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Estimating the spatial distribution of physical processes using a minimum number of samples is of vital
importance in earth science applications where sampling is costly. In recent years, training image-based
methods have received a lot of attention for interpolation and simulation. However, training images have
never been employed to optimize spatial sampling process. In this paper, a sequential compressive
sampling method is presented which decides the location of new samples based on a training image.
First, a Bayesian mixture model is developed based on the training patterns. Then, using this model,
unknown values are estimated based on a limited number of random samples. Since the model is
probabilistic, it allows estimating local uncertainty conditionally to the available samples. Based on this,
new samples are sequentially extracted from the locations with maximum uncertainty. Experiments
show that compared to a random sampling strategy, the proposed supervised sampling method sig-
nificantly reduces the number of samples needed to achieve the same level of accuracy, even when the
training image is not optimally chosen. The method has the potential to reduce the number of ob-
servations necessary for the characterization of environmental processes.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The characterization of spatial phenomena is important for
several applications in geosciences. In situ measurements provide
critical information when processing remote sensing data and are
the basis for interpolating regionalized variables. In many cases
data acquisition is expensive. Therefore, an important research
goal is to obtain the best possible characterization with the
smallest possible number of samples. In this regard, prior knowl-
edge of the spatial variability can be a key asset in designing an
efficient sampling strategy, which so far has not yet been fully
exploited (Stumpf et al., 2012).

In this paper a method is presented which exploits such prior
knowledge in the sampling design. Incorporating spatial prior
knowledge in the sampling design can be useful in a range of
applications, such as to determine the measurement locations for
the estimation of a spatially distributed variable (Wang et al.,
2014), to make an optimal choice of training set for remote sensing
image classification (Tuia et al., 2009), or for the characterization
of subsurface structures based on sparse and expensive drillholes
llahifard).
(Van Groenigen et al., 1999).
The quality of maps obtained by interpolation of observations

of a target environmental variable at a limited number of locations
is partly determined by the location of the interpolated data (Brus
and Heuvelink, 2007). Different sampling design techniques have
been proposed attempting to optimize sample locations (Brus and
Heuvelink, 2007; Brus and De Gruijter, 1997; Vasat et al., 2010;
Delmelle and Goovaerts, 2009; Aerts et al., 2013b, 2013a). Most of
these methods are based on minimizing a Kriging variance (At-
kinson and Curran, 1995). Brus and Heuvelink (2007) have sug-
gested minimizing the spatially averaged universal Kriging var-
iance using simulated annealing. Vasat et al. (2010) have suggested
using Average Kriging Variance for simultaneous optimization of
the sampling design for multiple soil variables. Delmelle and
Goovaerts (2009) proposed to weight the Kriging variance with
another criterion giving greater sampling importance to locations
exhibiting significant spatial roughness. A sequential Kriging-
based method is proposed by Aerts et al. (2013a,b) to select the
sampling pattern for assessment of electromagnetic field ex-
posure. In all of these methods, simple spatial models such as
variograms are employed to characterize the behavior of the target
field.

On the other hand, multiple-point statistics approaches (MPS)
have recently attracted significant attention for the characterization
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of complex spatial features, with applications in subsurface mod-
eling, remote sensing, rainfall simulations and climate modeling
(Tang et al., 2013; Boucher et al., 2008; Wojcik et al., 2009; Jha et al.,
2013; Mariethoz et al., 2012; Abdollahifard and Faez, 2013a; Ab-
dollahifard, 2016). In MPS, a training image (TI) is adopted, deemed
to encapsulate the spatial characteristics of the target field. It is
composed of patterns that are a priori likely to be found in the field.
The training image is typically considered as a convenient way of
formalizing expert knowledge on the expected spatial continuity,
which comes in addition to the available data. Several algorithms
exist to complete or interpolate the simulation grid (SG) based on
the TI patterns. A classical way of proceeding involves first ex-
tracting a pattern database from the TI, and then using it for com-
puting a local conditional probability at each node of the simulation
grid. MPS methods are appropriate for generating complex spatial
structures, where they usually outperform two-point simulation
methods (Zinn and Harvey, 2003; Schlüter and Vogel, 2011).

The spatial model employed in MPS, namely the TI, contains
much more information than histograms or variograms. To the
best of our knowledge however, the valuable information con-
tained in the TI has not been employed to improve sampling
design. The aim of this paper is to fill this gap and use the rich
information contained in the TI for an improved sampling
process.

The newly developed Compressive Sensing (CS) theory em-
phasizes that a signal can be completely recovered from much
fewer samples compared to the number of samples required in
conventional reconstruction schemes (Donoho, 2006; Candès and
Wakin, 2008). The idea is to include a prior knowledge of the
signal (via a signal model) to obtain a similar reconstruction with
fewer samples. The model is intended to capture the common
aspects of a signal family in order to minimize the sampling in-
formation needed to reconstruct a specific signal from the same
family. An evident parallel can be made between such prior
knowledge and the TI used in multiple-point geostatistics. In the
basic form of CS, the model is provided using a linear dictionary
which supports sparse representation of desired signals (Donoho,
2006). In general the dictionary may be either a fixed dictionary
(e.g. wavelets or discrete cosine transform (Candès and Wakin,
2008; Griffin and Tsakalides, 2007), or an adaptive linear/non-
linear dictionary tailored to a specific set of signals to allow higher
sparsity levels (Olshausen and Field, 1997; Engan et al., 1999;
Kreutz-Delgado et al., 2003; Elad and Aharon, 2006; Gangeh et al.,
2013; Nguyen et al., 2013). Recently, an analytic manifold model is
also developed for modeling image edges and employed for re-
construction of binary geological images with moderate success
(Abdollahifard and Ahmadi, 2016).

Besides the sparsity level, the number of necessary samples is a
function of the amount of incoherence between sampling and
representation bases. Some researchers suggested selecting the
sampling basis using the overall signal behavior to reduce the
coherence between sampling and representation bases (Elad,
2007; Duarte-Carvajalino and Sapiro, 2009). In these methods, the
sampling is decided at an initial stage, and therefore the sampling
basis does not depend on the locations and values of previous
samples. Furthermore, there exist a large amount of research on
adaptive compressive sensing (Aldroubi et al., 2011; Ke et al., 2010;
Soni and Haupt, 2012; Arias-Castro et al., 2013) and task-driven
compressive sensing (Duarte-Carvajalino et al., 2013; Ashok et al.,
2008; Baheti and Neifeld, 2009; Mahalanobis and Muise, 2009;
Ashok et al., 2013). It is worth emphasizing that these methods are
all specific to the field of signal processing and have never been
applied to geostatistical problems. In geoscience applications, it is
common to acquire samples directly and sequentially as a series of
successive measurement campaigns. The direct sampling con-
straint prevents the application of any desired sampling basis, and
just allows the selection of sampling locations.
Nonparametric Bayesian models are powerful probabilistic

signal modeling tools that have been extensively employed in the
context of CS (Abdollahifard and Faez, 2013b; Bishop and Winn,
2000; Paisley et al., 2010; Chen et al., 2010; Ji et al., 2008; Yu and
Sapiro, 2011). Non-parametric Bayesian models have been em-
ployed to model nonlinear data manifolds in different applications
(Abdollahifard and Faez, 2013b; Bishop and Winn, 2000; Chen
et al., 2010). As will be discussed in Section 4, such manifold
models, namely Mixture of Probabilistic Principal Component
Analyzers (MPPCA) and Mixture of Factor Analyzers (MFA), are
capable of representing complex data structures such as spatial
heterogeneity. Since such manifold models are flexible enough to
be fitted on nonlinear data spaces (such as defined by a TI) and to
capture data space tightly, they provide important modeling in-
formation which allows reconstructing the complete signal from a
tiny number of samples. However, the location of samples sig-
nificantly affects the reconstruction performance. This sensitivity
can be used to determine which sampling locations have the
highest potential to bring useful spatial information. It should be
noted that many other probabilistic modeling tools developed in
image processing literature have the potential to be used to ad-
dress sampling design problem based on training images.

The main contribution of our paper is to employ multiple-point
statistics for sampling design. We believe that two important
factors have to be considered to select the location of samples:

1. the signal behavior (which can be modeled using a manifold
model based on the training patterns of a TI),

2. the locations and the values of the previously drawn samples.

As discussed above, none of the previous studies considered
both these factors simultaneously. We propose a greedy sampling
approach whereby in a first step, the TI patterns are used to train a
MFA model. Then, based on this model and a limited number of
initial samples, uncertainty values are estimated on the entire
interpolation domain. Next, new samples are extracted from local
maxima of uncertainty, and the operation is repeated sequentially.
The structure of the proposed method is similar to that of Kriging-
based methods of Aerts et al. (2013a,b). The MFA estimated value
and the uncertainty are equivalent to the mean and variance of
Kriging. However, unlike Aerts et al. (2013a,b), we have included
concepts coming from multiple-point statistics in our model
through the training image. As illustrated in Section 6, the im-
proved model employed in our method leads to a significantly
more efficient sampling design. It should be noted that the pro-
posed sampling method is sequential, and hence difficult to apply
or inapplicable to dynamic fields which show fast time variations,
e.g. air quality monitoring (Romary et al., 2011, 2014).

The paper is organized as follows. In Section 2 a brief review of
basic concepts of compressive sensing is presented. In Section 3,
an overview of the proposed method is presented and motivated
using a simple example. In Section 4, the typical locus of spatial
patterns is discussed and the MFA model is introduced as a sui-
table tool for the modeling of such loci. In Section 5, the proposed
algorithm is presented in detail. Finally, Section 6 evaluates the
method on a series of test cases.
2. Background on compressive sampling

Although compressive sensing has received considerable at-
tention in the signal processing community, geostatisticians and
geoscientists are less familiar with basic concepts in this field. In
this section, the CS basics are briefly introduced avoiding un-
necessary formulations. CS is a technique for efficiently
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reconstructing a d-dimensional signal t (a vector containing d
components) from a set of observations χ ∈ n where >d n. In
general this leads to an underdetermined system with infinite
number of solutions. By assuming sparseness or compressibility of
the signal in some domain, a specific solution which is also sparse
or compressible in that domain could be selected as final solution.
Using this technique nearly all useful information contained in the
signal can be retrieved using a small number of compressive
measurements.

Assume that the information content of t is obtained through
linear measurements so that χ Φ= t (Φ ∈ ×n d). Furthermore, as-
sume that t can be expressed in the representation basis W in the
form =t Wv where ∈ v l is sparse meaning that it has only a few
nonzero elements ( ≥l d). Combining the above equations leads to
an underdetermined linear system in the form χ Φ= =Wv Av. The
sparsest solution for this system can be obtained by solving the
following optimization problem:

χ^ = ∥ ∥ = ( )ℓv v Avargmin subject to 1v 0

where ∥ ∥ℓv 0 denotes the number of nonzero elements of v. The
above optimization problem is a NP-hard one. An approximate
solution is to replace the ℓ0 norm with ℓ1 norm. It has been shown
that the ℓ1 norm leads to sparse solutions as well (Donoho, 2006;
Candès and Wakin, 2008).

Two important factors determine the effectiveness of CS: the
representation basis, W , and the sampling basis, Φ. The sparser
the signal in representation domain, the fewer samples are re-
quired for complete signal recovery. A common dictionary, like
DCT, represents some signals in a sparse form. However, dictionary
learning techniques attempt to obtain sparser representations
through adapting the dictionary to a specific class of signals (Ol-
shausen and Field, 1997; Engan et al., 1999; Kreutz-Delgado et al.,
2003; Elad and Aharon, 2006). On the other hand, the sampling
basis should be selected incoherent with representation basis as
much as possible (Donoho, 2006). If the sampling and re-
presentation domains are the same (maximum coherence), each
sample only motivates one location in representation domain and
it is impossible to recover unsampled values. On the other hand,
one sample in the sampling domain contains a lot of information
in the representation domain if the sampling and representation
domains are highly incoherent.
)a(
Fig. 1. (a) An unknown binary field Z(x) with a small number of observed samples. Unkn
(b) A training image TI(y) ( = [ ]y y y, T

1 2 ). TI patterns are vectorized to form a data-base
As indicated before, in geoscience applications the samples are
usually extracted directly and only their locations can be decided.
In other words, each row of Φ contains zeros except in the sam-
pling location. Since the number of available samples is very
limited in our application, it is necessary to select a suitable re-
presentation domain and to decide the location of samples
carefully.

Linear transformations have limited potential for compressive
representation of signals. Nonlinear transformations provide much
more flexibility to capture complex signal spaces. Kernelized dic-
tionary learning methods are available in the literature, which
allow high degree of compression (Gangeh et al., 2013; Nguyen
et al., 2013). However, it seems difficult to use them to estimate
uncertainties. As an alternative, a mixture of linear models can be
used to model a nonlinear space using a set of tangent hyper-
planes. Convenient mathematical properties of such models make
them more suited to estimate uncertainty values.
3. Algorithm overview

Consider an unknown scalar field Z(x), where = [ ]x x x, T
1 2 de-

notes a location. Suppose that a small number of samples are ex-
tracted from Z(x) at random (Fig. 1(a)). The value of a field at a
specific location is mainly determined by its neighboring pixels
and is almost independent from far pixels. Therefore, in order to
make the modeling problem tractable, the field can be divided into
small patches.Ψx denotes a ×k k patch centered at pixel x, called a
data-event ( =d k2). In order to preserve pattern continuity, a
minimum overlap of 50% is considered for neighboring patches in
this paper. Considering overlapping patches to prevent edge ef-
fects is a common practice in image processing literature (see for
example Peyré, 2009).

Vectorizing the data-event leads to a vector ( ∈ )t d with a
known part denoted by ( ∈ )tob

dob and a missing part denoted by
( ∈ )tmis

dmis . The known part is typically informed by data that
are already acquired. If the observed samples provide enough in-
formation for reconstruction of missing values with desired ac-
curacy, then no new samples will be necessary. However, initial
samples are often so sparse that more samples are required to
achieve the desired accuracy. The goal is to find the best locations
for extraction of new samples from the field.
D 

)b(
own values are depicted in gray. A typical data-event is depicted besides the image.
of training vectors, D.



Fig. 2. Workflow of proposed sampling scheme.
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As in multiple-point statistics simulation methods, it is as-
sumed that there exists an expert-provided example field TI(y)
( ∈ y 2) which describes the spatial behavior of the field, i.e. the
training image (see Fig. 1(b)). The TI contains patterns that are
likely to be found in the real field. A large number of ×k k training
patterns (Ψys for all y in the TI domain) are extracted from the TI,
and then vectorized to form a data-base of training vectors

= [ … ]D t t, , N1 . The training vectors extracted from the TI are
highly correlated and compressible. As will be discussed in Section
4, the training patterns are modeled using a probabilistic model,
and then the model is used to estimate unknown values and un-
certainty values all over the field.

In this paper a Bayesian approach is adopted. Given tob, the
posterior probability distribution function ( | )t tp mis ob is computed
and then the mean and the variance of this distribution are taken
as estimations for missing values and uncertainty values respec-
tively. By putting the uncertainty values together, an uncertainty
image u(x) is formed and new samples are extracted from local
maxima of u(x). Fig. 2 illustrates the proposed workflow. Using
Fig. 3. Illustration of importance of image behavior, samples locations and values in seq
reconstruction of 9� 9 patches based on the proposed method (the details are given l
scaled variance maps are depicted in columns 1–4 from left to right respectively.
new samples, the estimated variables are refined and the process
continues until no more data need to be measured.

3.1. An illustrative example

Our sampling approach is founded on two important princi-
ples: first, the underlying field behavior is employed to conduct
the sampling process through a training image. Second, the sam-
ples are taken sequentially and the locations and values of pre-
vious samples take part in the designation of new samples loca-
tions. In this section, the significance of such an approach is illu-
strated using a simple example. Consider the basic training image
of Fig. 3(a). As indicated previously, it is assumed that the TI is
composed of patterns that are likely to be found in the real field.
The goal is to reconstruct a patch belonging to the family of 9�
9 patterns of this image using a minimum number of samples.

Given the signal behavior, it is obvious that if two samples are
located on a horizontal line their values are equal and one of them
is practically useless. This example emphasizes that the proper
location of the samples depends on the signal behavior. On the
other hand, if two samples are drawn from top and bottom of a
patch and both of them are white (or black) then the other points
of the patch can be estimated precisely. But if one of the samples is
white and the other one is black, then more samples are required
to find the exact location of the border (Fig. 3(a)).

This example demonstrates that both the locations and the
values of the previous samples can be employed for localization of
uential sampling. (a) A simple image and two extracted patches. (b) Sampling and
ater in Section 5). Original patches, extracted samples, reconstructed patches, and



Fig. 4. Nearly all patterns of this binary channelized image (251 by 251 pixels) can
be reconstructed by applying simple mappings (like rotation and translation) to the
elementary pattern depicted besides the image. Therefore the space of the patterns
in this image has very low effective dimensionality.
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new samples. It also shows that it is beneficial to select the sam-
ples in a sequential manner.

A brute-force way of choosing samples locations would be to
generate, at each sampling stage, a large number (say K) of reali-
zations conditioned to any previously available samples. Then,
based on the variance map through the realizations, one could
choose the best locations for further sampling. However, such an
approach would require a large number of realizations and
therefore would be very CPU intensive. Abdollahifard and Faez
(2013b) showed that a Bayesian mixture model can be effectively
employed for simulation, with computational cost comparable to
state of the art simulation methods. In this paper, it is shown that
the Bayesian mixture model can be a more viable alternative to
such brute-force approach, because in its context computing an
additional variance map does not have a significant effect on the
computational cost. We therefore propose a method where the
uncertainty map can be computed directly, while the mentioned
brute-force method requires K simulations for computing the
uncertainty map, where K would be in the order of 100.
4. Modeling

Different patterns belonging to a single TI are typically corre-
lated and therefore compressible using an appropriate transform.
Assuming a low-rank Gaussian distribution for t , it could be re-
presented as a linear function of a low-dimensional feature vector

( ∈ )v q as follows:

μ ϵ= + + ( )t Wv , 2

where v is a zero-mean Gaussian variable ∼ ( )v I0, q and ⪡q d.
μ ( ∈ )d is the mean vector, ( ∈ )×W d q is the transformation
matrix and ϵ is a Gaussian noise vector with precision (i.e. inverse
variance) of τ, ϵ τ∼ ( )− I0, d

1 where τ ∈ .
Based on this model, ( | )t tp mis ob can be computed. Assuming a

single Gaussian distribution, one can simply verify that the loca-
tions with maximum variance will depend on locations of previous
samples and not on their values. This is contradictory with our
observation in the example of Fig. 3 and hence this model is not
sufficient for our modeling problem. In this section we first discuss
the possible forms of TI patterns locus in d dimensional space.
Then the proper model for modeling such locus is introduced.

4.1. TI patterns locus

The TI patterns could be considered as points in a d-dimen-
sional space. However, their locus does not occupy the whole
space and is restricted to a limited sub-space. The key observation
is that the spatial behavior of underground fields is repeated with
minor changes in different locations. Consider the binary image of
Fig. 4 which is a simplification of a channelized depositional sys-
tem with white as sand and black as shale (Strebelle, 2002). With
few exceptions, all of 10� 10 patches of the image can be con-
structed by translating and/or rotating the simple patch depicted
besides the image. Similarly, many variables in geosciences have
the property that their patches can be reconstructed by applying
some simple wrapping on one or more simple patches (Yu et al.
(2012) described natural image patches in the same way to solve
inverse problems).

To further clarify and visualize the locus, let us consider a
simpler example taken from Chen et al. (2010). Fig. 5(a) shows a
33-point discrete signal obtained from regular sampling of a
Gaussian signal with mean a. This signal can be considered as a
point in a 33-dimensional coordinate system. By changing a, a
family of signals is obtained. For visualization, 3 random
components of this 33-element vector are selected and considered
as a point in a three-dimensional space. For different values of a
the locus of such points is depicted in Fig. 5(b). Note that in this
plot the color spectrum, from blue to red, is intended to indicate
the value of a. From this figure it can be seen that although the
locus is placed in a 3-dimensional space, its effective dimension-
ality is one. The reason is that each signal can be obtained by
applying a 1D translation to a reference signal.

Similarly, the 10� 10 patches of the TI of Fig. 4 can be seen as
distributed on a manifold with effective dimensionality of three
(two for translation and one for rotation) in the 100-dimensional
space. Therefore, the patches of such images are distributed on
nonlinear manifolds with very low effective dimensionality. A
modeling tool is needed to achieve such dimensionality reduction.
This model should be capable of capturing the signal space as
tightly as possible to provide maximum modeling information and
therefore minimize the sampling needs.

4.2. MFA model

As indicated before, a single Gaussian distribution is not en-
ough to model a nonlinear manifold. Bayesian hierarchical mod-
eling, which can also be seen as a mixture of Gaussians, was
previously employed in classical geostatistics for clustering geos-
tatistical data (Allard and Guillot, 2000). Mixture models can also
be employed to model nonlinear manifolds. Non-parametric
Bayesian mixture models like MPPCA and MFA have been suc-
cessfully employed to approximate different data manifolds using
mixture of tangent hyper-planes (Abdollahifard and Faez, 2013b;
Bishop and Winn, 2000; Chen et al., 2010). These models are
flexible and can adapt to the signal space during a training phase
by changing their parameters. Suppose that using a set of observed
two-element signals we aim to model their space and then use the
model for reconstruction of new incomplete signals of this family.
The hypothetical scatter plot of such signals is depicted in Fig. 6,
where each point denotes one observed two-dimensional signal.
These observations can be used as training data to describe the
signal space. In this example, the nonlinear signal space is ap-
proximated properly using a mixture model with 6 components.

In this paper, a non-parametric MFA model is employed for
modeling of the signal space. Here we use the model of Chen et al.
(2010), which we rapidly summarize in the following. The gen-
erative equation of a single factor model is given in Eq. (2). Before
generalizing Eq. (2) to a mixture model, we address the problem of
inferring the effective dimensionality (rank of Gaussians, i.e. q) of
signal space. To this end, the feature vector v̂ is permitted to have
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Fig. 5. (a) A 33-point discrete signal. Consider a family of such signals obtained by varying the mean a. Although such signals are 33 dimensional, their effective di-
mensionality is one because they only depend on a. (b) 3 random components are selected from 33 components of the signal and their locus is drawn for different values of
a. As expected, the signal is distributed on a nonlinear curve of dimensionality one. This example is taken from Chen et al. (2010).

Fig. 6. Scatter plot of a set of 400 two-dimensional signals (points) distributed on a
nonlinear manifold with effective dimensionality of one. The manifold is modeled
using 6 one-dimensional subspaces, with origins μ μ…, , 61 . Using this model, new
incomplete signals (like tob) can be reconstructed by projecting them onto the
model. In addition to estimating missing values tmis , the pdf of these missing parts
can also be determined.
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the dimension Q where ⪡ ≤q Q d, and then some of its components
are deactivated as follows (Chen et al., 2010):

∏ λ= ^ ο ^ ∼ ( ) ∼ ( )
( )=

v v b v I b Bernoulli0, , ,
3

Q
l

Q

l
1

where ○ denotes point-wise vector product. A Beta prior dis-
tribution is assigned to λ:

∏λ ∼ ( ( − ) )
( )=

Beta a Q c Q Q/ , 1 /
4l

Q

1

where the hyper-parameters a and c can be used to impose prior
belief on the number of factors.

The factor model can be generalized to a mixture of M factors
as follows:

μ ϵ= + + ( )t W v , 5m m

where m¼1,…,M is the mixture index. In fact, t is considered to
have a mixture distribution as follows:

∑ μ Σπ( ) = ( | )
( )=

t tp , ,
6

m m
m

M

m
1

where πm is the probability of mth mixture component and Σm is
the covariance matrix of mth component. The graphical model of
MFA is depicted in Fig. 7. The hierarchical model is represented as
follows (Chen et al., 2010):

μ μτ τ( | ) = ( + ) ( )−t v W W v Ip , , , , , 7m m m m dm m
1

Δ= ^ ο = ˜ ( )v v b W W, , 8m m m m

(^) = ( ) ( )v Ip 0, , 9Q

π π π π( | … ) = ( … ) ( )p m Mult, 1; , , 10M M1 1



Fig. 8. Comparison of reconstruction performance using different sampling strategies on a channelized image. (a) Training image TI. (b) Hypothetical real field Z. (c), (d),
(e) and (f) An image reconstructed using 3% samples extracted randomly, based on Kriging variance, based on MPS simulation variance and based on MFA variance (proposed
method) respectively. (g), (h) and (i) samples extracted at 3rd sampling step using Kriging-based, simulation-based and MFA based samplings respectively. Note that samples
are depicted larger than one pixel to become clearly visible.
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Fig. 9. Reconstruction error for random and supervised samplings for sampling
rate of 1–30% for the experiment of Fig. 8.
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Note that Δm is a diagonal matrix whose lth diagonal element is
drawn from ζ( )−0, ml

1 . The diagonal elements of Δm encode the
importance of each column of W̃m. ()Mult denotes the multinomial
distribution and μ is the mean vector of all training vectors. Eq.
(16) means that each column of W̃m is drawn independently from

( ( ) )Id0, 1/ d . In this model a Dirichlet process is employed to
automatically infer the number of necessary clusters, M, from the
training data. The Dirichlet distribution is a conjugate prior for the
parameters of a multinomial distribution. As depicted in Fig. 7,
Gamma priors are considered for τms, η, and ζmls:
τ ∼ ( )τ τGamma a b,m , η ∼ ( )η ηGamma a b, , ζ ∼ ( )ζ ζGamma a b,ml . The
hyper-parameters τ0, aτ, bτ, aη, bη, aζ and bζ are all set to 10�6.
Furthermore we set = =a c 1. Note that hyper-parameters are set
to very small values to have non-informative priors (Chen et al.,
2010).

Based on this model the pdf of t could be represented as a
mixture of low-rank Gaussians with covariance matrix Σm:

τ τΣ Δ= + = ˜ ˜ ˜ + ( )− −W W I W W I , 18m m m
T

d m m m
T

dm m
21 1

where Δ Δ˜ = ( … )diag b b, ,m m m mQ1 . Therefore, the rank of the mth
Gaussian is approximately equal to the number of nonzero ele-
ments of bm, denoted by qm. The employed MFA model is so
complicated that the posterior distribution cannot be computed
analytically. To handle this problem, approximate inference
methods like Gibbs sampling are employed to infer the model
parameters using the training data (Abdollahifard and Faez, 2013b;
Chen et al., 2010).
5. Sequential compressive sampling

Suppose that a mixture of low-rank subspaces is fitted to the
signal locus (e.g. consider the fitted model in Fig. 6), and the
missing part of an incomplete signal t needs to be completed using
this model. Denote the largest subspace dimensionality by

= { }q qmaxm m . Intuitively, it seems that if the number of observed
elements of t , i.e. dob, is greater than or equal to q, then tmis could
be reconstructed with acceptable certainty, e.g. consider the way
in which the missing part of a two-dimensional signal is re-
constructed in Fig. 6.

More formally, once the training phase is completed, the
computed model parameters including πms, μm s, Wm s, τms, and
bm s are treated as fixed values in reconstruction and sampling
phases. Now suppose that an observation vector χ ∈ n is given in
the following form:

χ Φ= ( )t, 19

where Φ ∈ ×n d and ⪡n d. If all elements of each row of Φ are zeros
except for one, χ will be a small subset of t . The posterior dis-
tribution of t , given the observation vector χ , is a Gaussian mix-
ture model as well (Chen et al., 2010):
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In a Bayesian approach, missing values of the signal t are es-

timated using the posterior distribution. The estimated signal, t̂ ,
can be computed as the expectation of t with respect to χ( | )tp :

∫ μχ^ = ( ) = ( | ) = ˜ ( )χ|t t t t tE p d 24t

It is easy to show that the mean vector and the covariance matrix
of the Gaussian mixture model (20) can be expressed as follows:
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μ̃ can be regarded as an estimation for the signal t . The diagonal
elements of the covariance vector Σ̃ are the estimated variance or
uncertainty of signal elements. These uncertainty values are
gathered in a vector ∈ u d. The mean (expectation) and the un-
certainty of the posterior distribution could be compared with
Kriging mean and variance respectively, as used for example by
Diggle et al. (2007).

Consider again the image of Fig. 3(a). At the beginning, a MFA
model is trained using all patches of this image. Then some in-
complete patches are used to estimate the mean and variance of
the whole patch using Eqs. (25) and (26), as shown in Fig. 3(b). As
expected, in the first two rows of Fig. 3(b), where both top and
bottom samples have the same color, the estimated variance is
zero in the whole patch. Low variance values indicate a high level
of certainty for the patch values in column 3 of Fig. 3(b). In other
rows, more uncertainty is observed in specific locations of the
patch. Consider for example the third row of Fig. 3(b): based on
the training image, it is known that if the top sample is white and
the bottom sample is black, a sharp border occurs somewhere in



Fig. 10. Comparison of reconstruction performance using different sampling strategies on a continuous image. (a) Training image TI. (b) Hypothetical real field Z. (c), (d),
(e) and (f) An image reconstructed using 3% samples extracted randomly, based on Kriging variance, based on MPS simulation variance and based on MFA variance (proposed
method) respectively. (g), (h) and (i) samples extracted at 3rd sampling step using Kriging-based, simulation-based and MFA based samplings respectively. Unlike previous
example all sample locations are depicted in white regardless of their values.
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between, but the exact location of the border is unknown. Hence,
the model is uncertain about estimated patch values. In such cases
more samples must be drawn to explore this boundary, which is
precisely what our model does. In each row, the point with max-
imum uncertainty is sampled and its value is used in the following
row. Finally, the exact reconstruction can be achieved using
5 samples (last row). Interestingly, the location of selected samples
is optimal from a subjective point of view in this simple example.
5.1. Algorithm

Our algorithm reconstructs a scalar field, Z(x), using a limited
amount of samples, where x is a 2- or 3-dimensional position
vector. It has three steps:

Modeling step: A MFA model is trained using the TI patterns. A
large number of overlapping ×k k patterns are extracted from the
TI (see Fig. 1). Then, the parameters of the MFA model are
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Fig. 11. Reconstruction error for random and supervised samplings for sampling
rate of 1–30% for the experiment of Fig. 10.
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estimated using a Gibbs Sampler based on training patterns (Ab-
dollahifard and Faez, 2013b; Bishop and Nasrabadi, 2006).

Estimation step: The reconstructed image, ^ ( )Z x , and the un-
certainty estimate, ^ ( )u x , are produced based on the parameters
computed in the modeling step. Z(x) is divided into ×k k windows.
Each window is composed of a very limited amount of observed
samples and a majority of unknowns (see Fig. 1). For each window,
a specific sampling matrix Φ can be found which specifies the
location of the samples (see (19)). Using Eqs. (25) and (26), the
mean and the variance are estimated at each pixel of each win-

dow. ^ ( )Z x and ^ ( )u x are obtained by putting the reconstructed
windows together. Note that the windows can be selected with
some overlap to prevent inconsistencies at window borders. In

such cases the overlapping values are averaged to form ^ ( )Z x and
^ ( )u x .

Sampling step: The location of new samples is suggested by
analyzing the uncertainty results. New samples are extracted by
selecting local maxima in uncertainty map ^ ( )u x with uncertainty
values greater than a specific threshold th. An alternative, which is
employed in our tests (Section 6), would be to select a given
number of highest peaks among local maxima. Using the new
samples, Z(x) is updated and the algorithm goes back to the esti-
mation step. It is also possible to go back to the modeling step and
update the model using the information acquired from new
samples. However, for now we only investigate the potential of the
approach with a given TI as model, which is fixed.
6. Numerical experiments

As indicated in Section 1, traditional supervised sampling
methods typically work based on Kriging (Brus and Heuvelink,
2007; Brus and De Gruijter, 1997; Vasat et al., 2010; Delmelle and
Goovaerts, 2009; Aerts et al., 2013a,b). Aerts et al. (2013a,b) have
suggested estimating the unknown filed values and uncertainties
(Kriging-variance) using a variogram model. Then, new samples
are extracted from highly uncertain locations in a sequential
manner. The same approach is adopted in our paper except that
we use a different model for estimation of unknown values and
uncertainties which incorporates multiple-point statistics through
a training image.

As a brute-force alternative for our method, given any set of
observed samples MPS simulation methods can be employed to
produce large number (e.g. K¼100) of realizations and compute its
sample mean and variance in each point. Then, the variance can be
considered as uncertainty and new samples can be drawn from
highly uncertain locations. In this section, our sampling method is
tested versus random, Kriging-based and simulation-based sam-
plings on different fields.

At the beginning, the ×k k training patterns extracted from the
TI are vectorized and used to train an MFA model (see Fig. 1). In
principle, k should be selected based on the TI behavior so that the
patterns include correlated values in the neighborhood. An en-
tropy-based method for selecting the proper window size is pro-
posed by Honarkhah and Caers (2010). This method suggests va-
lues close to 13 for all images used in this paper. Therefore k is set
to 13 for all experiments. Then, another image with the same
spatial behavior as the TI is considered as the real field Z(x). At
first, 1% of pixels of Z are sampled randomly and the field is re-
constructed. Then, another 1% of Z is sampled and added to pre-
vious samples using four different strategies. The reconstruction is
then performed by taking the new samples into account, and the
process continues by going back to the sampling step. At each step,
the reconstruction accuracy is evaluated by comparing the re-
constructed field with the real field.

In the first sampling strategy, the new samples are selected
randomly. Remaining strategies extract new samples from local
maxima of an uncertainty map. The uncertainty map is formed
using Kriging variance, simulation-based variance and MFA var-
iance (the proposed method). Simulation-based variance is com-
puted using Fast Direct Sampling (Abdollahifard and Faez, 2013a).
Note that usually, the number of local maxima in the uncertainty
map is larger than 1% of the image pixels. In such cases, the
maxima with larger uncertainty are preferred.

In addition to the uncertainty map, the field values can also be
estimated using methods like Kriging. However, to allow fair
comparison of sampling methods the reconstruction is carried out
using the MFA model for all sampling strategies.

Images of Fig. 8(a) and (b), which are used respectively as
training image TI and real field Z, have been considered as sim-
plifications of a channelized depositional systems (Strebelle,
2002). Fig. 8(c), (d), (e) and (f) show respectively the reconstruc-
tion results using 3% of samples extracted at random, based on
Kriging variance, based on simulation variance and based on MFA
variance (proposed method). It is clear that simulation-based and
MFA-based samplings outperform random and Kriging-based
samplings. Considering that simulation-based sampling requires
100 realizations at each step while the suggested method com-
putes the uncertainty map directly, one can confirm the compu-
tational efficiency of our algorithm. Note that for real fields with
very large sizes, the computational efficiency is a major concern.

The suggested samples at third sampling step using different
sampling strategies are also depicted in Fig. 8(g), (h) and (i).
Suggested samples in the simulation-based and MFA-based
methods are mainly concentrated around image edges, whereas
no specific structure can be detected in Kriging-based samples. As
illustrated in Fig. 3 sharp changes of the field values at image
edges cause uncertainties regarding exact location of the edge and
necessitate further sampling. The suggested method extracts
samples around borders and prevents redundant samples in tex-
tureless areas, therefore reducing the sampling cost.

The reconstruction accuracy for different sampling strategies is
compared in Fig. 9 for sampling rates of 1–30%. Reconstruction
error is computed using a normalized Manhattan distance. Note
that Kriging-based sampling results in a very limited improvement
in comparison to random sampling. Although Kriging-based
sampling is recently employed for sampling design of smooth
fields (e.g. electromagnetic field exposure) with moderate success
(Aerts et al., 2013a,b), our experiments reveal that it does not
provide good performance for highly structured and complex
fields (e.g. geological fields).

Consider the horizontal line depicted in Fig. 9 which indicates a
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certain reconstruction error. This level of accuracy is achieved
using 5% samples in our method while the same accuracy is
achieved using 14% samples in random sampling. In other words,
our algorithm achieves the same accuracy using approximately 1/3
of samples. The results suggest that turning from two-point sta-
tistics to multiple-point statistics not only leads to improvements



Fig. 13. (a) A satellite image of the Lena Delta in Russia (763�817), (b)–(e) Four TIs of size 150� 150 describing the behavior of the delta in different regions.
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in simulation methods (as widely studied by different researchers
Strebelle, 2002; Arpat and Caers, 2007; Abdollahifard and Faez,
2013a,b), but also it can be efficiently employed in data acquisition
design.

All experiments are carried out on a laptop computer with a
2.6 GHz processor. In these tests the required time for training the
MFA model is 1323 s. Furthermore, the time required to produce an
uncertainty map based on the MFA model is 127 s. Then, the total
time required for 30 sampling stages is 5133 s (¼1.43 h). On the
other hand, the time required for producing one realization using
FDS (Fast Direct Sampling) is 113 s. In 30 stages we have produced
3000 realizations requiring 339,000 s (¼3.9 days). Therefore, the
proposed algorithm is 66 times faster than the brute force sampling.
Moreover, we believe that the MFA code used in this study has the
potential to be optimized for faster implementation.

A similar experiment is carried out based on the continuous
250�250 TI of Fig. 10(a). Again, the first image on the top-left is
considered as TI, and the second one is considered as real field Z.
Training patterns of size 13�13 are extracted from the TI and used
to train the MFA model. As depicted in Fig. 10(c), (d), (e), and (f),
the reconstruction accuracy of the proposed method is again su-
perior to random sampling and Kriging-based samplings and
comparable to simulation-based sampling. Unlike the previous
example, here the variable is continuous and therefore has also
textures far from objects borders. Therefore, the variations in the
uncertainty image are not as sharp as previous experiment. Thus,
more attention is needed to detect the structure of samples in
simulation-based and MFA-based methods. Furthermore, the slope
of reconstruction error plot, depicted in Fig. 11, is smaller in this
example for low sampling rates, although the proposed sampling
still performs far better than random and Kriging-based sam-
plings. In this set of tests, the MFA method takes 1241 s for training
and 3780 s for producing 30 uncertainty maps. The brute force
method takes total of 335,100 s which is 66.7 times slower than
the proposed method.

The above results assume that the chosen training image is
representative of the real underlying field. Here we examine the
robustness of our method in a case that the TI is not optimally
chosen. The goal is to reconstruct the binary image of Fig. 12
(b) which is based on a satellite image of the Ganges delta (Ban-
gladesh), with soil properties classified as channel (white) and
alluvial bars (black). Two different TIs are used to train the MFA
model. The first model is trained using the TI depicted in Fig. 12
(a) which is a suitable representative of the real field. Based on this
model, Fig. 12c and d are reconstructed using 5% random and MFA-
based samples, respectively.

The same exercise is carried out using Fig. 8(a) as TI, which is
clearly suboptimal in this case. Using the model trained by this
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inappropriate TI, Fig. 12(e) and (f) are obtained using 5% random
and MFA-based samples respectively. In all cases MFA-based
samples outperform random samples. Furthermore, Fig. 12(f) is
sharper than Fig. 12(c), especially near the borders, indicating that
our method is robust even when the TI chosen is not completely
adequate. In the body of broad channels of Fig. 12(e) and (f) a
light checkerboards effect can be detected. The reason is the
TI used to train the second model (Fig. 8(a)) does not contain
such broad channels. Fig. 12(g) presents an overall comparison
of aforementioned sampling and modeling strategies for
different sampling rates. At low sampling rates, which are of high
practical importance, MFA-based sampling based on the in-
appropriate model outperforms random sampling with appro-
priate model.

As assumed in the above experiments, in most MPS applica-
tions researchers use a single TI to describe a field (Strebelle, 2002;
Arpat and Caers, 2007; Abdollahifard and Faez, 2013a,b). The TI
can be selected large enough to cover different field variations.
However, the proposed method is not limited to use just a single TI
and the patterns from multiple TIs could easily be included in the
training data-base. Especially when working with very large un-
stationary fields, the model can be trained with multiple sta-
tionary images describing the behavior of different regions.

As an example, consider the Lena image (a satellite image of the
Lena Delta in Russia), depicted in Fig. 13(a). The image is very
structured containing some connected channels with different
orientations, disconnected lakes and meandering patterns. Four
training images depicted in Fig. 13 (b)–(e) are employed to model
different variations of this field. A data-base composed of 13�13
patterns of these TIs is used to train the MFA model. Then, the
model is used for reconstruction and supervised sampling of the
real field of Fig. 13(a). Since our goal is to reconstruct the delta
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patterns, samples are only extracted from the delta by masking
other parts (see Fig. 14(a)).

Fig. 14 (b) and (c) show the reconstructed images using 7%
random and MFA-based samples respectively. Due to the complex
nature of the field, none of the reconstructed images represent the
details of the real field appropriately. However, the coarse struc-
tures are better reconstructed using supervised samples.

The reconstruction error is compared in Fig. 14(d) for random
and MFA-based sampling methods. In comparison with previous
experiments, the reconstruction error curve decreases slowly by
increasing the number of samples in this test. This could be jus-
tified by considering the presence of narrow, meandering and di-
verse patterns which make it difficult to predict the field values in
a neighborhood by observing a few samples. As a result, observing
a sample affects on uncertainty estimates in a very limited
neighborhood and a large number of samples are required to
achieve acceptable reconstruction accuracy. Nevertheless, the
performance of our sampling method is still considerably superior
to random sampling.
7. Conclusion

A sequential compressive sampling method is presented in this
paper based on a MFA model. MFA models are capable of capturing
nonlinear manifolds using a mixture of low-dimensional linear
models. Using the trained model, the missing values are estimated
along with their uncertainties, and then the sampling method
extracts new samples from local maxima of the resulting
uncertainty.

Using the patterns obtained from a training image, the behavior
of the field is modeled. Then, based on the previously drawn
samples and the modeled behavior, sampling locations are sug-
gested. Compared to random and Kriging-based sampling ap-
proaches, this method extracts more informative samples and
prevents redundant sampling. Samples are usually concentrated
around objects borders where, intuitively, much uncertainty arises
from the exact location of the borders. On the other hand, tex-
tureless areas are usually reconstructed accurately using a lesser
amount of samples. The variable density of sampling leads to a
high reconstruction accuracy with a given number of samples.
Experiments reveal that the proposed method significantly re-
duces the number of samples necessary to achieve a given re-
construction accuracy.

Our method can be used to design data acquisition campaigns
in geosciences, where measurements are expensive and often ta-
ken sequentially. The proposed sampling strategy allows obtaining
a similar characterization than random sampling with only 30% to
50% of the data, which can lead to a significant reduction in data
acquisition costs. In all examples shown the model is solely based
on the training image. Future work will be devoted to refining the
model at each sampling iteration using the newly acquired sam-
ples. Such model updates should bring significant improvement
especially when the training image is not well representative of
the behavior of the modeled domain.
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