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A B S T R A C T

Geological domains contain non-stationary features that cannot be described by a single direction of continuity.
Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geome-
tries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed
that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to
better account for the local variability of complex geological deposits. The interpolation framework is paired with
a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative
non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically
from the sample data. The method also permits quantification of the volumetric uncertainty associated with the
boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local
geological features.
1. Introduction

The purpose of boundary modeling is to generate contiguous
geological domains inside which mineral resources and reserves will be
estimated. Boundary modeling is the workflow that assigns the geolog-
ical interpretation embedded in a set of categorical variables to the
unsampled locations in a domain; this ensures an estimate made at an
unsampled location uses the corresponding related samples. Boundaries
are traditionally modeled using explicit methods; where the orientation
and extent of the different geological bodies are interpreted on a set of 2D
cross sections and the individual interpretations are stitched together to
form 3D geological shapes. Recently implicit methods are applied to this
problem. Implicit boundary modeling is the automatic extraction of
geological surface from a scalar function sampled at the data locations.
The signed distance function (SDF) is the most common scalar function
for geological applications and is computed from the locations of the
categorical data. The SDF is the shortest distance from each sample
location to another sample location of a different category (Wilde and
Deutsch, 2012). In this work the SDF is negative if the current location is
of the category of interest and positive if the current location is some-
thing different; the specific choice of sign is arbitrary. The SDF is first
interpolated at the data locations, then evaluated on a set of grid loca-
tions spanning the domain, and finally the boundary is extracted by
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finding the location of the 0-level surface, for example with marching
cubes (Lorensen and Cline, 1987). Implicit modeling methods have
beneficial properties such as auditability, rapid model construction and
easy updating, and are widely applied to geological modeling problems.

Any interpolation method can be used to evaluate the SDF at the
unsampled locations, including: kriging; inverse distance weighted
(IDW); or radial basis function (RBF) interpolators. The RBF interpolator
is popular in the geological modeling literature (Cowan et al., 2003;
Hillier et al., 2014; Knight et al., 2007; Vollgger et al., 2015) and is
identical to the dual kriging interpolator given the choice of covariance
function and radial kernel (Fazio and Roisenberg, 2013; Journel, 1989).
These interpolators make an assumption of second order stationarity,
that is, the spatial relationships between locations are constant
throughout the domain. For example, dual kriging assumes a constant
covariance function modeled by calculating and fitting the experimental
variogram, whereas RBFs rely on a kernel parameterized for the data
configuration in the given domain (Fasshauer, 2007). Anisotropy is often
present in geological domains but a set of anisotropic parameters applied
globally may not adequately describe structurally complex domains.
Manual data-partitioning and unfolding techniques can be applied to
account for many cases of local anisotropy and second-order non-sta-
tionary kriging frameworks are available for more complicated domains
(Boisvert and Deutsch, 2011; Machuca-Mory and Deutsch, 2013).
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Fig. 1. Schematic example of the binary partitioning algorithm. A) the domain with scattered drill holes and the corresponding extents of the mesh, B) final set of partitions generated from
binary decomposition, C) local interpolants are solved independently in each partition, on overlapping sites the local interpolants sjðxÞ are weighted to the global interpolant sðxÞ.

Fig. 2. Standardized experimental and model indicator variograms for category 2 in the vertical direction (left) and horizontal direction (right). Data is fit with a single structure spherical
model to permit a positive definite covariance function.
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However, frameworks for local orientations in RBF interpolation are
mainly developed for the case of sparse geological information, where
the dataset for implicit reconstruction includes orientation measure-
ments of the target geological surfaces (Hillier et al., 2014). In these
instances, locally curvilinear features in boundary models are improved
by incorporating the either on-contact or off-contact orientations that
inform the geometry of the target surface (Hillier et al., 2014; Lajaunie
et al., 1997). The framework developed by Hillier et al. (2014) allows for
the incorporation of several types of constraints that can control the
orientation of the boundary locally but this framework requires struc-
tural measurements to inform the surface orientations.

The proposed methodology is a non-stationary boundary
2

interpolation method for the case where there are abundant data and
local anisotropic properties can be inferred directly from the samples.
This is common in the mining case where abundant data are available to
construct the models and advanced visualization techniques (such as the
“X-Ray Plunge”; Cowan, 2014) are required to correctly model the
complex orientations of continuity in 3D. In these types of domains,
implicit models that account for local continuities better capture
geological relationships. A semi-automatic iterative framework is pro-
posed where the local orientations of continuity are inferred from the
generated geomodels and the iteratively refined boundaries better reflect
the target geological shapes.



Fig. 3. SDF Modeling workflow to account for curvilinear geological features. A) categorical dataset, B) signed distance function values calculated from the indicator dataset, C) the
distance function model generated with the variogram models shown in Fig. 2, D) LVA-field dip component extracted from the anisotropic model in C, and E) the refined locally anisotropic
boundary model generated with LVA kriging.
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1.1. Background

The following is summarized from Fasshauer (2007). Radial basis
functions fit a function to a scalar field that is sampled at a set of scattered
data locations. For geological modeling the scalar function is often the
SDF calculated from the locations of indicator data. Consider a set of
scattered data locations in R3 represented by xi ¼ ðx; y; zÞ where the
value of the SDF, f ðxiÞ, is calculated for all i ¼ 1; :::; M data sites. The
goal of RBF interpolation is to obtain a function that interpolates f ðxiÞ for
all xi in the domain. The interpolant sðxÞ is a grid-free continuous func-
tion defined for all locations x. The value of the interpolant at any
location x is obtained from the weighted linear combination of all data
evaluated on a radial kernel, ϕ:

sðxÞ ¼
XM
i¼1

λiϕðkx� xik2Þ (1)

where λ is the vector of weights solved under the constraint that the
interpolant, sðxiÞ, interpolates the scalar function at the data locations,
f ðxiÞ, e.g.:

sðxiÞ ¼ f ðxiÞ i ¼ 1;…;M

The problem formulated in this way leads to a linear system
of equations:
3

Aλ ¼ f

where the square interpolation matrix A has components Aij ¼
ϕðkxi � xjk2Þ for i; j ¼ 1; :::;M, f is a column vector containing the value
of the SDF, f ðxiÞ, at location xi for i ¼ 1; :::; M, and λ is a column vector of
weights that are determined by solving the linear system of equations.
Once the weights are determined, the value of the interpolant can be
extracted for any location (Equation (1)). The kernel type, anisotropy and
interpolation parameters are problem specific and depend on the data
configuration and desired surface properties. The kernel determines the
spatial relationship between all i� j points evaluated with the Euclidean
distance. Global anisotropy can be introduced using an anisotropic kernel
(Hillier et al., 2014).

Historically the main issue for applying RBF-interpolation to large
geological datasets is the dense linear system of equations and the
resulting issues with CPU and RAM requirements (Beatson et al., 1999;
Carr et al., 2001; Cowan et al., 2003). There are many methods to permit
RBF interpolation for large datasets: sparse-direct interpolation where
the influence of points beyond some distance from one another is
negligible (Ohtake et al., 2006); iterative solving techniques that assume
a sparse system of equations and some level of accuracy (Beatson et al.,
1999; Carr et al., 2001); and domain decomposition techniques which
partition the domain into overlapping subsets and solve many small
sub-problems, often in parallel (Beatson et al., 2001; Cuomo et al., 2013;



Fig. 4. Examples of the overlap obtained during binary partitioning. A-C) partition overlap generated by considering data overlap in child partitions during splitting, D-F) partition overlap
generated by considering expansion of the partitions after decomposition.

Fig. 5. Example of the N-category extraction from the independent N-SDF interpolations (Silva, 2015). A) the simple example domain of 3 categories. B-D) SDF interpolants for categories
1, 2 and 3, respectively. E) the final categories prevailing at each location in the grid given the interpolated SDF values for each category.
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Ohtake et al., 2003; Pouderoux et al., 2004; Xiaojun et al., 2005).
The Partition of Unity (PU) domain decomposition recursively de-

composes a domain, A, into P overlapping subdomains, Aj, so that
4

∪P
j¼1 Aj ¼ A (Fig. 1a and b)). In each partition a local interpolant is ob-

tained considering the contained data, and the global interpolant, sðxÞ, is
reconstructed from the linear combination of the local interpolants



Fig. 6. Fully automatic PU RBF iterative refinements of the simplified boundary model from Fig. 3, starting with the isotropic model and ending with the locally anisotropic model.
Iterative refinements are artificially limited to 11. Boxes indicate individual partition boundaries. Blue points represent the partition centers, and the associated red lines indicate the
orientation of the local anisotropy inferred in each partition for each iteration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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weighted on overlapping sites:

sðxÞ ¼
XP
j¼1

wjðxÞsjðxÞ

A key component of the PU is the weighting function that relates the
local interpolants to the global. The weighting function is non-negative,
zero at the boundaries and 1 at the center, and sums to 1 on overlapping
sites (Pouderoux et al., 2004).
1.2. Modeling non-stationary geological features

Implicit modeling with realistic geological features is an important
target for mineral resource estimation. Commercial implicit geological
5

modeling software provides tools to manually incorporate more realistic
local orientations of continuity (Cowan et al., 2003). Recently a frame-
work to incorporate surface and off-surface orientations into RBF inter-
polation is developed to improve the implicit reconstruction of geological
surfaces, mainly targeted for the sparse environment (Hillier et al.,
2014). Tools such as locally varying anisotropy (LVA) kriging (Boisvert
and Deutsch, 2011) or other second order non-stationarity interpolation
methods (Fouedjio and S�eguret, 2016; Machuca-Mory and Deutsch,
2013; Sullivan et al., 2007) can be applied to the SDF modeling workflow
to account for curvilinear geological features.

A simplified example demonstrating the improvements possible by
incorporating non-stationary interpolation (Boisvert and Deutsch, 2011)
are shown in Fig. 2 and Fig. 3. The dipping drill holes sample two cate-
gories in the domain; samples of category 2 show the rough trace of an



Fig. 7. Fully automatic PU RBF iterative refinements of the simplified boundary model starting with the anisotropic parameters modeled in Fig. 1. Boxes indicate individual partition
boundaries. Blue points represent the partition centers, and the associated red lines indicate the orientation of the local anisotropy inferred in each partition for each iteration. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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anticline feature, which is the main target of geological modeling
(Fig. 3a). The SDF is calculated for category 2 at each location from the
locations of each sample (Fig. 3b). The indicator variogram for category 2
is fitted with a spherical model, with a range of 173 m in the vertical
direction and 124 m in the horizontal direction. The anisotropic ratios r1
and r2 are calculated from the relative lengths of the variogram model
ranges: r1 ¼ ahmin

ahmax and r2 ¼ avert
ahmax. The SDF is estimated with ordinary

kriging to account for the locally varying mean. The target geological
boundary is shown in white at the 0-level interface between the negative
and positive areas in the exhaustive SDF model (Fig. 3c). This initial
model is then used to infer a set of locally varying orientations required
for LVA kriging (shown in Fig. 3d). Any method can be used to infer the
locally varying orientations; in this work a multilevel gradient-PCA based
method is used to extract the local features from the SDFmodel (Feng and
Milanfar, 2002). A constant global anisotropic magnitude, r1 ¼ 0:2, is
used to ensure the extracted structural orientations are enforced with
LVA kriging. The final model generated with LVA kriging is shown in
Fig. 3e. This ‘refined’ model has locally oriented boundaries that are
more consistent with the interpreted shapes from the sampling of the
domain. The inferred local orientations can be reviewed and modified by
the expert to further iterate on the boundary model. However, LVA
kriging becomes prohibitively computationally expensive for large
datasets and large domains with complex structural features whereas the
fast evaluation formulations for RBF interpolation can improve
this process.

1.3. Proposed methodology

The proposed methodology is to improve boundary models with
local anisotropy that is automatically extracted from the boundary
models. The PU framework permits independent interpolation of each
partition which is exploited by introducing locally anisotropic radial
kernels. A gradient-PCA based method to extract orientations from the
boundary models is used to define local orientations. There are 4
main steps:
6

1. Domain decomposition to define sets of data supported partitions for
local interpolation.

2. Use the independent nature of the PU formulation to independently
interpolate boundaries with the current anisotropy in each partition.

3. Use a method to extract the local orientations of continuity from the
SDF or indicator models representing the target geological shapes.

4. Extract the most representative anisotropic orientation inside each
partition, update partition parameters to include the new local
anisotropy and repeat from step 2.
1.4. Domain decomposition

The ideal domain decomposition method simultaneously accounts for
the data and the mesh the implicit function will be evaluated on. The goal
of decomposition is to subdivide the domain based on the arrangement of
the data into subdomains that have: similar quantities of data assigned to
each; a reasonable collection of mesh (grid) locations to evaluate the
local solution on; and valid weighting functions for the evaluation loca-
tions relative to the center of the partition (Fasshauer, 2007; Pouderoux
et al., 2004). A number of domain partitioning algorithms can be used,
including: a regular coarse grid; K-means; bisecting-K-means; binary tree;
octree; and others (Klaas and Shephard, 2000; Pouderoux et al., 2004).
The simplest partitioning is the regular coarse grid, which can work well
for domains of roughly uniform sampling. However, a method that par-
titions based on the data arrangement is required in a mineral deposit
setting where samples are irregularly distributed. The binary decompo-
sition is used in this work since it can rapidly decompose a domain
generating data supported partitions with the desired overlap and ac-
counting for the axis-aligned set of grid locations with valid weighting
functions (Pouderoux et al., 2004).

At each step in binary decomposition, a domain is split along the
longest dimension into 2 overlapping sub-domains (Fig. 1a and b). In this
work overlap is ensured in two ways: 1) during splitting a fraction of the
data can be taken to be part of both child partitions so overlap is main-
tained along the boundary (Fig. 4b); and 2) after partitioning is finalized
the partitions can be expanded beyond their original boundaries to



Fig. 8. The SA:V metric calculated on the A) isotropic and B) anisotropic seeded iterative refinements from Fig. 6 and 7, respectively. The SA:SA metric calculated on the C) isotropic and
D) anisotropic seeded iterative refinements from Fig. 6 and 7, respectively. E) The SA:V metric calculated on a sphere of increasing radius – with increasing size of the object the SA:V of the
object is minimized, motivating the use of the SA:SA metric in C) and D).
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ensure suitable overlap when the data overlap is insufficient (Fig. 4d, e,
f). In practice, both overlap methods are required since the data overlap
alone can cause issues with recursion for some data configurations and
the expansion overlap has potential to expand partitions to encompass
too many data (e.g. cyan in Fig. 4c versus Fig. 4f). The binary decom-
position is also relatively simple to implement and the resulting parti-
tions have several valid weighting functions (Pouderoux et al., 2004):

C0 : wf ¼ 1� d

C1 : wf ¼ 2d3 � 3d2 þ 1

where d is the distance from the center of the partition to each cell in the
partition, computed with (Pouderoux et al., 2004):

d ¼ 1�
Y

p2x;y;z

4��xp � Lp

���Up � xp

�
�
Up � Lp

�2

with xp the coordinate of the current grid cell, Lp is the lower coordinate
of the bounding box, and Up is the upper coordinate of the bounding box,
where the product is taken over each coordinate p 2 fx; y; zg. Since the
binary partitioning decomposition is only based on the number of data,
7

there is no guarantee that the data allocated to each sub domain best
reflects all grid cells allocated to that domain, for example, the data may
exist only at 1 corner rather than being distributed uniformly throughout
the partition.
1.5. Local support and local anisotropy

In the PU framework, subdomains are considered independent and
the interpolation can be implemented in parallel (Cuomo et al., 2013).
Moreover, a local support parameter for the kernel can be estimated from
the data spacing in each sub-domain. The support parameter can be
estimated from (Fasshauer, 2007):

support ¼ max
xεΩ

�
min
xjεX

��x � xj

��
2

�

where Ω represents the total set of grid locations, X represents the
collection of data locations inside the domain and the resulting sup-
port distance can be interpreted as the radius of the largest empty
circle or sphere that can be placed inside the bounds of each sub
domain. The independent nature of partitions can be exploited to
introduce local kernel properties to the implicit model (Casciola et al.,



Fig. 9. Example distribution of uncertain volumes. Trained using the jackknife-based bandwidth-parameter, which can be mapped to the C-parameter to visualize contained volumes
within the modeled geological solids.

Fig. 10. Interpolated boundaries (black) showing the location of the lower and upper
volume shells obtained with the bandwidth parameters calibrated in the jackknife-based
framework of Wilde and Deutsch (2012).
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2006). In this case, a set of anisotropic orientations and ranges derived
from the local data can be used generate a locally anisotropic inter-
polation problem in each of the subdomains.

1.6. Modeling the local anisotropy

The gradient-PCA technique for local orientations from a gridded
dataset developed by Feng and Milanfar (2002) is extended here to 3D
to extract the dominant local orientations from boundary models.
Readers interested in the 2D implementation of the gradient-PCA
method are directed to Feng and Milanfar (2002). This technique
generates a set of anisotropic orientations (strike and dip) from a
gridded model that reflect the down-dip dominant orientation for a
given window size at each location in the grid. The relative magnitudes
of the singular values from singular value decomposition (SVD) can
also be used as a preliminary estimate of the anisotropic magnitudes
for each location in the domain, that is, the magnitudes reflect the
dominance of an orientation in each decomposed gradient window.
Since a partition is required to have a single set of anisotropic pa-
rameters, the estimated parameters for each location in the partition
must be combined to a single representative set. In their implementa-
tion, Feng and Milanfar (2002) use the relative magnitudes of the
singular values from SVD of the gradient matrix as a measure of the
relative strengths of the orientations in each window, termed ‘energy’
and denoted by ER:
8

ER ¼ sv1 � sv2
sv1 þ sv2

where sv1 and sv2 are the singular values of the first and second principle
axes, respectively. The energy calculated for each orientation estimate is
then used to weight orientation estimates between layers in the multi-
level algorithm, which is done specifically to deal with noisy input (Feng
and Milanfar, 2002). For the current work, these energies are used to
weight the orientation estimates in each partition to generate a single
estimate such that dominant orientations contribute more than ‘noisy’
orientations to the averaged partition orientation.

For a given partition β, the vector representing the dominant orien-

tation in the partition, ori
⇀

β, has components < x; y; z> calculated by
weighting the components of the orientation vectors estimated at each
location within the partition:

x ¼
Xncell
i¼1

ERixi; y ¼
Xncell
i¼1

ERiyi; z ¼
Xncell
i¼1

ERizi

ori
⇀

β ¼ 〈x; y; z〉

Xncell
i¼1

ERi ¼ 1

where ncell is the total number of estimation locations within the current
partition, and ERi is the energy calculated from the singular values from
SVD at each estimation location. In 3D, the orientation extraction algo-
rithm is limited to extracting the dip-direction and dip components of the
local orientations (plunge ¼ 0). Taking the weighted average of the
vector components while ensuring the axial nature of the orientations are
accounted for is a suitable method to compute an average orientation in
each partition for gentle to moderately dipping terrains (Lillah and
Boisvert, 2015; Machuca-Mory et al., 2015). However, for 90� plunging
structures, vector averaging of these vectors cannot compute an average
partition anisotropy. The extrapolated partition orientation represents
the most dominant orientation according to the estimation energies from
the local gradient windows. For cases where partitions encompass many
structurally predominant orientations, this weighting scheme may
generate a nonsensical partition orientation, since no single orientation
may adequately describe the dominant orientations in the partition. In
this case splitting the offending partition, or considering fewer data-per-
partition initially may help to alleviate these problems. Alternatively, a
reasonable orientation could be assigned by considering the surrounding



Fig. 11. Rock types and drill hole locations, oblique view looking north.
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partitions.
The proposed weighting method uses the magnitude of the singular

values to estimate the dominant orientations. Since the anisotropic
magnitudes are also estimated from the relative lengths of the singular
values (i.e. r1 ¼ sv2

sv1
and r2 ¼ sv3

sv1
) this weighting scheme cannot be used to

obtain the dominant anisotropic magnitude. Instead, the arithmetic
average of the magnitudes is taken for the partition. A more represen-
tative estimate of the local magnitudes of anisotropy could be obtained
by fitting locally weighted variograms and extracting the model ranges as
in Machuca-Mory and Deutsch (2013).

The anisotropic angles and ranges are introduced to the local inter-
polation problem by computing anisotropic distances using rotation
matrices. First, the angles required for the rotation matrix are calculated
from the components of the partition anisotropy vector computed above:

2
4 α
β
ϕ

3
5 ¼

2
4 arctan 2ðx; yÞ

arcsinðzÞ
0

3
5

And the rotation matrix is calculated, as in Rossi and Deutsch (2014,
pp 42):
R ¼
2
4 cos α cos ϕ� sin α sin β sin ϕ �sin α cos ϕ� cos α sin β sin ϕ cos β sin ϕ

r1* sin α cos β r1*cos α cos β r1*sin β
r2*ð � cos α sin ϕ� sin α sin β cos ϕÞ r2*ðsin α sin ϕ� cos α sin β cos ϕÞ r2*cos β cos ϕ

3
5 (2)
Using the rotation matrix the points in the domain are rotated to have
the correct anisotropic relationships with:

2
4 xr
yr
zr

3
5 ¼ R⋅

2
4 xo
yo
zo

3
5 (3)

where xo are the original locations, and xr are the rotated locations that
have the desired anisotropic relationships. Finally, the Euclidean dis-
tance computed in the rotated space (e.g.

����xri � xrj
��j2) is used in equation

(1) to train and evaluate the locally anisotropic interpolants.
9

1.7. Iterative refinements and speeding up iterative implicit modeling

The final component of the proposed iterative refinements is to
choose a criterion indicating the refinements are complete. Here, the
number of blocks changed between iterations is taken as a measure of
‘refinement’ between iterations. If a block is estimated as ‘inside’ in one
iteration, and ‘outside’ in another iteration, it is considered to be
changed. Initially many blocks will change designation, but this is ex-
pected to decrease with continued iteration. A tolerance can be set to stop
refinements of the partitions if there is insufficient change between it-
erations. Since the partitions are independent, if refinement of a partition
results in no beneficial changes, then further refinement of that partition
is unnecessary, and the partition can be omitted from the global solution
step in the boundary interpolation, which can drastically speed up the
boundary refinement algorithm.
1.8. Multiple category implicit modeling

Silva (2015) introduced a methodology to simultaneously model
N-categories using the SDF implicit modeling workflow presented above.
By obtaining an interpolated SDF value for each category, as described
above, the N-category implicit model is constructed by choosing the
category with the most negative interpolated SDF at each location. A
simple test domain with 3 categories, shown in Fig. 5a, is used to
demonstrate the extraction of the categorical model from the individual
interpolated SDFmodels. The interpolated SDF for each category 1, 2 and
3 are shown in Fig. 5b, c, and d, respectively; each SDF is interpolated
independently with an isotropic Gaussian kernel. The final merged cat-
egorical model is shown in Fig. 5e. The category prevailing at each
location is chosen by taking the category corresponding to the minimum



Fig. 12. Experimental and model variograms for each category.

Table 1
Modeled global anisotropic parameters for each category from variograms in Fig. 10.

Category Anisotropic Angles r1 r2

strike dip plunge

1 90 15 0 0.89 0.27
2 125 15 0 1.0 0.39
3 270 70 0 0.91 0.18
4 270 75 0 0.87 0.51
5 55 5 0 1.00 0.33
6 45 5 0 1.00 0.28
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2. Synthetic example

The locally anisotropic synthetic dataset presented in Fig. 3 is used to
demonstrate the proposed iterative refinement framework. Two seed
models are considered; 1) an isotropic SDF model; and 2) a globally
anisotropic model. In the first example, the starting model contains
several disconnected ‘blobs’ (Fig. 6a). The first few sets of orientation
refinements generate anisotropic properties that poorly reflect the ex-
pected orientation of the two limbs (Fig. 6b and c). The tolerance for
stopping in this example is set extremely low to ensure that refinements
are made for each partition in each iteration regardless of the amount of
change. By iteration 4 (Fig. 6e) the local boundaries better reflect the
expected configuration and by iteration 8 (Fig. 6i) the true down-dip
continuity and thickness on each limb is reproduced. In this case the
main structure of the domain is mostly achieved by iteration 4 and
perhaps at this stage the iterative refinements could be stoppedmanually.
10
Iterative refinements from a globally anisotropic seed model are
shown in Fig. 7. By constraining the startingmodel to better represent the
locally anisotropic properties, the iterative refinements more quickly
arrive at a realistic boundarymodel with the desired down-dip continuity
and thickness. Seeding the iterative refinement with the best set of global
anisotropic parameters can speed up interpolation and helps ensure the
correct locally anisotropic properties are extracted from the model.

2.1. On the ‘goodness’ of an implicit model

The evaluation of the locally anisotropic model is largely qualitative;
the boundary model is subjectively improved through increased
geological reproduction given the interpretation of the domain. Incor-
porating LVA to the interpolation step of boundary modeling will
improve the cross-validation results since LVA increases the relatedness
of nearby samples (Boisvert and Deutsch, 2011). However, for the pre-
sent applications improved cross validation does not translate to a better
implicit geological model.

A very simple but quantifiable metric of ‘goodness’ for the implicit
shape is proposed. The metric is derived from subjective qualities of an
implicit model that are targets of the geomodeler during model con-
struction. The metric can be calculated for any boundary model, and can
be used to compare different models objectively, either between mod-
elers or between iterations of the same model.

There are two forms of the proposed metric which are both derived
from the ratio of the surface area to the volume of the implicit model.
This metric can be justified as an indicator of ‘goodness’ since poorly
parameterized implicit models tend to exhibit bubble, balloon or sphere-



Fig. 13. Comparison of the boundaries for category 2, 3 and 4 modeled with A), C), and E) global anisotropy. Red ellipsoid shows the global anisotropy used in each interpolation in A), C)
and E). Automatic local anisotropy refinements shown in B), D) and F). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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like shapes that do not represent realistic geological features (e.g.
Fig. 6a). Such models are typically modified by considering anisotropy to
improve the continuity of the model in different directions to more
accurately represent the underlying geological features (e.g. Fig. 7a).
However, even in the case of Fig. 7a improvements to the implicit model
in the form of fewer bubble-like shapes could be made. To compute the
metric, the surface area and volume of each disconnected region in the
model are calculated. For example, in Fig. 6a there are 3 disconnected
regions and in Fig. 6b there are 2 disconnected regions. For each
11
disconnected region in the implicit model, the SA:V of the region is
computed (Fig. 8a and b). For a constant number of connected regions,
the SA:V of the implicit shape tends to increase as the boundary becomes
more locally representative (Fig. 8b). Notably, when the implicit model
starts with disconnected regions that become connected, the volume is
increasing which tends to minimize the SA:V (Fig. 8a), which is true even
for a sphere (Fig. 8e). In this case it is more useful to compute the ratio of
SA:V implicit model to the SA:V of the sphere with equivalent volume.
The metric is then defined by:



Fig. 14. X-Z slices through sparsely sampled southern portions of the domain. (‘iso’), globally anisotropic (‘aniso’) and locally anisotropic (‘iterref’) parameters. Data locations are shown.
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M ¼
SAimplicit
Vimplicit

SAsphere
Vsphere

And when Vimplicit ¼ Vsphere:

M ¼ SAimplicit

SAsphere

These two metrics are shown in Fig. 8c and d. The tendency of an
implicit modeling project, then, is to have models that start out with
balloon-like spherical shapes where the boundaries may be disconnected
and SAimplicit locally approximates SAsphere. Then, with further refinements
and modeling iterations, the models progress to have fewer disconnected
regions with less rounded balloon like shapes. The above metrics are
computed on the iterations in Fig. 6 and shown in Fig. 8.

3. Volumetric uncertainty

There may be significant volumetric uncertainty present in implicit
models owing to uncertainty in the location of the boundaries, and
capturing this uncertainty is an important component of the geostatistical
12
workflow. Volumetric uncertainty describes the variability in the volume
of material encompassed by a modeled geo-solid. Since the SDF inter-
polated to the unsampled locations controls the location of the boundary,
the volumetric uncertainty is quantified by changing, in some way, the
underlying volumetric function or modifying the modeling parameters
that interpolate the SDF to the unsampled locations. Various methods are
proposed to quantify this uncertainty, including: calibrating bandwidth
parameters and simulating unconditional realizations to truncate the
uncertain zone to generate boundary realizations (Wilde and Deutsch,
2012); considering uncertain structural orientation inputs to the model
construction and assessing the probability to be inside or outside over a
number of realizations (Lindsay et al., 2012); considering uncertain
proportions in the form trend models (Hadavand and Deutsch, 2017);
resampling tops and bottoms within uncertain zones of a modeled ore
solid to generate realizations of thickness (Yamamoto et al., 2015); or
directly simulating the volumetric function within the constraints of a
non-stationary and geologically realistic LVA framework (Lillah and
Boisvert, 2013). There are many methods that can be used to obtain the
distribution of uncertain volumes for a given geological model. In this
work the bandwidth parameter fromWilde and Deutsch (2012) is trained
with local anisotropy by applying the jackknife-based workflow to assess
misclassification with increasing bandwidth parameter. The final step



Fig. 15. X-Z slices through models constructed with globally isotropic (‘iso’), globally anisotropic (‘aniso’) and locally anisotropic (‘iterref’) parameters. Data locations are shown.
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after quantifying the volumetric uncertainty is to generate realizations of
the boundary models and extract iso-probability contours for the domain
for different uncertain volume distributions (Fig. 9 and Fig. 10).

The process is illustrated in Figs. 9 and 10. The volumetric uncer-
tainty is acquired by one of the methods above, for example, that from
Wilde and Deutsch (2012). The volumetric uncertainty can be mapped to
sets of bandwidth parameters that constrain the different volumes, and
the different volumetric shells can be viewed (as in Fig. 10).

4. Case study

A dataset of 8527 samples from 316 drill holes that sample a large Cu-
porphyry deposit are used to illustrate the proposed methodology. Six
rock types are the target of geological modeling; categories 3 and 4 are
the main modeling targets considering the areas of dense drilling and the
contained grades (Fig. 11). Category 3 has the highest average grades and
is mainly localized to the northeast portion of the domain. Category 4
occurs at the periphery of category 3 and has similar grade distributions.
The dense drilling in the domain to the northeast mainly targets category
3 whereas category 4 has a more consistent distal extent to this densely-
drilled area. Together with category 2, which also has elevated grade
values, these lithologies comprise a significant proportion of the samples
13
(p2 þ p3 þ p4 ¼ 0:411). Category 1 and 6 form the unmineralized top and
bottom of the modeling domain respectively. Category 2 and 5 are
related to the mainmineralized lithologies; category 2 tends to be located
above the main mineralized categories, whereas category 5 is mostly
found below 3 and 4.

An isotropic model is generated for inspection to interpret any pre-
dominant continuities in the domain prior to modeling anisotropy with
experimental variograms. An isotropic Gaussian kernel is used with the
local support estimated from the data spacing in each partition. The
partitioning algorithm was specified to have 100 data-per-partition, with
a final overlap of 50% in each of the x, y and z directions.

Global anisotropic parameters (strike, dip, plunge, r1 and r2) for each
category are determined from the model variograms fitted to the
experimental indicator variograms calculated along the directions of
maximum continuity inferred from the isotropic model (Fig. 12). The
extracted anisotropic parameters for RBF interpolation are shown in
Table 1. As described above, the anisotropic parameters strike, dip,
plunge, r1 and r2 are utilized in the SDF interpolation for each category
by computing the corresponding rotation matrix using equation (2), and
scaling the data and mesh locations independently for each SDF inter-
polation (for each category) to have the correct anisotropic properties
using equation (3). For example for 6 categories, 6 rotation matrices and
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location scaling are required to represent to interpolate the globally
anisotropic SDF for each category.

The final set of boundaries are generated by considering the fully
automatic refinement algorithm proposed in this work. The iterative
refinements are performed on each lithology by seeding the algorithm
with the globally anisotropic model with the same partitioning param-
eters used in all runs. The final N-category implicit model is generated in
the post processing workflow described above (Fig. 5; Silva, 2015). At
this stage, the geological crosscutting relationships could be incorporated
to ensure that the domain honors known relationships indicated by
superposition.

Three-dimensional boundary shells considering global anisotropy
extracted from the gridded SDF are shown in Fig. 13a, c and e. The
boundaries smoothly honor the data locations within the partitioning
framework considering the global anisotropy. After inspecting this
model, it is likely that refinement of the variogram model would be
performed or sub domaining applied to separate zones with distinct local
anisotropic properties. Specifically for category 3 and 4, the highest
continuity modeled from the variograms is steeply dipping and variably
oriented (Fig. 13c and e). This anisotropy is over exaggerated in places
and most likely the parameters for these categories should be revisited to
ensure they correctly account for the geological interpretation of the
domains. For category 2, the contrasting anisotropic properties at the
west and east end of the modeling domain are not adequately captured
with the global anisotropic model (Fig. 13a).

Boundary shells considering the local partition anisotropy are shown
in Fig. 13b, d and f. These locally anisotropic models are notably different
than the globally anisotropic model. For example, consider the geometry
of category 2 in Fig. 13b. The basement rocks (category 6) form an
upwelling-intrusive like feature just to the west of the dense drilling,
which corresponds to the topographic high; the result is that units above
are dipping locally in opposite directions, as shown in Fig. 13b. The
freedom of the local anisotropic properties allows the boundaries to
honor the local dips which are inferred from the data. For regions with
limited data, the framework also appears to extrapolate adequately ac-
cording to the automatically inferred orientations (Fig. 13f). Similar
conclusions can be drawn for category 3 (Fig. 13d); the main section with
dense drilling the northwest portion of the figure remains relatively
isotropic, whereas there is anisotropy inferred in southeast, according to
the local geometry implied by the data. Similarly the anisotropy inferred
from the global variogram model for category 4 provides a limited
interpretation (Fig. 13e). In the locally anisotropic model the main
continuity is dipping west on the west side of the up-welling feature,
whereas to the east the continuity is dipping to the east (Fig. 13f). This
provides a more reasonable model based on the geological interpretation.

A set of E-W oriented slices generated with globally isotropic, globally
anisotropic and locally anisotropic methods are shown in Fig. 14 and
Fig. 15. The set of slices in Fig. 14 generally correspond to the more
southern portions of the domain where sparse information is present,
whereas Fig. 15 shows slices through the densely-sampled regions. The
set of slices show that using the isotropic model in the presence of dense
drill information adequately reproduces the geometric relationships (left
column, Fig. 15). However, for sparser regions, the continuity of the main
zones is enhanced in the locally anisotropic case when compared with the
isotropic and globally anisotropic cases (Fig. 14). For the densely-
sampled regions, local improvements are made in the locally aniso-
tropic case but they are subdued from the additional constraints from
surrounding data (Fig. 15).

The iteratively refined local anisotropic boundaries better reflect the
geological interpretation of the domain as the units have locally varying
orientations that reflect the interpreted draping on either side of the
central upwelling feature. Out of the three methods, the locally aniso-
tropic boundaries provide the expert with the best starting point for
interpretation. In general, considering the ‘geological reasonability’ of
the resulting shapes on a set of 2D sections is limited and should be used
with caution. All interpretations should be made in 3D, or in 2D
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considering the between-section relationships. It should also be noted
that the effects of automatically inferred local anisotropy may be more
restricted where there is significant data density to control the boundary
geometry. This can be seen in Figs. 13c and 11d where in the presence of
dense drilling in the northeast portion of the property, the resulting
boundary models are similar between the two different methods. How-
ever, in the south and west portions of the domain where data density is
sparser, the interpretation is more varied according to the local data and
the changing anisotropic properties.

5. Conclusions

The proposed methodology provides the expert a better starting point
for modeling geology with locally varying features for complex geolog-
ical datasets in the presence of sufficient sample density. The proposed
methodology to automatically infer local anisotropy from the data is
similar to a ‘bootstrap’ workflow since a better model is constructed by
considering features extracted from previousmodels. The methodology is
simple and flexible, providing the expert a straight forward method to
manually infer and incorporate local anisotropy. Indeed, the local
orientation extraction algorithm could be paired with the orientation
constraints of Hillier et al. (2014) with a greedy algorithm to generate
locally anisotropic boundary models with iteratively introduced aniso-
tropic properties.

Often implicit modeling is used to infer a single geological model, but
if a global distribution of uncertainty is known, the proposed automatic
modeling technique can be used to generate N-realizations of geology
calibrated to the global uncertainty. This is important for deposits with
large geological uncertainties.
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