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a b s t r a c t

With the increasingly diverse types of geospatial data established over the last few decades, semantic
interoperability in integrated applications has attracted much interest in the field of Geographic In-
formation System (GIS). This paper proposes a new strategy and framework to process cross-domain
geodata at the semantic level. This framework leverages the semantic equivalence of concepts between
domains through bridge ontology and facilitates the integrated use of different domain data, which has
been long considered as an essential superiority of GIS, but is impeded by the lack of understanding
about the semantics implicitly hidden in the data. We choose the task of change detection to demon-
strate how the introduction of ontology concept can effectively make the integration possible. We
analyze the common properties of geodata and change detection factors, then construct rules and
summarize possible change scenario for making final decisions. The use of topographic map data to
detect changes in land use shows promising success, as far as the improvement of efficiency and level of
automation is concerned. We believe the ontology-oriented approach will enable a new way for data
integration across different domains from the perspective of semantic interoperability, and even open a
new dimensionality for the future GIS.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Geodata are an essential component of Geographic Information
System (GIS). In the past three decades, a huge volume and diverse
types of geodata was established with the advances of mapping
technology. Various GIS-based applications utilize the available
data to meet specific domain needs. Despite the advantages of
“sharing” has been well recognized, the use of geodata acquired
from various domains frequently causes heterogeneity or inter-
operability obstacles during data integration (Bishr, 1998; George,
2005). In the past 10 years, many types of heterogeneity issues
have been resolved by common standards or interfaces, but the
issue of semantic heterogeneity still remains as a challenge to
conquer (Bishr, 1998; Kavouras et al., 2005).

Many previous researches focused on clarifying the semantics
and facilitating the semantic interoperability of GIS to ensure the
correct use of application. The various methods proposed include
semantic interpretation (Goddard and Wierzbicka, 2002; Kavouras
and Kokla, 2007; Goddard, 2012), semantic transformation (Kuhn
and Raubal, 2003; Baglatzi and Kuhn, 2013), and semantic
),
similarity measurement (Janowicz et al., 2008; Schwering, 2008).
The goals for these studies are to build the basis for semantic
comparison, establish the conversion rules and determine the
semantic relationships of concepts for semantic integration.

Another topic that has attracted considerable research interest
is ontology-based semantic integration. Ontology is defined as an
explicit specification of a conceptualization (Gruber, 1995). Ontology
is a formal way to present data concepts, relationships, restric-
tions, meanings, and knowledge, therefore, it have been widely
used for presenting the semantics of data (Studer et al., 1998;
Stevens et al., 2000; Keet, 2004). Noy (2004) proposed three di-
mensions for semantic integration based on ontology, namely,
mapping discovery, declarative formal representations of mappings,
and reasoning with mappings. The first dimension corresponds to
the challenge of ontology integration. Various methods for ad-
dressing the relationships of concepts between ontologies have
been proposed, for example, ontology mapping, ontology bridging,
ontology alignment and ontology merging (Pinto and Martins,
2001; Wache et al., 2001; Xu et al., 2004; de Bruijn et al., 2006;
Euzenat and Shvaiko, 2007; Leung et al., 2009; Amrouch and
Mostefai, 2012; Shvaiko and Euzenat, 2013). Except the ontology
merging approach combines several ontologies into an ontology,
the other three approaches are all based on the analysis and pre-
sentation of the relationships between concepts of different
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ontologies. The choice of ontology integration strategies is task
dependent and often made by human experts.

For the second dimension, the major focus is to develop se-
mantic relationships for presenting the relationships or similarity
between concepts (Giunchiglia and Shvaiko, 2003; Cruz et al.,
2004; Kokla and Kavouras, 2005; Heer et al., 2009). Despite dif-
ferent terms are used, the primitive relationships proposed by
various studies in semantic matching (Giunchiglia and Shvaiko,
2003), ontology merge (Heer et al., 2009), and ontology alignment
(Cruz et al., 2004) are in fact semantically equivalent. The only
exception is the difference between “overlap”(Giunchiglia and
Shvaiko, 2003; Kokla and Kavouras, 2005; Heer et al., 2009) and
“approximate” (Cruz et al., 2004), the former is used to indicate
two concepts are related, while the major interest of the latter case
is to determine if two concepts are close enough to claim they are
approximate.

Besides the exploitation of ontology integration and semantic
representation, how to apply the result of ontology integration to
geodata processing has also drawn lots of research interests. This
is the third dimension raised by (Noy, 2004). For example, Fonseca
et al. (2002) proposed an ODGIS architecture based on the three-
level ontologies to identify the relationship of concepts and in-
stance of remote sensing systems and geographic information
systems, so the image could be processed together with GIS data. A
domain ontology viewed as consensus between different fields is
developed for data sharing for monitoring environment changes
(Pundt and Bishr, 2002). Uitermark et al. (2005) developed a
conceptual framework to explicitly present the relationships be-
tween instance and further proposed a reference model to check
the consistence of instances from two different topographic data
sets. The GeoMergeP system (layer-based) that involves the se-
mantic enrichment and the merging of integrating geographic
sources is proposed in (Buccella et al., 2011). The common features
for the frameworks proposed in the above studies are to generate a
global ontology via domain ontologies integration, and to retrieve
data or to find out the corresponding instances based on the global
ontology. Through the literature reviews, the ontology integration
with semantic relationships is essential for achieving geographic
sources integration. While most of previous literatures focused on
only the semantic interoperability for the similar domains, the
semantic interoperability of cross-domain applications is also very
important because GIS typically has to simultaneously deal with a
number of datasets acquired from different resources. The lack
understanding of the semantics of the geodata being used cer-
tainly becomes a major obstacle for making correct decisions.

The phenomena in reality may change continuously over time.
Therefore, geodata must be updated regularly to maintain a con-
sistency relationship with the real world. Change detection is a
crucial step in the data update procedure. The area changed must
first be identified and then evaluated to determine if the data can
be updated to the correct status. Most of the change detection
studies are based on either remote sensing techniques or on in-
tegrated GIS and remote sensing methods. The remote sensing
approach (Bruzzone and Prieto, 2000; Zhang, 2004; Im et al.,
2008; Bouziani et al., 2010; Wright and Wimberly, 2013) demon-
strated its superior capability for establishing rough categories of
data, such as vegetation, buildings, water body, etc. Its capability
is, however, rather restricted in terms of classifying detailed ca-
tegories of data, such as hospitals or police offices. As to the ap-
proaches of combining GIS and remote sensing (Walter, 2004;
Zhang and Couloigner, 2004; Shalaby and Tateishi, 2007; Mati-
kainen et al., 2010; Tian et al., 2014), they can raise the processing
efficiency as the shape and range of processed object derived from
GIS vector data is relatively definite. The geometry serves a defi-
nite boundary for change detection. In (Walter, 2004; Zhang and
Couloigner, 2004; Matikainen et al., 2010), they used the classified
area from images to evaluate if an object from GIS vector data is
changed or not and then update the object in the database.
However, the result of change detection is determined by the
classification result and the threshold of matched area and object.
Besides, these approaches are suitable for the rough category
change detection, such as water, forest, building, road, etc.

In addition to the change area assessment, the semantics of
classes of referenced classification system used for change detec-
tion has been considered. Butkiewicz et al. (2008) used the se-
mantic filters to locate a certain category in change detection
procedure. Ahlqvist (2008) exploited the semantic change of
classification category of land cover based on the definitions of
classes via fuzzy sets based approach through semantic similarity
metrics. The change results can be indicated by the semantic
change image. These studies reveal that the semantics clarification
of classes of classification system for change detection is vital and
once the semantics of the overlap area is changed, it indicates that
the area is changed.

According to the discussion above, to facilitate a new way of
development for cross-domain applications from the semantic
perspective, an ontology-based framework is proposed in this
paper. The goals of the present work are as follows:

1. Developing a framework for the semantic interoperability of
geodata.

2. Using this framework to develop an automatic change detection
mechanism.

This framework is designed for cross-domain applications to
enable the presentation of data semantics and to facilitate data
processing for a certain application based on domain knowledge.
We adopt the bridge ontology approach presented in the study
conducted by Hong and Kuo (2015) to establish the semantic re-
lationships of concepts among different domains for semantic in-
terpretation. The semantic interoperability of geodata can then be
achieved automatically by integrating this semantic relationship
with domain knowledge. To develop a mechanism that can detect
changes and to utilize the abundant existing geodata, we develop
an automatic change detection mechanism and demonstrate the
feasibility of the proposed framework. Through vector-based
geodata analysis, we propose three types of change detection
factors: spatial, temporal, and semantic. These factors serve as the
basis for defining change detection knowledge (formulated as
rules). This paper also summarizes six primitive types of change
scenarios for demonstrating the change detection results, which
can then be used for assessing further actions..

To demonstrate the usage of the framework, topographic map
data are chosen to analyze its capability to update land use data.
Despite the fact that they were established independently, our
experimental results and statistics highlight the implications of
each change type and the effectiveness of change detection be-
tween these two domains. To the best of our knowledge, the
current study presents a new insight to address the issues of
change detection and automatic updating based on a semantic
consideration using existing data from other domains. The same
principle is applicable to other cross-domain applications. The
remainder of this paper is organized as follows: the next section
introduces the conceptual framework of semantic interoperability
and the workflow of automatic change detection. Section 3 dis-
cusses the use of topographic map data to detect changes in land
use data with the proposed approach. Finally, section 4 concludes
our major findings.

2. Methodology

To achieve data interoperability at the semantic level, we first



Fig. 1. Conceptual framework for semantic and interoperable application.
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propose a conceptual framework based on bridge ontology to
present the data semantics and to facilitate the integration of data
from different domains. Second, the framework will serve as the
basis for further developing an automatic change detection
mechanism.

2.1. Conceptual framework

Fig. 1 illustrates the conceptual framework for developing se-
mantic-based cross-domain interoperable applications. This fra-
mework is designed to record and infer the semantic relationships
between the concepts of the two chosen domains comprehen-
sively and to process geodata following rules that consider both
the semantics and other properties of the geodata according to the
application needs. This framework consists of six components,
namely, domain ontology, bridge ontology, geodata, rule, proces-
sing system, and result. Four steps [steps a, b, c (including c.1 and
c.2), and d] are designed to facilitate the interactions between
these components.

1. Domain Ontology presents the semantics of the chosen domains.
It serves as the basis for establishing bridge ontology between
the two domains.

2. Bridge Ontology is an ontology being developed to formally
present the semantic relationships between the concepts of the
two domains. Bridge ontology is oriented; thus, the source and
target ontology that constitute the bridge ontology must be
decided in advance. Following the bridge ontology approach
proposed by Hong and Kuo (2015), five semantic relationships
between two concepts are considered: sem_exact, sem_subset,
sem_superset, sem_overlap, and sem_null (the prefix sem_ de-
notes semantic usage only).
� Sem_exact: The semantics of the two compared concepts are

identical, even if they are presented by different vocabularies
in different domain ontologies.

� Sem_subset: The semantics of the source concept is part of the
target concept. The target concept contains additional con-
cepts that the source concept does not possess.

� Sem_superset: This relationship and the relationship of
sem_subset are converse relationships. The semantics of the
source concept include the target concept, and the source
concept has additional concepts that the target concept does
not possess.

� Sem_overlap: The semantics of the two concepts share com-
mon concepts, but each concept has its own distinguished
concepts the other does not have.

� Sem_null: The semantics of the two concepts are completely
different. This usually implies that these two concepts are
irrelevant.

If the concepts of a particular domain are structured as a tree, the
leaf nodes present the most detailed concepts of the domain. The
parent–child relationships between nodes at different levels therefore
can be seen as the sem_superset and sem_subset relationships be-
tween concepts. Moreover, the relationships between a node and its
siblings are Sem_null. The bridge ontology records the semantic re-
lationships between any pair of leaf nodes from the two domains
using one of the five semantic relationships listed above. To enable
further inference, the construction priority is ordered as follows:
sem_exact4sem_subset4sem_superset¼sem_overlap4sem_null. Se-
m_exact has the highest priority, as once a concept in source domain
has sem_exact relationship with respect to a concept in the target
domain, we can easily infer that the relationships between this con-
cept and the siblings of the compared concept in the target domain
are sem_null. The loading of comparison can then be reduced. Sem_-
superset and sem_overlap have the same priority, as a concept can
relate to two different sibling concepts in the target domain simulta-
neously. Once the semantic relationship between a pair of nodes is
determined, more semantic relationships can be inferred according to
the Eq. (1).

For example (Fig. 2), if the relationship between concept F and
concept M is sem_exact, then the relationships between concept F
and concept P and concept N can be respectively inferred as
sem_subset and sem_null. If the relationship between concept C
and concept S is sem_superset and that between concept C and
concept T is sem_overlap, then the relationship between concept A,
which are the siblings of concept C, and concept S is inferred as
sem_null. The same rule can be also used for inferring the
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relationship between concept B and concept S.
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where (x, y) denotes the concepts from two different ontologies.

3. Geodata are the data for the two chosen domains. The semantics
of every dataset must refer to a particular concept in the do-
main ontology.

4. Rule specifies the operation criteria for the desired applications.
We define rules following the base form of antecedent ⇒ con-
sequent in Semantic Web Rule Language (SWRL)1. Both ante-
cedent and consequent are conjunctions of atoms. Given that
space and time are two important components of geodata
(Chrisman, 2001) and that semantics must be clarified during
processing, a general form of rules is proposed below (the
attribute of geodata is not considered because its content varies
with data). The spatial relationship, required condition, and
semantic relationship atoms are antecedent, and the application
outcome is consequent. A rule may consist of one or more atoms
depending on the applications.
a. In the current study, the spatial relationship is restricted to the
1 http://www.w3.org/Submission/SWRL/
primitive topological relations widely discussed in GIS litera-
ture (Egenhofer and Franzosa, 1991; Clementini et al., 1993)
based on the same coordinate reference system (CRS). Each
domain establishes geodata in its own way. If two features
from different domains intersect geometrically, then they are
regarded as “related features” from the spatial perspective.

b. A required condition is the atom specified as the constraints on
the spatial and temporal properties of the geodata for specific
applications. Typical examples include the positional accuracy,
mapping time, and reference data time. The required condition
ensures that the analyzed geodata meets the specific re-
quirements for the intended applications.

c. The semantic relationship presents the semantic relationships
between the concepts of the two respective domains. The re-
lationship is application independent. Thus, application re-
quirements must be considered to generate criteria. Different
semantic relationships lead to different outcomes, and each
semantic relationship in the application must be comprehen-
sively considered and designed.

d. The outcome is determined by assessing all types of atoms. The
different constraints of the three types of atoms, especially
those based on the semantic relationships, generate a corre-
sponding outcome for a rule.

5. Processing System processes the geodata according to the rules.
The input data include both sets of geodata, bridge ontology,
and rules. Rules control how the geodata and bridge ontology
work together to generate the final outcomes.

6. Result shows the output of the processing system.

The four steps of the framework are designed to support se-
mantic interoperability. In the first step (Fig. 1, step a), the bridge
ontology of the two domain ontologies is established. Step b fol-
lows by establishing the corresponding relationships between the
geodata and the bridge ontology. Steps c, c.1, and c.2 continue to
import all the processed data, the semantic relationships, and
rules into the processing system. This system then automatically
applies rules onto the geodata in accordance with the spatial re-
lationships, properties, and semantic relationship information.
Finally, step d outputs the result.

2.2. Automatic change detection mechanism

In this section, we propose an automatic and efficient change
detection mechanism based on the concept of semantic inter-
operability and the reuse of existing geodata. The basic idea of
change detection is based on the comparison of two datasets, the
source data (refer to a later date) and the target data (refer to an
earlier date), to determine if changes occurred in the target do-
main. A distinguishable characteristic of our approach is that the
source and target data are obtained from existing datasets of two
different domains. Fig. 3 illustrates the change detection scenario.
Fig. 3(a) displays a feature in target data Td. In Fig. 3(b), a source
data is found to geometrically intersect with the feature in the
target data; thus, the intersection area Ia (yellow area) is si-
multaneously interpreted by the two respective datasets. Since
their statuses are referred to different time, the analysis on the
semantics and properties can serve as the basis for change de-
tection [Fig. 3(c)]. The following discussion further explains the
detailed steps.

2.2.1. Analysis of change detection factors
Change detection is an application with specific geodata re-

quirements. Four factors, namely, geometry, positional accuracy,
time, and semantics, must be considered during a change detection
task.

http://www.w3.org/Submission/SWRL/
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1. Geometry: Each geodata has a geometric component to describe its
location and spatial dimensionality. The location must refer to a
specific CRS. It frequently happens that the geodata used in an
application may correspond to different CRSs. The change detec-
tion tasks require all of the selected geodata to refer to the same
CRS. If not, the coordinates must be transformed to the same CRS
without deteriorating the positional accuracy of the source data. In
the change detection task, only the geometric intersection area of
related features is considered (refer to Fig. 3(c)).

2. Positional accuracy: Geometric intersection is critical to our
approach. As the source and the target data are established
independently, the difference of positional accuracy may influ-
ence the outcomes of the analysis. The positional accuracy of
the source data is expected to be of the same level as or even
higher than that of the target data. Otherwise, the data update
decision is questionable. This principle remains valid regardless
of the type of coordinate transformation performed. By con-
sidering positional accuracy, intersection areas that are smaller
than the specified threshold are skipped to avoid processing
gaps or of slivers between analyzed polygons.

3. Time: The content of the geodata refers to the real world status
at a specific time. The time of the source data must be later than
that of the target data to conduct meaningful comparisons in
change detection. The constraints on temporal difference are
usually specified by the decision makers.

4. Semantics: Geodata are designed and generated from a specific
perspective. Therefore, the semantic issues between different
domains must be clarified for cross-domain integrated appli-
cations. The change detection result is determined based on the
semantic relationship of the source and target data.

The intersection area in the geometry factor belongs to the
spatial relationship atom, whereas the semantics factor belongs to
the semantic relationship atom. Positional accuracy, and time
constitute the required conditions for change detection in Eq. (2)

⎧⎨⎩
Sd Positional Accuracy Td Positional Accuracy

Sd Time Td Time

. .

. .
,

2

≥
≥ ( )

where Sd corresponds to the source data and Td denotes the
target data.

2.2.2. Change types and rules for change detection
The simplest outcome for change detection is straightforward,

that is, the target data is either changed or not (Radke et al., 2005).
In this paper, we propose six primitive change types according to
eight rules. The simplest case for detecting changes is the analysis
shows that the semantic relationship between the two statuses of
the intersected area is sem_null. For example, if the status of the
intersection area are “farm” and “road” for the source and target
data respectively, it most likely indicates a new road is constructed
on a land which was previously used for farm. On the other hand,
if the semantic relationship is sem_exact or sem_subset, then the
status of the target data remains unchanged because the source
data either presents the same semantics or is a special case to the
concept of the target data. Six primitive change types between the
two compared datasets are proposed as follows:

1. Non_process (NP): The source data does not meet the essential
requirements; thus, no suggestion is made and no action is
taken.

2. No_change (NC): The analysis confirms that the status of the
target data remains unchanged. Although the action may be
similar to that of NP, the interpretation is completely different
because the updated results are confirmed in this case. Typical
examples are the instances in which the semantic relationship
between the source and target data is sem_exact or sem_subset.

3. Uncertain_I (UI): The two analyzed features are related, but the
evidence for determining whether or not the status of the in-
tersection area changes is insufficient. A typical example is
when the source data meets the essential requirements and the
semantic relationship between the related features is
sem_overlap.

4. Uncertain_II (UII): The semantic relationship changes from se-
m_overlap to sem_superset. Similar to UI, the intersection areas
of both domains are semantically related; however, this change
type lacks the evidence that determines whether or not the
status changes.

5. Change_To Concept (CTC): The analysis confirms changes occurs
and suggests the updated status of the target data. A typical
example is when the semantic relationship between the source
and the target data is sem_null. The concept of source data can
be transformed into a corresponding concept in the target do-
main with the semantic relationship of either sem_exact or
sem_subset.

6. Change_No Concept (CNC): Although the analysis confirms the
presence of changes, it nonetheless fails to suggest the updated
status to the target data. This situation is mainly caused by the
lack of sem_exact or sem_subset between the concepts of the
source and target data.

Table 1 summarizes the relationships of the proposed change
types and the rules based on the atoms of spatial relationship, re-
quired condition, and semantic relationship. The essential require-
ment for the atoms of spatial relationship is that the area of the
geometric intersection must exceed the specified threshold.
Otherwise, this pair of geodata is not processed further (Rule 1). If
the source and the target data for the atoms of the required con-
dition do not meet the required condition of Eq. (2), then this pair
of geodata is not processed, either. If neither of the two conditions
is met, then the change type is determined as NP, regardless of
their semantic relationships (Rule 2).

Both requirements of spatial relationship and required condition
must be met before the atoms of semantic relationship are



Table 1
Change types and rules.

Spatial relationship Required condition Semantic relationship Change type Rule No.

False Any Any NP Rule 1
Any False Any NP Rule 2
True True sem_exact NC Rule 3

sem_subset NC Rule 4
sem_overlap UI Rule 5
sem_superset UII Rule 6
sem_null Source data have a concept that corresponds to sem_exact or sem_subset relationships in

the target domain
CTC Rule 7

Source data do not possess a concept that corresponds to sem_exact or sem_subset in the
target domain

CNC Rule 8
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considered. Rules 3–8 are developed to determine the change
types according to the semantic relationships between the source
and target data. The proposed change types have important im-
plications for the change detection actions for users. The change
types NC, CTC, and CNC belong to the category of confirmed_result.
The first two change types can even update the status of the target
data. Despite that the change type of CNC cannot provide the
updated suggestions accurately, it nevertheless indicates that
changes occurred and that the authorized agencies can use other
reference data, such as remote sensing images, for further in-
spection. The successful and automatic making of these three
types of decisions saves much time in finding regions of changes.

For the other three change types, the change types of UI and UII
belong to the uncertain_change category, and the change type of
NP belongs to the unprocessed category. Neither of these categories
can confirm if change occurred. The uncertain_change category
suggests that the semantic relationships alone are not sufficient
for drawing a confirmed conclusion. If the majority of concept
analysis in the bridge ontology belongs to this category, then the
concepts of the source data are not good candidates for updating
the target data. Meanwhile, the unprocessed category indicates that
the chosen dataset is inappropriate for updating purposes because
it fails to meet the essential requirements.

The mechanism operates on the basis of rules. In the following
example, the italicized texts with “?” are variables (following the
rules of SWRL), ?Sd and ?Td denote the source and target data
from the respective domains, and ?Ia corresponds to the inter-
section area of ?Sd and ?Td. The object property Spatial_intersect
calculates whether ?Sd and ?Td intersect geometrically. If so, the
object property of hasIntersectionArea indicates that such re-
lationships exist among ?Ia, ?Sd, and ?Td. The object properties of
hasPositionalAccuracy, and hasMappingTime are used to record the
basic properties of ?Sd and ?Td. The comparison operations of
greaterThanOrEqual, lessThanOrEqual, and equal are used to
compare the recording values of the properties. The object
property Sem_exact is used to record the semantic relationships
between ?Sd and ?Td. Finally, the detection result is identified as
NC if all of the conditions above and the test results are valid
or true.
Table 2
Bridging of the numbers and rates of topographic map and land use concepts.

sem_exact sem_subset

Topographic map 24 122
Land use 24 53a

a Many-to-one semantic relationships: sem_subset and sem_overlap.
3. Experimental results and discussion

This section discusses the use of topographic map data as
source data to detect changes and update the status of land use
data following the mechanism proposed in Section 2. Both types of
geodata are vital references to the reality, but are costly to main-
tain. The content of the topographic map data follows a detailed
taxonomy framework and model reality on the basis of individual
features; therefore, they serve as a useful reference for the update
of land use data.

The change detection mechanism is feasible on each level of
nodes, as long as the semantic relationship between the pair of
concepts can be determined. In this paper, the change detection
result is based on the analysis at the level of the leaf node. Table 2
summarizes the bridging results of the leaf nodes of the topo-
graphic map concepts to land use concepts. The topographic map
and the land use taxonomy framework contain 327 and 103 leaf
nodes, respectively. The analysis shows that the relationships be-
tween 24 pairs of leaf nodes are sem_exact, and there are 122 and
51 topographic map concepts respectively correspond to 53 con-
cepts of the land use data with sem_subset and sem_overlap
relationships. Some of these concepts are many-to-one relation-
ships. Meanwhile, nine concepts of topographic map data corre-
spond to 13 land use concepts with sem_superset relationship. The
ratio of successful bridging for topographic map and land use
data are 63.00% and 87.38%, respectively, which implies that most
of the land use concepts are related to topographic map concepts.
sem_overlap sem_superset Bridging rate

51 9 206/327¼63.00%
13 90/103¼87.38%



Fig. 4. Maps of the study area: (a) the location of the study area (satellite image is obtained from Google maps); (b) topographic map data (source data); (c) land use data
(target data); (d) features retrieved from the topographic map for change detection.
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We choose one sheet of a 1/5000 topographic map (7.1 km2) of
Tainan City as our test area, as depicted in Fig. 4(a). This region is a
residential area near the seashore, having houses, historic sites,
schools, government institutions, public construction, lawns,
parking lots, and gas stations, etc. Fig. 4(b) and (c) illustrate the
topographic map and land use data. Both datasets are produced
rigorously according to their domain specifications. Topographic
map data is composed of a point, line, and polygon features, while
the land use data is composed of polygon features only. Collec-
tively, 32 categories and 1325 polygon features are acquired from
the topographic maps [Fig. 4(d)]. Based on their respective coding
rules, each topographic map concept is represented by a five-digit



Table 3
Specifics of the change detection factors for the topographic map and land use data.

Data Topographic map Land use

Coordinate system TWD97TM2 TWD97TM2
Absolute positional
accuracy

1.5 m 25 m

Mapping time 2012/03 2008/09, 2008/12
Referenced image time 2010/05 2006/06
Ontology Topographic map

ontology
Land use ontology

Bridge ontology of the topographic map and land
use

2 Cognition is defined as “conscious mental activities”, as per http://www.mer
riam-webster.com/.
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number, while each land use concept is represented by a six-digit
number. Table 3 summarizes the detection factors of the two se-
lected datasets. Referring to the positional accuracy requirements
in the specification of topographic maps, the threshold value of the
intersection area is set at 2.25 m2.

Fig. 5 illustrates the change detection results. The yellow area in
Fig. 5(a) shows an NC region. The dark blue and purple areas re-
present UI and UII regions [Fig. 5(b)], respectively. The CTC area is
depicted as an orange polygon, and the CNC region is depicted as a
red polygon in Fig. 5(c). The NP area is marked in white in Fig. 5.

Three cases of CTC-type and CNC-type change areas are dis-
cussed further below.

1. Newly developed region: This type of region often includes new
constructions. The area labeled by A in Fig. 5(c) was a fishing port
(030402) in the land use data. The topographic maps indicate
that many new objects in this region differ semantically from the
concept of “fishing port” and suggest it to be updated with
polygons of urban roads (94213), other reservoirs (040303), and
aquaculture (010200). In the area labeled as B, one part of the
unused land (090801) area is changed to 070203 (sports area)
because a new skating rink was built there. In the area labeled as
C, another unused land is changed to a traffic-relevant facility
(030304) because a new parking lot was constructed there. Some
unused land and areas under construction (090802) are also
changed because the topographic maps suggest that buildings
(93110) have been constructed. Thus, the new versions of topo-
graphic maps are useful references for detecting the change in
the land use data of newly developed regions.

2. Classification change: The different domain perspectives may
influence the outcomes. In Fig. 5(c), changing the land use
status of the area labeled by D from 040700 (sea) to 040103
(canal) is recommended because the topographic map indicates
it is a canal. The status of the area labeled E is recommended to
change from park and square (070201) to certifiable cultural
heritage (070101) due to similar reasons. In both cases, the
phenomena in reality do not change, but we found they were
interpreted by two domains differently (the same area is
interpreted as sea and canal in the two domains). The compar-
ison is thus helpful for decision makers to find possible mistakes
in data (e.g., canal wrongly interpreted as sea) or ambiguous
and conflict definitions between different domains.

3. Revelation of additional details: Many objects in the real world
are not recorded in land use data, but are included in topo-
graphic map data because of its finer granularity of concepts.
For example, if a small cistern is constructed within the plot of a
building area, in a topographic map although the map depicts
only a type of land use (060600 or environmental protection
facility) in the land use data [labeled as F in Fig. 5(c)]. The
analysis indicates that the area changes in type from 060600 to
040303. This result implies that changes caused by granularity
can be detected.
Cases A, B, and E are explained in detail and step-by-step in
Fig. 5(c). Taking area E as an example, the regionwith a fluorescent
blue border in the first image represents an area interpreted as
park and squire (070201) in the target dataset (original land use
data). In the second image, the source data (topographic map,
depicted in light blue color) are superimposed. The overlay result
shows that one part of this area is historical site (99431). The third
image shows that the light-blue intersection area in the second
image changes from park and square (070201) to certifiable cul-
tural heritage (070101) following rule 7 in Table 1 because 99431 is
sem_null to 070201 and 99431 is sem_subset to 070101.

The experimental results demonstrate that automatic change
detection is feasible. For this particular test case, the percentages
for the CTC, CNC, NC, UI, UII, and NP change types are 18%, 9%, 10%,
24%, 7%, and 32%, respectively. The percentages of the three major
categories for change detection, that is, confirmed_result, un-
certain_change, and non_process, are 37%, 31%, and 32%, respec-
tively. Although these numbers are for reference only because they
may vary dramatically given different test areas or datasets, it is
clear that if increased instances of sem_null, sem_exact or sem_-
subset semantic relationships are detected for the intersection
area, we can optimistically expect an increased percentage for the
confirmed_result category.

Another strategy to improve the detection result involves re-
ducing the areas for the non_process and uncertain_change cate-
gories. For non_process areas, other types of data besides polygon
data, such as point or line features, may be used for analysis. Al-
though these features cannot suggest the exact change boundary,
they can still be used to suggest potential changes. To reduce the
area of the uncertain_change category, a possible method involves
analyzing the sem_overlap and sem_supersert semantic relation-
ships and converting them into sem_exact or sem_subset semantic
relationships whenever possible through a careful cross-domain
examination. For example, the semantic relationship between ur-
ban road (94213) in the topographic map data and general road
(030303) in the land use data is determined as sem_overlap. Al-
though urban roads can be viewed as a type of general road by
definition, this relationship is interpreted as such because the
definition of general road has an additional restriction in terms of
road width. If the same restriction can be incorporated into the
definition of urban road as well, then this semantic relationship
will become sem_subset instead. Such cross-domain tasks improve
outcomes; for instance, the land use code for a new road [(Fig. 6
(c)] is determined as 030303, and the area of the urban road
marked in blue [Fig. 6(d)] is identified as the NC change type.

The following section uses an updated version of land use data
generated in 2012 as ground truth data with which to validate the
outcomes of the confirmed_result category. Table 4 presents the
accuracy rates of the NC, CTC, and CNC types. The number of areas
is generated by the intersection of confirmed_result category areas
with ground truth data. In general, the change detection results
using the proposed method are consistent with those obtained
from the new land use data. Three major reasons for inconsistency
are discussed below:

1. Cognition: According to the definition of cognition2, the seman-
tics of a concept are influenced by the cognition of each domain.
For example, area A in Fig. 6 is recorded as a lake in the
topographic map data, whereas it is a part of the sea in the land
use data. The detection results suggest that this area should be
changed from sea (040700) to the lake (040302). However, the
land use data for the year of 2008 and 2012 both represent this

http://www.merriam-webster.com/
http://www.merriam-webster.com/


Fig. 5. Results of change detection: (a) NC type (yellow area); (b) Uncertain_change category: UI (dark blue area) and UII types (purple area); (c) CTC (orange area) and CNC
types (red area). The three-step image exhibits the change detection procedure (the area of the blue border is the target): original land use-overlaying topographic map
data-the change detection result of target. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[Zoomed-in view of E. Ground truth 
data are represented by the polygon with
a dotted boundary (060600) although 
many detailed objects are detected in the 
topographic maps]

A.

E.

B1

C.

D.

B2

Fig. 6. Results of change detection analysis. A: change from 040700 to 040302; B1 and B2: change from 070201 to 070101; C: construction of new roads; D: urban road with
an sem_overlap semantic relationship; and E: change from 060600 to 040303.

Table 4
Accuracy rates of the confirmed_result category (compared with land use ground
truth data).

Test result Ground truth data

Test type Change (number of
area)

No change (number of
area)

Accuracy Rate (%)

NC 59 87 87/146¼59.59
CTC 276 113 276/195¼70.95
CNC 2202 361 2202/2561¼86.91
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region as sea. Since product specifications are domain-depen-
dent, inconsistencies or even contradictions may be inevitable.
A cross-domain examination of related semantic relationships is
thus necessary to clarify their differences and to improve the
operation results.

2. Boundary/scope: This issue is also related to the cognition issue
concerning how domains determine the scope of features. For
example, areas B1 and B2 in Fig. 6 (orange areas) are detected as
a CTC type and recommended to change from 070201 to 070101
because the topographic maps show that these regions are
heritage sites. However, the ground truth data indicate that
areas B1 and B2 are NC type because they are lawns. Moreover,
the scope of the heritage site covers only the main building.
Therefore, the inclusion of the area surrounding the main
building generates a different scope of features and influences
change analysis. Understanding how each domain defines the
scope of features is thus important.

3. Granularity: Various modeling perspectives and levels of gran-
ularity differentiate the data from one another. The granularity
of the topographic map data is generally finer than that of the
land use data. Hence, the topographic map data possesses fea-
tures that the land use data does not have. For example, three
cisterns are presented within a wastewater recycling center
[Fig. 6(e)] in the topographic map data. The code for cistern is
95270. Therefore, the intersection area of the target data is
determined as a CTC type and recommended to change from
environmental protection facility (060600) to other reservoirs
(040303). The semantic relationship between cistern (95270)
and (040303) is sem_subset. However, the ground truth data
considers this relationship to be NC because the cistern is not
considered in the land use data. Other details in this area are
inconsistent with the ground truth data for the same reason.
4. Conclusion and future work

GIS interoperability is challenged in terms of achieving se-
mantic interoperability with efficient processing strategies. In this
study, a conceptual framework is designed for the semantic and
interoperable applications of geodata. The framework includes six
components and follows four steps to realize semantic processing
based on bridge ontology and application-dependent rules. The
bridge ontology records the semantic relationship of concepts
formally and benefits from the comparison of concepts among
domains. Rules based on bridge ontology also facilitate automatic
and intelligent processing. We successfully applied our framework
in the development of an automatic change detection mechanism.
Six change types were proposed based on spatial, temporal, and
semantic geodata, and our findings conclude two helpful cate-
gories of change detection results. The confirmed_result category
includes both changed and unchanged instances. The un-
certain_change category reflects areas that may require further
examination. In our experiments, the topographic map data are
used to detect land use data and to generate change detection
results. These results demonstrate that our framework realizes the
semantic interoperability of geodata obtained from different do-
mains and can be used to automatically detect changes or even to
provide update suggestions.

We expect this mechanism to reveal an entirely new prospect
for change detection analysis based on existing geodata from other
domains. We also believe that the proposed framework will con-
tribute to numerous novel applications of semantic integration.
Our future work will apply point and line features to change de-
tection and establish a robust mechanism to reduce the number of
NP areas.
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