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a b s t r a c t

Meeting production targets in terms of ore quantity and quality is critical for a successful mining op-
eration. In-situ grade uncertainty causes both deviations from production targets and general financial
deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is
developed herein to integrate geological uncertainty described through a series of the simulated ore
bodies. Two different strategies were developed based on a single predefined probability value (Prob) and
multiple probability values ( )Probn

t , respectively in order to improve the initial solutions that created by
deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demon-
strate the abilities of the stochastic approach to create a single schedule and control the risk of deviating
from production targets over time and also increase the project value. A comparison between two
strategies and traditional approach illustrates that the multiple probability strategy is able to produce
better schedules, however, the single predefined probability is more practical in projects requiring of
high flexibility degree.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The long-term open pit mine production planning is a large
combinatorial optimization problem that involves specifying the
blocks extraction sequence and their destination during mine life.
Mathematical formulation is aimed to maximize the net present
value (NPV) of the mining operation subject to a series of opera-
tional constraints such as reserve, slope, mining capacity, and
milling rate. The operational research techniques, which have been
developed to solve long-term production planning since 1960s,
could be categorized in two major classes of deterministic and
stochastic-based approaches.

All inputs are assumed as fixed value in the deterministic ap-
proaches. In early investigations, Dagdelen and Johnson (1986)
suggested an approach based on Lagrangian relaxation. Later, a
branch-and-cut algorithm was developed by Caccetta and Hill
(2003). The major drawback of these methods was their disability
in applying on real scale deposits where, typically, include hun-
dreds of thousands to millions of blocks. Several attempts have
been spent on reducing the problem size such as Fundamental
Trees methodology of Ramazan (2007). Moreover, the other class
of researches focused on the heuristic methods (Gershon, 1987),
mail.com (S.-O. Gilani),
combination of dynamic programming and heuristics (Tolwtnski
and Underwood, 1996), and meta-heuristic approach such as ge-
netic algorithm (Denby and Schofield, 1994), particle swarm al-
gorithm (Ferland et al., 2007), and ant colony algorithm (Sattar-
vand, 2009). A detailed review of the solution approaches could be
found in Osanloo et al. (2008).

Ignoring any kind of uncertainty is the common weakness of all
deterministic algorithms, which leads to create un-realistic plans
in terms of operational requirements. Dimitrakopoulos classifies
the uncertainties of mining projects into three major sources as
geological, technical, and economical uncertainties (Dimi-
trakopoulos, 1998).

Grade uncertainty is the major source of deviations from pro-
duction targets and general financial deficits. Vallee (2000) re-
ported that the average production rate of 60% observed mines in
the early years of the mining is 70% less than predicted rates,
mainly due to grade uncertainty. Uncertainty-based open pit op-
timization approaches could be categorized into variance-based
and simulation based groups. The first type involves integrating of
the grade variance in traditional deterministic algorithms. Albach
considering grade variance, developed a linear programming to
design a lignite mine (Albach, 1967). A similar approach based on
stochastic integer programming model has been suggested by
Gangwar (1973). Denby and Schofield (1995) used genetic algo-
rithm to integrate the grade variability in planning process.

The second uncertainty-based approach is based on using al-
ternative scenarios of the ore body called “Realization” that are
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provided by conditional simulation methods. Initially Ravenscroft
discussed the risk analysis in mine production planning based on
the realizations (Ravenscroft, 1992). Dowd (1994) integrated un-
certainties of the commodity price, mining costs, and processing
costs in a risk based optimization framework. Dimitrakopoulos
and Ramazan (2004) considering grade uncertainty, equipment
access, and mobility constraints suggested an LP approach that
was based on the expected ore block grades and the probabilities
of being above cutoffs. Godoy and Dimitrakopoulos (2004) pre-
sented a realization based meta-heuristic approach. They gener-
ated production schedules for all realizations and then, using Si-
mulated Annealing algorithm, combined the mining sequences in
order to produce a single schedule. Ramazan and Dimitrakopoulos
(2004) suggested an MIP model that starts with generating pro-
duction schedules for each realization and then, calculating the
extraction probability of each blocks in a given period. The blocks
with probability between zero and one have been used in a new
optimization model to generate a schedule. The same research has
been reported by Menabde et al. (2004). Dimitrakopoulos and
Abdel Sabour (2007) using real options valuation (ROV) method
attempted to handle multiple uncertainties such as grade and
economic parameters in production planning. Gholamnejad et al.
(2008) presented a stochastic programming based model that
grade uncertainty is integrated explicitly in the mathematical
programming model by applying chance constrained program-
ming approach to approximate it into a linear format. Lamghari
and Dimitrakopoulos (2012) considering the metal uncertainty,
utilized the tabu search procedure to solve the open pit optimi-
zation problem. Two different diversification strategies were used
to search the feasible domain in order to generate several initial
solutions which will be improved later by the tabu search
procedure.

The further researches led to multi-stage modeling methodol-
ogies in order to minimize the deviations from production targets
in addition to the NPV maximization (Benndrof and Dimi-
trakopoulos, 2009; Consuegra and Dimitrakopoulos, 2010; Leite
and Dimitrakopoulos, 2009; Ramazan and Dimitrakopoulos, 2007;
Smith, 2001). Ramazan and Dimitrakopoulos (2007) presented a
stochastic integer programing (SIP) model to generate production
schedules. The geological risk discounting concept (Dimi-
trakopoulos and Ramazan, 2004) was used in order to control the
risk distribution between production periods and minimize the
deviations from targets. Another similar SIP model was developed
by Leite and Dimitrakopoulos (2009). Benndorf improved the SIP
model by adding a third part to the objective function termed
“smooth mining controller” in order to create a safe operational
condition (Benndrof and Dimitrakopoulos, 2009). Consuegra and
Dimitrakopoulos (2010) developed a SIP model to integrate the
grade uncertainty in pushbacks design. Later on, Ramazan and
Dimitrakopoulos (2012) established a SIP model to integrate the
uncertainty of product supply in the optimization model.

Despite the development of numerous approaches to in-
tegrating the geological uncertainty, however, the solving meth-
odologies have been received relatively less attention. It has been
shown that the single stage models are unable to integrating the
grade uncertainty explicitly and creating an optimal single solu-
tion. In fact they are a series of repeated implementations of the
traditional approaches on ore body simulations. On the other
hand, the multi-stage stochastic models which have to be solved
by available mixed integer programming packages, are limited to
relatively small size instances.

This paper proposes an efficient solution methodology based
on Ant Colony Optimization (ACO) to solve the real scale planning
problems in presence of the geological uncertainty. The procedure
has the capability to simultaneously optimize the UPL and pro-
duction scheduling. Paper outlines the modeling procedure, two
different strategies and discusses the difference between obtained
solutions and provided deterministic solution by traditional
approach.
2. Formulation of the long-term production planning

Open pit production planning could be effectively modeled as
an Integer Programming (IP) formulation with the objective of
NPV maximization subject to a set of technical and operational
constrains. It can be expressed as following:

∑ ∑=
( + ) ( )= =

maximize Z
V

d
x

1 1n

N

t

T n
t n t1 1 ,

Subject to:

ϵ ( ) = = ( )x for n to N t to T0, 1 , 1 , 1 2n t,

Slope constraint: each block can only be mined if its pre-
decessors are already mined before.
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t
m, 1 ,

where ϵm (set of predecessors blocks of block n)
Reserve constraint: a block cannot be mined more than once.
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T
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Processing capacity: the total ore processed during each period
should be within the predefined upper and lower limits.

∑ × × ≥ ̲ = ( )=
o w x O for t to T, 1 5n

N
n n n t1 ,

∑ × × ≤ ¯ = ( )=
o w x O for t to T, 1 6n

N
n n n t1 ,

Mining capacity: the total material mined during each period
should be within the predefined upper and lower limits.
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Average grade constraint: the average grade of material mind
during each period should be more than predefined value.
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Where

� N , is the total number of blocks,
� n, is the block index,
� T , is number of periods,
� t, is the period index,
� V ,n is value of nth block,
� x ,n t, is a binary variable associated to nth block that mined in tth

period,

=
⎧⎨⎩x

if block is mined in period t

otherwise

1

0
n t,

� o ,n is a parameter indicating that the nth block is an ore block or
not,

=
⎪

⎧⎨
⎩o if n block is an ore block

otherwise

1

0
n

th

� w ,n is the weight of nth block,
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� Ō and O̲, are the upper and lower bound of processing capacity,
� M̄ and M̲ , are the upper and lower bound of mining capacity,
� Nt reflects the number of blocks located in tth period,
� g ,n is the average grade of nth block,
� G̲, is the lower bound of average grade.

In the most real cases, the block model contains thousands to
millions of blocks that make an IP model with millions of integer
variables and constraints, which can be extremely difficult or ex-
pensive to solve. So, meta-heuristics like ACO are well suited for per-
forming the optimization and are able to simplify the formulation by
implicitly obeying slopes and various other constraints.
3. Ant colony optimization procedure

The methodology of ACO procedure was inspired by the fora-
ging behavior of the ants which developed by Dorigo and Stützle
(2004). In nature, ants wander randomly for seeking food and
return to their colony after finding it while laying down some
Ph

BSF = Update Pheromone

Iteration ++

Iteration ≤ IEnd

Peri

Yes
No

I: Maximum number of iterations

M: Maximum number of non-improve iterations

T : Life of mine

N: Number of ants

BOI: Best of iteration

BSF : Best so far

NII: Non-improve iteration

Fig. 1. ACO approach for open
chemical trails called “pheromone”. The pheromone trails transmit
a message to others to follow the trails instead of traveling ran-
domly. Over the time, a path with more passing ants gets more
deposited pheromone. On the other hand, the pheromone trails
start to evaporate and lose its attraction. Obviously, magnitude of
the evaporation in longer paths is higher than deposition in
compare of the shorter paths. Thus, intensity of laid pheromone on
the shortest paths increases up gradually since exceeds the eva-
poration rate and it’s what makes it to be attracted by other ants.

ACO approach is applied successfully to solve well-known opti-
mization problems such as Travelling sales man, Vehicle routing, and
Assignment problem (Dorigo and Stützle, 2004). The application of
ACO approach in open pit mine production planning has been in-
troduced by Sattarvand (2009) and Sattarvand and Niemann-Delius
(2013). Fig. 1 shows the general flowchart of this procedure.

3.1. Schedule encoding and decoding

A given open pit schedule can be considered as the super-
position of a series of the pits related to the different mining
start

Iteration = 1

Ant = 1

Period = 1

Create a normal pit

Period ≤ T

Calculate fitness value (ant)

Ant ≤ N

Determine BOI

BOI > BSF

eromone initialization based on data derived from initial solution

NII ++

NII≤ M

BOI

od ++

Ant ++
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Yes

Yes

Yes

No

No

No

No

Import initial solution

BSF = Initial solution

-pit production planning.
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periods. In turn, any given pit could be represented by a series of
block model columns and determining the pit depth in each col-
umn. Consequently, any 3D mine schedule (a solution) can be
represented by ( )pitdepth i j t, , , which shows the depth of tth period
along column( )i j, . It could be stored as a two dimensional array of
integers denoting the depth of the pits related to different mining
periods.

It should be noted that the data stored in ( )pitdepth i j t, , , just re-

presents the surface of tth period, it is necessary to determine the
blocks scheduled in tth period. This is done during a back trans-
form procedure in which by starting from the first period, all
blocks of column( )i j, that have been located between ( )pitdepth i j t, ,

and ( − )pitdepth i j t, , 1 will be scheduled in tth period. Note that to-
pography surface has been considered as the prior pit depth for
the first period.

3.2. Initial solution and pheromone initialization

Initially, the algorithm needs to assign some initial pheromone
to blocks in order to start the main process. For this purpose a sub-
optimal solution can be used to initialize the pheromone value (τ )n

t

which represents the attractiveness of the nth block to be the
deepest point of the mine in the tth period. The initial sub-optimal
solution is represented as an array XN

0 where each component
∈ { … } =n N x t1, , , ,n

0 represents the tth period that block n is in-
itially assigned to. The assignment of the initial pheromone value
τ( )0 would be done in a way that a higher values are assigned to the
ore blocks that located around the period surfaces or to an ima-
ginary layer right above the topography surface (Sattarvand, 2009;
Sattarvand and Niemann-Delius, 2013).

3.3. Iterations

During each ACO iteration, a set of new schedules are con-
structed using the current pheromone configuration and during
the during the perturbation process in the solution of last itera-
tion. Perturbation process as the core of ACO methodology is just a
depth determination process along block columns. It considers a
set of variables (pheromone values) for each block that represents
its attractiveness to be the deepest point of its containing column
related to different periods. As mentioned, these values are in-
itialized by assigning of higher pheromones to a few numbers of
the blocks around the initial sub-optimal pit depth and then up-
dated to new values after each iteration based on the quality of the
founded solutions. Three main steps in each iteration consist of
depth determination, normalization and pheromone update that
have been explained next.

3.3.1. Depth determination
Considering the pheromone value of blocks and some heuristic

information such as economic value of blocks, the depth de-
termination routine is performed on each column in order to make
a non-normalized schedule surface. Any ant k utilizes a probabil-
istic choice rule named “random proportional rule” in order to
select the pit depth in each column. The probability of choosing nth

block as the pit floor by kth ant could be expressed as:

τ η
τ η

=
[ ] [ ]

∑ [ ] [ ] ( )

α β

ϵ
α βP

10
n
k n n

l N l ln
k

where τn is the pheromone value of the block n, ηn is the heuristic
information such as block value or any information, α and β are
two parameters which represent the relative influence of the
pheromone trail and the heuristic information, and Nn

k is a set of
feasible selections for the ant k.
All different variants of ACO attempt to find the pit depth based
on the calculated probabilities. In ant colony system (ACS) method
which is selected in this study, ant k uses a “pseudorandom pro-
portional rule” to select the deepest block of pit in each column as
following:

τ η
=

{[ ] [ ] } ≤

( )

α β
∈

⎪
⎪⎧⎨
⎩

j
max

J

q qarg ,

,
if

otherwise 11

l N n n 0n
k

where q is a random variable uniformly distributed in [ ]0, 1 , q0 is a
parameter (0rq0r1), and J is a random variable selected ac-
cording Eq. (10) (with α = 1).

The process is applied to all columns containing an ore block at
least. Depth of totally waste columns will be defined based on the
adjacent columns depths during normalization process. Experi-
ence shows that restricting the process to the upper and lower
bounds helps to be more efficient. So, the bounds are set to the
depths of largest possible pit and depth of earlier schedule sur-
faces (or initial topography), respectively. Finally, a normalization
process is required to convert the constructed non-normal solu-
tion to a feasible configuration.

3.3.2. Constraint handling
There is not any explicit mechanism for constraint handling in

ACO. However, slope constraint needs to be applied on the in-
dependently selected pit depths in order to adapt them to a fea-
sible pit configuration from slope angles point of view. ACO uses a
special normalization procedure in order to alter the selected
depths and convert them to a feasible shape in a way that the new
pit shape covers all of the determined depths as well as the outline
of the earlier pit (or original topography for the first pit) (Gilani
and Sattarvand, in press). Rests of the constraints are handled in a
manner at which they are allowed to violate at the expense of a
penalty cost added to the objective function. In other words the
objective function can be written as following:
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and also subject to constraint (2)–(4),
where:

� = ( + )+ +C c d/ 1t
m m t: Unit surplus cost incurred if the total weight

of rock mined during period t exceeds M̄ ( +cm is the un-
discounted unit surplus cost).

� = ( + )− −C c d/ 1t
m m t: Unit shortage cost associated with the fail-

ure to meet M̲during period t ( −cm is the undiscounted unit
shortage cost).

� = ( + )+ +C c d/ 1t
o o t: Unit surplus cost incurred if the total weight

of ore mined during period t exceeds Ō.
� = ( + )− −C c d/ 1t

o o t: Unit shortage cost associated with the failure
to meet O̲ during period t .

� = ( + )− −C c d/ 1t
g g t: Unit shortage cost associated with the failure

to meet G̲ during period t .
� − +d dandt

m
t
m , denote the shortage and the surplus in the amount

of rock mined during period t , respectively.

� − +d dandt
o

t
o , denote the shortage and the surplus in the amount

of ore mined during period t , respectively.

� −dt
g , denote the shortage in the average ore grade sending to

plant during period t .



Fig. 2. Flowchart of the grade uncertainty integration in ACO pit optimizer.
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3.3.3. Pheromone update
Pheromone update procedure consists of two steps. The first

step, called “pheromone evaporation”, involves a uniform reduc-
tion in the value of all pheromones in order to help the ACO model
disregarding the bad solutions. The next step, called “pheromone
deposition”, consists of adding additional pheromone to the blocks
that have participated in construction of the schedules. Different
strategies of pheromone update such as ant system (AS), elitist ant
system (EAS), ranked based ant system (ASrank), max-min ant
system (MMAS) and ant colony system (ACS) have been in-
vestigated. The main differences in these strategies are the manner
of block selection for pheromone update and the amount of
pheromones to be added. AS is the first and simplest method,
where all of its’ constructed schedules are allowed to be con-
tributed in pheromone deposition. EAS allows the best-so-far
schedule to deposit extra pheromone. In ASrank only a few good
schedules are allowed to add pheromones. MMAS allows only the
best-so-far schedule to deposit pheromones and utilizes special
pheromone limitations in order to prevent the process from
stagnation in local optimums. Research continued by ACS as the
best variant from running speed and required computational re-
sources points of view (Soleymani Shishvan and Sattarvand, 2015).

Ant Colony System differs from AS in three main points. First, it
exploits the search experience accumulated by the ants more
strongly than other system. Second, pheromone evaporation and
pheromone deposition take place only on the best-so-far solution.
Finally, passing through any path leads to remove some of its
pheromone in order to increase the exploration of alternative
paths.

Generally, two local and global pheromone update rule has
been done which the first one is applied immediately after each pit
construction and the second one is done after each iteration only
by the best-so-far ant.

τ ξ τ τ ξ← ( − ) + ( < < ) ( )local update: 1 , 0 1 14n
t

n
t

0

τ ρ τ ρΔτ ρ← ( − ) + ( < < ) ( )global update: 1 , 0 1 15n
t

n
t

n
best

Where ξ is the local evaporation rate, τ0 is the initial value of

pheromone trails, ρ is the evaporation rate and τΔ n
bestis the amount

of pheromone deposition by the best-so-far ant on the nth block.
3.4. Termination of the algorithm

Algorithm terminates after a certain number of iteration or
when it does not catch any improvement.
4. Incorporation of the grade uncertainty

Like the methods used for long term production planning, the
proposed approach herein has considered constant meet produc-
tion targets for each period, maximize the overall discounted cash
flows, minimize the stripping ratio and guarantee safety slope
requirements. An initial solution (mine schedule) is required to
specify initial targets for each period, which can be generated by
traditional algorithms. For this purpose, the current commercial
package has been used in order to create initial solutions. Then,
the optimal solution design is defined by the uncertainty based
ACO algorithm that yields the best performance in terms of the
requirements stated above. For this purpose, two additional block
models termed “EType block model” and “Risk block model” have
been used in order to incorporate the geological uncertainty. The
EType block model is simply generated by averaging the geological
simulations such that the metal grade of any block is the average
of that block’s grade in all simulations. The risk block model is
created by assigning the probability of each block to exploit in any
period. Considering the variability in metal grade that strongly
linked to the variability in the economic value of the material
within the pits, the general integer formulation has been modified
a little that would be solved by the uncertainty based ACO algo-
rithm. Fig. 2 illustrates the general procedure of the uncertainty
based ACO approach for the open pit mine production planning.

The modified formulation aims to minimize the average abso-
lute deviation (difference) from a target tonnage over all geological
simulations by adding the probabilistic factor to the objective
function of general formulation discussed Section 3.3.2 as fol-
lowing:
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Fig. 3. Two dimensional scheduling problem with three periods and =Prob 75n
t .

1 Single risk based version of ACO.
2 Multiple risk based version of ACO.
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t s
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, , , denote the shortage and the surplus in the amount
of rock mined during period t if scenario s occurs, respectively.

� − +d dandt s
o

t s
o

, , , denote the shortage and the surplus in the amount
of ore mined during period t if scenario s occurs, respectively.

� −dt s
g
, , denote the shortage in the average ore grade sending to

plant during period t if scenario s occurs.

� Probn
t : represents the probability of locating nth block in pth

period,
� = − = … ( < )−C Prob p and C C100 , 1, , 100p n

t
p p 1 : Coefficient cost

adjusted to Probn
t .

� S, is the total number of simulations.
� s, is the simulation index.

The values of parameter Probn
t are extracted directly from

mentioned risk block model created using all geological simula-
tions and their generated mine schedules via traditional algo-
rithms which its elements are calculated by counting the number
of times that nth block has been scheduled in tth period along all
simulations as following:

∑= ( )=
Prob

S
x

100
18n

t
s

S
n s
t

1 ,

where xn s
t
, is the decision variable which takes 1 if the nth block of

sth simulation is scheduled in tth period and takes 0 if else.
Considering the geological uncertainty, another additional rule

was carried out in pheromone initialization process based on the
values of Probn

t extracted from the risk block model instead of
assigning a fix value τ( )0 as following:
τ τ= ( )τC
Prob
100 19n

t n
t

0initial

where, Cτ is a coefficient to control the intensity of Probn
t on

pheromone initialization.
As mentioned before the pheromone initialization is carried

out according to the initial solution that can be generated by tra-
ditional approach for EType block model in order to consider the
geological uncertainty. The experiments shows the uniform
pheromone initialization led to increase the running time (Dorigo
and Stützle, 2004). Thus, the initial solution was improved using
deterministic version of ACO (Dtrm-ACO) and its output was
considered as the initial solution for the main algorithm.

Considering the main aim of the uncertainty based ACO pro-
cedure to scheduling the low-risk blocks in early periods, the
pheromone update should be carried out proportional to the risk
related to blocks. For this purpose, according to the risk block
model, the blocks with high probability for scheduling in period p
or mathematically with high value of Probn

t would get more
pheromone value and have the greater chance of scheduling in
early periods. Hence, a new pheromone deposition rule is used
after each iteration as following:

τ τ τ← + ( )C
Prob
100 20n

t
n
t

prob
n
t

0

Two distinct strategies have been used to update the pher-
omone value based on the value of Probn

t in the proposed proce-
dure. The first strategy, called “ACO-SRB”,1 is based on a fixed
single probability value. While the second strategy, called “ACO-
MRB”2 utilizes all of the probability values of Probn

t . In other words,
in the first strategy, the nth block is allowed to get pheromone in tth

period if and only if ≥Prob Probn
t . This forces the algorithm to

provide a scheduling design including the blocks with the risk less
than threshold ( Probn

t higher than predefined Prob). Fig. 3



Table 1
Economical parameters for long-term production scheduling of Sungun copper
mine.

Parameter Value Unit

Metal price 5,500 $/ton (metal)

S.-O. Gilani, J. Sattarvand / Computers & Geosciences 87 (2016) 31–40 37
illustrates a two dimensional scheduling example for ≥Prob 75n
t

constructed by four geological simulations. On the other hand, in
the second strategy, all blocks contribute in the pheromone update
process proportional to their Probn

t . This will increase the chance
of block with higher value of Probn

t or in other word the low-risk
blocks to being scheduled in early periods and vice versa.
)1

Selling cost 20 $/ton (metal)
Mining cost (waste) 1.56 $/ton
Mining cost (ore) 1.75 $/ton
Processing cost 11.85 $/ton
Additional cost 2.57 $/ton
Dilution 8 %
Mining recovery 95 %
Discount rate 10 %

Fig. 4. Ore/waste distribution in ultimate pit limits related to each simulation.

Fig. 5. Average grade of ultimate pit limits related to each simulation.
5. Numerical results and discussion

The proposed framework for long term production planning
that account the geological uncertainty is applied to the Sungun
copper mine located in the northwest of Iran. Sungun is a tradi-
tional open pit operation with truck-and-loader mining system
which having a mining rate of 46Mt per year, makes it as one of
the largest open pit operation in Iran. For this case study, the
whole of mine is being considered, which contains
(156�168�96¼2,515,968) blocks that are 25�25�12.5 m3 in
the x, y and z directions respectively. Considering that conditional
simulation procedure is very onerous in terms of computer re-
sources and processing time, so one of the first questions to arise is
the number of required simulations. The answer is related to the
specific requirements of the analysis and the degree of the re-
quired precision (Ravenscroft, 1992). On the other hand, the lim-
itation of the number of simulations depends on the size and
detail of the model. In our study, because of the requirement for
confidence limits and accurate probabilistic valuations, large
numbers of simulations may be needed in order to produce
practical outcomes. But, it must be noted that considerable com-
puting resource will be required for large number of simulations.
Based on previous studies (Godoy and Dimitrakopoulos, 2004;
Lamghari and Dimitrakopoulos, 2012), mine has provided 20
conditional simulations using the computationally SGSim3 ap-
proach that contain simulated copper grades, recoveries, tonnage
and simulated material types. The geotechnical studies specify five
zones representing areas with separate slope angles, which should
be satisfied in all generated solutions (Table 1). The average grade
of copper is 0.661%. The ore deposit is categorized into two cate-
gories, supergene and hypogene. Ore tonnage and average grade of
supergene zone are 182 Mt and 0.62% respectively and it is 12% of
the total tonnage of the orebody. Due to the higher grade, super-
gene is the major ore type feeding the concentrator in the early
years of operation but because it contains copper oxide, the re-
covery of metal is lower and also leaching as a recovery method is
not environment friendly. Ore tonnage in hypogene zone is
1300 Mt with an average grade of 0.44%.

Some initial scheduling designs has been provided using a
commercial software for all simulations and the EType block
models in order to create the risk block model and initial solution.
The ore/waste distribution and average grade of the created initial
mining plan for all simulations and the EType block models has
been illustrated in Figs. 4,5 and 6.

As mentioned before the initial solution would be improved by
the proposed approach while simultaneously reducing the varia-
bility and its related risk. The economic parameters such as copper
price, unit costs, unit revenues and discount factor are summar-
ized in Table 2 which are inspired by the real data.

As mentioned before, constraint handing has been done using
penalty functions that the related penalties values or un-
discounted shortage and surplus costs are considered as following:

� The annual mining rate less than ̲ =M Mt37 , leads to production
shortage and increasing the overhead and mining costs by 10%.
3 Sequential Gaussian simulation
� The annual mining rate more than ¯ =M Mt46 , leads to pro-
duction surplus, getting auxiliary services from contractors and
increasing the mining cost by 20%.

� The annual milling rate less than ̲ =O Mt12 , leads to production
shortage and increasing the overhead and mining costs by 10%
because of reduction in the metal recovery.

� The annual ore production rate more than ¯ =O Mt14 , leads to
production surplus, overflowing in beneficiation plant, dama-
ging the factory and more important having to waste the ex-
tracted ore.

� If the yearly average grade of the copper is less than
the ̲ =G 0.55%, plant recovery changes as following:

( ) = × ( )
̲ ( ) (

Recovery G
R
G

%
%
% 2cu

The numerical tests were implemented on an Intel
s

Core™ i7-
4470 computer (3.4 GHz) with 16 gigabytes of RAM running under
Windows 7. A series of preliminary tests were conducted in order
to determine the appropriate ACO parameter as following which
led to reach a good performance in this special problem:

� Maximum number of iterations¼1000;



Fig. 6. Ore distribution in the initial designed pushbacks for all simulations.

Table 2
Different geotechnical regions.

Region Azimuth (deg) Slop angle (deg)

1 0 38
2 90 38
3 130 30
4 235 30
5 275 36

Fig. 7. Efficiency of the ACO-SRB on yearly production planning with =Prob 100%.

Fig. 8. Efficiency of the ACO-SRB on yearly production planning with different
probabilities.

Fig. 9. Efficiency of the ACO-MRB on yearly production planning.

Fig. 10. Comparison between traditional and proposed approaches.
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� Maximum number of sequential non-improving
iterations¼250;

� Number of the ants¼10;
� Global evaporation rate ( ρ)¼0.1;
� Local evaporation rate (ξ)¼0.15;
� The upper and lower perturbation distance is considered as

3 and 0, respectively;
� α and β are set to 1 and 0.15, respectively;
� =C 5prob ;
� Initial pheromone τ( )o ¼0.1;
� Minimum pheromone τ( )min ¼ 0.001;
� Pseudorandom factor ( )q0 ¼0.7.

Deterministic version of ACO (ACO-Dtrm) was applied on 21
initial sub-optimal scheduling designs provided by a traditional



Table 3
Comparison between ACO-MRB and ACO-SRB.

Improvement (%) ACO-MRB ACO-SRB (%)

100 90 80 70 60 50 40 30 20 10 1

Related to Estimated 47.40 49.18 48.88 50.15 51.01 50.34 48.92 50.25 47.11 46.24 36.69 36.23
Related to EType 28.04 29.58 29.32 30.43 31.17 30.59 29.36 30.51 27.79 27.03 18.74 18.33
Related to improved EType 8.20 9.51 9.29 10.22 10.86 10.36 9.32 10.30 7.99 7.35 0.34 0.00
Time (Hour) 6.56 4.43 3.88 4.34 4.09 7.20 3.34 4.73 3.81 3.23 2.69 2.16

Fig. 11. North–South cross sections of obtained solution by traditional and MRB-ACO approaches.
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method for 20 geological simulations and EType block model in
order to create the risk block model and initial solution. Both
proposed strategies (ACO-SRB and ACO-MRB) are test on the re-
sulted initial solution. In terms of improvement in objective
function values (evaluating the fitness values obtained before and
after modifying the initial solution), ACO-SRB indicates an increase
of 7.78% and ACO-MRB indicates an increase of 8.20%. In ACO-MRB,
it takes 390 min to obtain the near optimum solution while
240 min has been spent by ACO-SRB; however, it is noted that it
takes,250 and 130 min to converge on a scheduling design within
10% of the final solution respectively by ACO-MRB and ACO-SRB.
Figs. 7–9 show the occurred perturbations mentioned above using
both proposed strategies. It can be observed that ACO-SRB leads to
better results in some cases and appears to be more effective in
cases with higher value of Prob. However, it seems that ACO-SRB
has more potential of falling into local optima and fails to explore
the whole domain of solutions. By the way, it is a good practice
when companies look forward to planning with fixed risk or
probability. On the other hand, ACO-MRB generates solutions from
the unexplored or less explored feasible solution space with
low Prob and thus has a higher chance to find better solutions.

A general comparison based on obtained fitness value has been
done between the provided scheduling designs using traditional
approach and the improved ones by ACO-Dtrm, ACO-SRB and ACO-
MRB for the estimated, all simulations and EType block models.
Fig. 10 shows that all the three version of ACO are able to sub-
stantially increase the fitness value when compared to the original
scheduling designs. ACO-Dtrm led to increase the fitness value of
the provided initial solution for the estimated, all simulations and
EType block models by 21.1%, 14.14% and 18.33%, respectively.

A more detailed comparison between ACO-SRB and ACO-MRB
is illustrated in Table 3 in order to show their efficiency in pro-
viding final solution based on the initial solution created by
traditional approach for estimated and EType block model and also
the created one based on the initial solution for EType block model
improved by ACO-Dtrm approach. Generally, this evaluation de-
monstrates that both strategies lead to improve the feasible sub-
optimal solutions in term of NPV and also minimize the risk of
deviating from the production targets. The clear outcome is that
ACO-MRB is more effective than ACO-SRB (in 40% of the cases)
especially when the values of Prob are low. For example ACO-SRB
increases the fitness value of the improved solution for EType
block model by 10.21% when = ~Prob 40 80% while its improve-
ment is very little for ≤Prob 20. Considering all = ~Prob 1 100%, an
average improvement of 7.78% was achieved in the fitness value
when ACO-SRB is used, which is less than that of ACO-MRB as
8.20%. Fig. 11 shows the section views of the initial solution pro-
vided by traditional approach and final schedule obtained by MRB-
ACO.
6. Conclusions

A new stochastic optimization algorithm based on Ant Colony
Optimization approach, which considers geological uncertainty in
open pit mine production scheduling problem, is presented and
successfully applied to production scheduling at the Sungun cop-
per mine in the northwest of Iran. Two different strategies were
developed based on a single predefined probability value ( Prob)
and multiple probability values ( )Probn

t , in order to improve the
initial solutions that created by deterministic version of ACO
procedure.

Results demonstrate the abilities of the stochastic approach to
create a single schedule and control the risk of deviating from
production targets which diminishes an overall project risk and
also increase the project value. A comparison between two
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strategies and traditional approach illustrates that the multiple
probability based strategy produces better results, however, the
single predefined probability based approach is more practical
in situations with high degree of flexibility. For instance, Esti-
mated, EType, and improved EType solutions were improved by
47.40%, 28.04%, and 8.20%, respectively by the second strategy.
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