in profile HMM which also allow multiple realization of the alignment
to be made since the joint probability is inferred. The prior probability
of transitions can also be made based on correlation rules like
paleoangle consistency and sedimentary profile consistency, as in
Lallier et al. (2016), to incorporate stratigraphic knowledge.

Further work is required to determine how the complexity of the
geometry of the ore body contacts has an impact on the resource
estimation. Since drillhole spacing is at a much finer resolution at the
stage of resource estimation, the accuracy of the correctly identifying
the ore body contact has direct effect on the uncertainty of the estimate
which is commonly unfolded before estimation in tabular ore bodies
(Sommerville et al., 2014). We intend to investigate further how
geostatistical estimation uncertainty (Strebelle, 2002) and geometry
uncertainty can be further incorporated.
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