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Geological structures are recognisable as discontinuities within magnetic geophysical surveys, typically
as linear features. However, their interpretation is a challenging task in a dataset with abundant complex
geophysical signatures representing subsurface geology, leading to significant variations in interpretation
outcomes amongst, and within, individual interpreters. Previously, numerous computational methods
were developed to enhance and delineate lineaments as indicators for geological structures. While these
methods provide rapid and objective analysis, selection and geological classification of the detected
lineaments for structure mapping is in the hands of interpreters through a time consuming process. This
paper presents new ways of assisting magnetic data interpretation, with a specific aim to improve the
confidence of structural interpretation through feature evidence provided by automated lineament de-
tection. The proposed methods produce quantitative measures of feature evidence on interpreted
structures and interactive visualisation to quickly assess and modify structural mapping. Automated
lineament detection algorithms find the feature strengths of ridges, valleys and edges within data by
analysing their local frequencies. Ridges and valleys are positive and negative line-like features detected
by the phase symmetry algorithm which finds locations where local frequency components are at their
extremum, the most symmetric point in their cycle. Edge features are detected by the phase congruency
algorithm which finds locations where local frequency components are in phase. Their outputs are used
as feature evidence through interactive visualisation to drive data evidenced interpretation.

Our experiment uses magnetic data and structural interpretation from the west Kimberley region in
northern Western Australia to demonstrate the use of automated analysis outputs to provide: quanti-
tative measures of data evidence on interpreted structures, and graphical evaluation of interpretation
quality.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Geological interpretation of potential field data is a routine
practice for structural analysis and is important for a wide range of
industries including mineral exploration, CO2 sequestration,
groundwater, and geothermal energy industries. However, simi-
larly to the interpretation uncertainty of seismic data (Bond et al.
2007), interpretation outcomes of potential field data are found to
be highly variable amongst interpreters and lack consistency even
within an individual (Sivarajah et al. 2013, 2014). To address this,
there has been much effort in recent years to develop automated
data analysis tools to facilitate fast and objective analysis of data.
These tools are able to delineate specific feature characteristics
. Holden).
within data using computational algorithms which perform
mathematical filtering and/or pattern matching. For structural
interpretation of magnetic data, various lineament detection
techniques have been proposed (Blakely and Simpson, 1986;
Hornby et al., 1999; Fedi, 2002; Cooper and Cowan, 2006; Cella
et al., 2009; Holden et al. 2008, 2012).

The challenge however is in how to utilise and integrate au-
tomated analysis into the interpreters’ workflow to improve the
efficiency and robustness of interpretation outcomes. Automated
analysis is based on data characteristics which may be associated
with a variety of geological features and often result in a large
number of false positives. Crucially, a purely computational ap-
proach does not consider geological feasibility and thus, does not
guarantee a realistic interpretation. In the case of lineament de-
tection, the detected lineaments may be associated with differing
geological features such as faults, dykes, joints, igneous contacts,
and unconformities. So while automated analysis is useful at least
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Fig. 1. (a) RTP (histogram equalised) and (b) PPDRC- filtered (with RTP as input) with a cut-off at 23 km or 271 cells (linear normalisation). The PPDRC filter enhances
features in low-contrast areas.
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as a first-pass analysis by providing features for further con-
sideration, deciding on their selection and geological classification
remains in the hands of an interpreter.

This study explores new data analytics methods which in-
tegrate automated lineament detection and interactive visualisa-
tion methods into interpreters’ workflows to improve the con-
fidence in structural analysis of potential field data. Automated
lineament detection techniques, previously developed for poten-
tial field data analysis (Holden et al., 2010) are used in two specific
ways to assist interpretation. In the first, they are used to generate
a quantitative measure of confidence on interpreted lines based on
automated data analysis results which will be referred to as fea-
ture evidence throughout this paper. Secondly, the confidence of
mapped structures is assessed visually using an interactive vi-
sualisation interface which displays feature evidence over inter-
preted structures by manipulating colour display. This can also
provide interpretation guidance as the interpreter traces a struc-
ture based on visual ridge/valley/edge characteristics in the geo-
physical data. Automated analysis highlights the same character-
istics in the local neighbourhood to facilitate data supported
interpretation.

Using potential field data and part of a larger subsequent
structural interpretation from the west Kimberley region in
northern Western Australia (Lindsay et al., 2015a), we demonstrate
different ways to use automated analysis outputs to quantitatively
or visually examine the quality of structural interpretation. Note
that the data analytics methods presented in this paper are ap-
plicable to interpretation workflows for a wide range of geoscience
images, such as satellite images and airborne photographic images,
where linear features are sought for interpretation.
2. Interpreting geological structure from geophysical data

Structural geophysical interpretation was performed by Lindsay
et al. (2015a) in order to better understand the crustal architecture
and tectonic evolution of the region. Large-scale structures
considered important for mineralisation and the extent of key rock
units were defined as part of the interpretation. The interpretation
was then used as input for mineral systems analysis aimed at
determining prospectivity for a range of commodities (Au, Ni, and
base metals) (Lindsay et al., 2015b). As such the interpretation was
performed approximately between 1:250 000 and 1:500 000 map
scale, which is appropriate to the resolution of the magnetic data.

The interpretation used in this case study was performed on
magnetic data. A regional total magnetic intensity (TMI) grid was
created by stitching together a series of regional surveys by the
Geological Survey of Western Australia (GSWA) and other available
open file surveys. Surveys were mostly flown with a line-spacing
of 400 m, though some had a line-spacing of 200 m. Each survey
was gridded to a 100 m cell size using the minimum curvature
method prior to stitching. Some image processing techniques and
filters were then applied to the stitched TMI grid. The reduction to
the pole (RTP) filter is first applied to ensure that asymmetry in
data are representative of source geometry or magnetic properties.
Then a technique called phase-preserving dynamic range com-
pression (PPDRC) (Kovesi, 2012; Holden et al., 2010) is applied to
enhance structures. PPDRC combines high pass filtering and tone
mapping techniques to enhance contrast in high dynamic range
data such as magnetics. This technique is based on the principle
that preservation of the phase component of signal in the fre-
quency domain is critical for preserving feature characteristics in
the image. PPDRC analyses local frequencies in the magnetic data
in which high pass filtering can be applied by attenuating fre-
quencies associated with wavelengths larger than a specific wa-
velength cut-off; then while preserving phase, it applies a range
reduction function to the amplitude in the frequency domain.
Then the phase and re-mapped amplitude are combined to re-
construct the enhanced grid data.

The outputs from the RTP and PPDRC (run on the RTP output)
filters are shown in Fig. 1. For PPDRC, we used a large wavelength
cut off at 23 km (271 cells) for high pass filtering to ensure that
most features are preserved while their contrast is enhanced.
Phase based feature detection techniques, which will be described
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in Section 3, are a form of high pass filtering, but PPDRC is used to
enhance feature contrast for interpretation, similarly to the use of
histogram equalisation. Note that while our study used these
specific pre-processing filters, the workflow to validate and en-
hance the robustness of interpretation presented in this paper is
not limited to these, and is applicable to other filter responses such
as upward continuation to map structures at a specific depth, or
high pass filters such as vertical derivatives and automated gain
control.

The interpretation used several sources of geological informa-
tion to augment the geophysical data. The primary constraints
were the GSWA 1:250 000 map sheets YAMPI (SE 51-3) and
CHARNLEY (SE 51-4). Outcrop information was obtained from
GSWA's WAROX database of structural measurements and field
observations in order to provide structural constraint on the or-
ientation and type of foliations, and the trend and plunge of fold
axes.

Two distinct parts of the case study area can be discerned from
the geology and geophysics. Tyler and Griffin, 1990 identify the
southern part of the area as the Palaeoproterozoic King Leopold
Orogen comprising mostly granitoid rocks cross-cut by a series of
mafic dykes. Some metaturbitic rocks are intruded by mafic in-
trusive rocks. The granitoids display a relatively low amplitude,
smooth geophysical response, whereas the mafic dykes can be
interpreted from long and linear features of relatively high am-
plitude. Some of these features are quite subtle, and interpretation
benefited from the use of PPDRC.

The northern part of the area contains the Kimberley and
Speewah basins, which are a series of sedimentary and mafic
volcanic and mafic intrusive units that are moderately deformed
into open, regional-scale folds (Tyler and Griffin, 1990). The sedi-
mentary layers are characterised by a low amplitude magnetic
response, whereas the mafic volcanic and intrusive units (the
Carson Volcanics and Hart Dolerite respectively) have a distinctive
high amplitude, high frequency response. Faults and folds have
been interpreted from the area. The boundary between the Kim-
berley and Speewah basins and the King Leopold Orogen is
marked by a geologically complex region of Kimberley and Spee-
wah basin units thrust up against the King Leopold Orogen (Tyler
and Griffin, 1990).

This interpretation by Lindsay et al. (2015a) uses potential field
data as the primary dataset, and other datasets for support. Pre-
viously, the Geological Survey of Western Australia (GSWA)
Fig. 2. Structure interpretation by Lindsay et al. (2015a) shown in (a) over RTP-PPDRC filt
produced the 1:500 000 scale structural dataset (Martin et al.,
2014) which was primarily compiled from multiple editions of
1:100 000 and 1:250 000 GSWA Geological series maps, and
GSWA and Geoscience Australia (formerly AGSO, formerly BMR)
1:250 000 and 1:1 000 000 regional geological maps. Some
modifications have been made where additional datasets (for ex-
ample, magnetics, radiometrics, gravity, remote sensing, drilling
and recent field mapping) were available. Note that the Lindsay
et al. (2015a) interpretation approach focussed on identifying
deeper crustal features as well as those at or close to the surface.
The scale of the two datasets is not exactly equal, as the Lindsay
et al. (2015) interpretation was performed between 1: 250 000
and 1:500 000 scale and shows more detail in some areas. Fig. 2
shows the structure map of Lindsay et al. (2015a) and the GSWA
structure map in (a) and (b) respectively.
3. Automated lineament detection

There are three types of features in magnetic data which are
useful for structural analysis, namely: ridges and valleys for posi-
tive and negative anomalies respectively which are particularly
useful in tracing dykes and structures; and edges (displaying an
asymmetric signal) for anomaly boundaries which are useful in
identifying geological contacts and faults. All of these features are
associated with the term lineaments or anomalies within mag-
netic data, but their use may vary depending on the task. For ex-
ample, ridges may indicate the presence of a magnetically sus-
ceptible mafic dyke, valleys could indicate a fault and edges may
indicate the boundary between rock types with contrasting pet-
rophysical values.

This study detects lineaments using two generic image feature
detection techniques: phase symmetry (Kovesi, 1997) and phase
congruency (Kovesi, 1999). These techniques were previously ap-
plied to magnetic data (Holden et al., 2008, 2010, 2012; Aitken
et al., 2013) and other geoscience datasets (Vasuki et al., 2014).

For structural interpretation of geophysics data, the features of
interest are step-like features which are referred as edges in this
manuscript, or line-like features where lines brighter/darker than
its surrounding are referred as ridges/valleys. These features are
closely associated with the properties of the local frequency
components of the signal. Where a Fourier transform is commonly
used to examine periodicity over an entire signal by decomposing
ered output; and GSWA structure map is shown (b) over RTP-PPDRC filtered output.



Fig. 3. The top row shows two example profiles of grid data: (a) a step edge and (b) valley-ridge-valley features. These waveforms can be decomposed into their Fourier
series and the first few terms of the respective Fourier series are plotted as dotted lines, and their sum as the solid line (adapted from Kovesi, 1999).

Fig. 4. The even and odd symmetric filter responses from different scales are
plotted as solid vectors head to tail, and their sum given by the dashed vector E(x).
The magnitude of E(x) is the local energy; the phase congruency response is the
ratio of this length to the total path length taken by all of the solid vectors re-
presenting the filter responses for each scale.
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the signal into a set of sinusoids with various phases, wavelengths
and magnitudes, the local frequency components capture the
properties of a signal at a given grid point. Fig. 3(a) shows a step
feature where a profile line from the grid goes from low to high (or
dark to bright as shown in the bar); the frequency components
extracted from this profile line at various scales are shown as
dotted lines in the plot. We can see that at the point where the
signal changes from low to high, all of the frequency components
are in phase, i.e. they are all at the same point in the sinusoidal
cycle. This demonstrates that edge features are characterised in
the frequency domain by the local frequency components being
in-phase (i.e. congruent). Fig. 3(b) illustrates another example
containing ridge (bright) and valley (dark) features in the profile
line. The figure shows symmetric features, i.e. the ridges and val-
leys are axes of symmetry where all of the local frequency com-
ponents are at their extreme points.

Here we briefly provide an overview of the implementation of
the phase symmetry and phase congruency algorithms; further
technical detail is provided by Kovesi (1997), (1999). The phase
symmetry and phase congruency algorithms are based on ana-
lysing the phase component of local frequency of the signal
computed at every grid location. The local frequency is calculated
using a wavelet transform technique, where banks of filters are
constructed at a number of scales. In the implementation, the
wavelength of each successive scale is double the previous scale.
At each scale, filters are constructed in quadrature-pairs, i.e. an
even-symmetric (cosine) wavelet and an odd-symmetric (sine)
wavelet, each modulated by a Gaussian. By convolving the data
with a quadrature pair of filters at a specific location, we obtain the
responses for the even and odd symmetric filters at a particular
scale, which can be combined by considering these as a 2D-vector
with the magnitude representing the response amplitude at that
scale and the vector orientation representing the phase of the local
frequency. Thus, this approach adapts and extends the approach
proposed by Morlet et al. (1982). In practice, the convolution is
performed efficiently in the frequency domain via the Fourier
transform, where the resulting complex values simultaneously
encode the even and odd symmetric responses in the real and
imaginary components respectively. Here we use them for phase
analysis.

The phase symmetry algorithm (Kovesi, 1997) finds ridge and
valley features by identifying the locations where all of the fre-
quency components are most symmetric in their cycle. Symmetry
occurs when the magnitudes of the even symmetry filter re-
sponses are large and the magnitudes of the odd symmetry filter
responses are small for all scales within the band of frequencies.
Given ( )e xn and ( )o xn which are the even and odd filter re-
sponses respectively at scale n at a grid location x, symmetry is
quantified by subtracting the magnitude of the odd symmetry
filter output, ( )o xn , from the magnitude of the even symmetry
filter output, ( )e xn , with the differences summed over all scales; a
noise threshold T is then subtracted and any resulting negative
values (corresponding either to noise or asymmetric responses
such as edges) are set to 0. The resulting value is normalised by the
sum of the magnitudes of these response vectors where magni-
tude of a vector at scale n, at a grid location x is defined by

( )= ( ) + ( )A x e x o xn n n
2 2 , resulting in the symmetry outputs being a

contrast invariant quantity ranging from 0 (no symmetry) to 1
(maximum symmetry). Thus phase symmetry is defined as:

ϵ
( ) =

Σ ( ) − ( ) −
Σ ( ) + ( )

⎢⎣⎡⎣ ⎤⎦ ⎥⎦
x

e x o x T

A x
Sym

1
n n n

n n

where the ⌊⌋ operator sets the enclosed value to 0 if it is negative
otherwise it preserves the enclosed value, and ϵ is a small constant
to prevent division by zero. Additionally, the sign of the even filter
symmetry responses can be used to classify a symmetry feature as
a ridge (for positive values) or valley (negative values).

In magnetic data, the magnitude of a feature relative to the



Fig. 5. A demonstration of phase congruency and phase symmetry by visualising the filter responses at for profile lines taken at different orientations (top). The dotted
arrows on the graphs indicate the filter responses at each scale for a given orientation; responses are ordered from longest wavelengths (innermost components) to the
shortest wavelengths (outermost components); the phase congruency measure shown is the ratio of the magnitude of the solid vector (i.e. the sum of the filter responses) to
the length of the paths taken by the individual filter responses. The rightmost point of the profiles in the graphs correspond to the labelled ends of the corresponding profile
lines overlaid on the grid. Combining the responses over all orientations, the overall phase symmetry response is 0.5988 and the phase congruency value is 0.4049. (The
reader is referred to the web version of this article for coloured figures.)
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signal strength may be very small, thus the contrast invariant
feature strength provided by phase symmetry is advantageous
compared to other widely used linear feature detection algorithms
which are based on feature contrast strength, such as the Hough
transform (Gonzalez and Woods, 2002).

The above explanation considers only profile lines in 1D. To
apply phase symmetry to a 2D grid, we create a bank of log-Gabor
filters at six orientations. Then the phase symmetry is computed
similarly using the outputs of all filters at all orientations θ, i.e.:

ϵ
( ) =

Σ Σ ( ) − ( ) −

Σ Σ ( ) + ( )
θ θ θ

θ θ

⎢⎣⎡⎣ ⎤⎦ ⎥⎦
x

e x o x T

A x
Sym

2

n n n

n n

, ,

,

Later, in Fig. 5, we demonstrate that ridge and valley features
often exhibit symmetry in many orientations, not just perpendi-
cular to the orientation of the feature.

The phase congruency algorithm (Kovesi, 1999) finds edge fea-
tures by identifying the locations where the frequency compo-
nents are in phase at all scales, i.e. the quadrature pairs of filters
for each band of frequencies have the same or similar phase an-
gles, and filter responses of similar magnitude for all scales. This is
evident when visualised by plotting the even and odd symmetric
filter outputs as components of a vector on orthogonal axes as
shown in Fig. 4, in which case the phase is given as the vector
orientation – the solid vectors show the filter outputs for each
scale. Firstly, the local energy of the signal is defined as the
magnitude of the sum of the filter responses at each scale, i.e. the
magnitude of the dashed vector E(x). Then, phase congruency is
calculated from the local energy, divided by the sum of the mag-
nitudes of the filter responses at each scale, that is ( )A xn as pre-
viously described for phase symmetry and where each filter re-
sponse is weighted to ensure that congruency is evenly distributed
over the range of scales. Again, this quantity ranges from 0 (no
congruency, i.e. the filter response vectors at each scale cancel out
perfectly) to 1 (perfect phase congruency, i.e. the filter responses
have identical phases at all scales and identical energy magnitude
at each scale), which would be represented as vectors of identical
magnitude and orientation in Fig. 3. Mathematically (Morrone and
Burr, 1988; Morrone and Owens, 1987):

|( )= ( ) |
Σ ( ) ( )

PC x
E x
A x

.
3n n

Noise within data will result in the filter responses being small
in value and having random phase values. We handle noise by
identifying locations where E(x) lies within some radius from the
origin, shown by the dashed circle in Fig. 4, and setting the phase
congruency values to 0 at these locations.

In extending phase congruency to 2D, an extra step is required
to handle variations in phase with orientation, not required when
extending phase symmetry to 2D. This is because the phase in-
formation at a point will vary with the orientation of the profile
line (e.g. profile lines across a step change may go from low to high
values, or high to low values depending on the orientation of the
profile line). An approach based on classical moment analysis
equations is used where phase congruency is firstly computed
independently for each orientation. Then, at each location the
maximum and minimum moments are computed integrating the
phase congruency values from all orientations at that location,
again the moments range from 0 to 1. In addition, a weighting
factor is also included to ensure that responses of similar magni-
tude are observed at each scale, which incorporates a measure of
contrast invariance.

3.1. Phase responses in magnetic data

In practice we use the locations with high phase symmetry for
locating ridges and valleys, and the locations of high phase con-
gruency for detecting edges. An example is presented in Fig. 5,
where profile lines are taken at six orientations across a valley. For
each profile line, the corresponding odd and even filter responses
for 6 scales, starting with a minimum wavelength of 3 cells, are
shown and plotted. In this example, the phase congruency (i.e.
ratio of the length of the solid vector to the lengths of the dotted
component vectors) is high for all orientations. All profile lines
cross this valley with the exception of profile line 2 which runs
along it, and they produce a symmetric profile regardless of the
orientation. Therefore it is sensible to compute phase symmetry
using filter responses for multiple orientations as in Eq. (2) above.

In the example in Fig. 5, as it is a point of symmetry we expect
that the even filter responses will have large negative values, with
negligible odd filter responses. This is largely reflected in the filter
responses shown in Fig. 5, where this is strongly demonstrated for
profile lines 3 and 5. Of course, as geophysical features do not
occur in isolation, the phase symmetry algorithm will not always
give such perfect responses, e.g. as shown in profile line 1, the odd
filter responses are non-negligible so the phase symmetry value
decreases. Note however, that when considering the responses at
all orientations, the overall result is that this is a point of
symmetry.

Also note the phase congruency values for this same location.
Although we have described phase congruency as being most
useful for detecting edges, this example demonstrates that it also
produces strong responses for ridge and valley features, as illu-
strated by the similar orientations of the vectors for each scale on
the 2D plots.
4. Quantifying and visualising feature evidence of
interpretation

The phase based methods described in this paper are applicable
to any grid data, in its original or filtered output, on which the
interpretation is drawn. In this study, we applied these phase
based feature delineation techniques to a magnetic grid which is
processed using the reduction to the pole (RTP) filter and dynamic
range compression (PPDRC) (Kovesi, 2012; Holden et al., 2010)
filters.

Structural interpreters may utilise feature evidence based on
feature strength provided by phase symmetry and phase con-
gruency in two different ways. One is to generate a quantitative
measure of feature evidence on the structures which are being
mapped; and the other is to use their feature strength to guide the
mapping of structures through interactive visualisation. For this
experiment, we used the structure map of Lindsay et al. (2015a)
and the GSWA structure map, which were previously discussed in
Section 2.

4.1. Quantitative measure of feature evidence

Feature evidence is based on the ridge, valley and edge
strengths of the RTP-PPDRC processed grid previously shown in
Fig. 1(b). Fig. 6 shows the ridge and valley strengths of the grid
calculated from the phase symmetry algorithms in (a) and
(b) respectively, and edge strength from phase congruency in (c).

Structural interpretations by Lindsay et al. (2015a) and GSWA
(Martin et al., 2014) which were shown previously in Fig. 2 are
used to assess their feature evidence. Feature evidence is quanti-
fied by aggregating the feature strength (i.e. phase symmetry or
phase congruency output) along a mapped structure, which is
then normalised by the length. Although the feature evidence
outputs range between 0 and 1, it is unreasonable to expect
structures with strong data evidence to produce symmetry or



Fig. 6. (a) Ridge strength from phase symmetry; (b) valley strength from phase symmetry; and (c) edge strength from phase congruency, using the RTC-PPDRC filtered grid
in Fig. 1(b). Phase symmetry was calculated using a minimumwavelength of 3 cells, with 3 scales and a multiplier of 2.1. Phase congruency was calculated using a minimum
wavelength of 3 cells, 6 scales, with a multiplier of 2.1. Both phase algorithms produce a value between 0 and 1, and an isoluminant rainbow colour map of blue to pink is
used for display. (The reader is referred to the web version of this article for coloured figures.)
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congruency responses above about 0.3. This is because realistic
data with noise will never exhibit large areas containing the kind
of theoretically-perfect symmetry or congruency required to pro-
duce high-end filter responses. Hence, we report the cube root of
the filter output when displaying numerical feature evidence va-
lues. As each filter produces values between 0 and 1, an applica-
tion of the cube-root function provides a transparent kind of “data
stretch” to boost filter responses. This transform also helps to
offset human bias – increasing seemingly-low evidence values like
0.3 to values more representative of their importance.

An experiment was conducted by comparing feature evidence
measures on different types of structures, namely dyke, fault, fault
axis, form and shear zones from the interpretations GSWA and
Lindsay et al. (2015a). Their feature evidence values are calculated
from three feature types, ridge, valley and edge, using RTP and
RTP-PPDRC filtered grid using the wavelength cut-off value of 271
cells (23 km). Note that the aim is not to show that one dataset is
more accurate, better or more useful than the other, rather that
different approaches in producing geological datasets and scale of
study can be measured with the feature evidence analysis de-
scribed here.

The results in Table 1 show the mean feature evidence mea-
sures for different structure types, feature types and input datasets
for feature detection. It is important to note that edge evidence
values are not to be directly compared with ridge/valley evidence
values as phase congruency and phase symmetry estimate differ-
ent quantities.

In ridge/valley evidence, it is also notable that faults are better
evidenced by valley strength, than ridge strength. This reflects the
fact that faults typically appear as negative linear anomalies in
aeromagnetic surveys due to magnetite destruction in the faulting
process. In contrast, dyke and form features are better evidenced
Table 1
Comparison of feature evidence values across ridge, valley, and edge evidence mean val
PPDRC is applied with a cut-off at 271 cells (23 km). Note these values are the cube roo

Structure Interpretation Group-count Ridge evidence mean

RTP RTP-PPD

Dyke Lindsay et al. 234 0.402 0.431
Fault GSWA 312 0.295 0.300
Fault Lindsay et al. 190 0.309 0.313
Fold_axis Lindsay et al. 42 0.332 0.344
Form Lindsay et al. 245 0.330 0.361
by ridge strength than valley strength, which shows that they are
more likely to appear in positive linear features than faults, which
is generally the case.

In addition, for the same feature type (ridge, valley and edge),
evidence on each structure type only vary slightly for different
input datasets. These input datasets included RTP and RTP-PPDRC
(with wavelength cut-off at 23 kms). The result shows that while
ridge and valley evidence did not have noticeable change with
PPDRC enhancement, edge evidence had some improvement,
mostly greater than 5% and less than 10%. This may be associated
with some level of noise removal applied by PPDRC, contributing
to a more robust edge detection result by the phase congruency
algorithm.

4.2. Interactive visualisation of feature evidence

An efficient way to improve interpretation confidence is to
check feature evidence on interpretation through interactive vi-
sualisation. However, it is not a trivial task to present this feature
evidence effectively, whilst ensuring minimal interruption to the
interpreters’ viewing of the magnetic data (TMI or other filtered
data) on which the interpretation is being performed. Current GIS
tools commonly used allow multiple data to be displayed through
either transparencies or switching on and off the overlaying data.
Recently, an interactive multi-data display method called image
blending has been proposed for geoscientific data (Kovesi et al.,
2014). This study extends this concept to allow interactive visua-
lisation of feature evidence on interpreted structures. The chal-
lenge in this integrated display is to ensure that the data being
interpreted and the feature evidence layer are easily distinguish-
able, comparable and contrastable. Two types of visualisation
methods are suggested: the field of view (FoV) based visualisation;
ues from feature evidence analysis on the RTP filter output; and RTP-PPDRC where
ts of the calculated evidence values.

Valley evidence mean Edge evidence mean

RC RTP RTP-PPDRC RTP RTP-PPDRC

0.312 0.332 0.465 0.505
0.304 0.304 0.408 0.438
0.364 0.376 0.443 0.471
0.315 0.323 0.415 0.451
0.280 0.296 0.415 0.449
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and the vector based visualisation. Both of these visualisation
techniques use a common data overlaying method which controls
the chromaticity and luminance of colour to display the feature
evidence and geophysics data which is being interpreted.

4.2.1. Data overlaying method
Our data overlay method uses hue to represent the feature

evidence layer, and intensity to represent the underlying magnetic
data from which the feature was extracted. This method differs
from a simple linear interpolation which conflates features from
two datasets, due to our relatively independent perception of hue
and brightness: features in geophysical data appear as patterns in
brightness, while features in feature evidence data appear as
patterns in hue. Features of each type are maximally distinguish-
able when colourisation does not affect the perceived brightness
of any point, i.e. when the selected confidence colourmap consists
only of isoluminant colours. The presence of varying-luminance
colours in the colourmap creates false anomalies when visualising
confidence, with regions of darker confidence colour spuriously
appearing to have low geophysical response. As such, our visua-
lisation methods only use isoluminant colour maps to represent
feature confidence.

Further, our interactive visualisation allows interactive control
of the level of opacity in rendering of the feature evidence layer
from completely hiding the underlying data to showing just the
underlying data being displayed without the feature evidence
layer (Fig. 7). This interactivity extends the current functionality on
switching on and off layers in a GIS environment.

The data overlay method output is determined by a colourised
feature evidence overlay modulated at each point by the strength
of the underlying geophysical data. Ideally, each point's luminance
should be determined solely by the geophysical value recorded at
the point, and each point's chrominance should be determined
solely by the feature evidence value calculated for the point. That
is, bright points should identify strong responses in the underlying
geophysical data, and points of “hot” hue (if using a heat colour-
map) should identify strong feature evidence. In practice, this ef-
fect can be achieved by (pointwise) multiplying a greyscale ren-
dering of the geophysical data with the colourised feature data
evidence information.

More specifically, suppose that → [ ]V:A 0, 1 is a map from some
point set A to geophysical data values, and that → [ ]C:B 0, 1 is a
similarly defined map of feature evidence levels. Furthermore, let

[ ]→[ ]P: 0, 1 0, 1 3 be a map from possible feature evidence levels to
their corresponding colours (with colours here represented as
vectors of real numbers between 0 and 1 inclusive). We define the
map → [ ]M A: 0, 1 3 taking each point of V to its modulated colour
Fig. 7. (a) RTP data; (b) ridge strength; (c) a combined display of ridge strength (represe
(d) a combined display of ridge strength (represented in colour) and RTP data (represent
of this article for coloured figures.)
as follows:

( ) =
( )( ) ∉
( ) ( ( )) ∈ ( )

⎧⎨⎩M p
V p p B

V p P C p p B

1, 1, 1 if

if 4

That is, points are colourised according to the colour of their
associated confidence level (if such a value exists), and darkened
according to the level of their associated geophysical reading.

This data display method is suboptimal, however, when im-
portant features are located in low-intensity regions of a geo-
physical data set. This can occur, for instance, when a user is
looking to identify features that lie in “valleys” of geophysical re-
sponse. As it is difficult to perceive the hue of low-luminance
colours, the user will receive little or no information from the
confidence overlay. To account for this situation, we allow the user
to quickly invert the luminance of the geophysical data set (that is,
set high-response regions to dark shades, and low-response re-
gions to light shades). Such an inversion facilitates the clear dis-
play of the confidence overlay in low-response areas. An example
of the inversion of the luminance is shown in Fig. 8.

Interactive user control determines the influence of feature
evidence information on their interpretation in our interface by
“diluting” the overlay with some amount of geophysical data. This
is achieved using the standard weighted sum approach. More
specifically, take V Mand defined as above, and λ ∈ [ ]0, 1 as an
“influence” factor for feature evidence colours (with λ = 0 giving
no confidence influence and λ = 1 giving full influence). We define
a new map ′ × [ ]→[ ]M :A 0, 1 0, 1 3 giving the colour of a point ∈p A
with influence factor λ ∈ [ ]0, 1 , as follows:

λ λ λ′( ) = ( ) + ( − ) ( ) ( ) ( )M p M p V p, 1 1, 1, 1 5

Notice that setting λ = 0 displays only the original data set,
setting λ = 1 displays the modulated confidence overlay as defined
by M , and setting λ to any intermediate value linearly interpolates
between these two extremes.

4.2.2. Field-of-view based visualisation

This visualisation method allows interpreters to view the cir-
cular area within the specified radius which will be referred to as
the field of view (FoV). The centre of FoV is tied to the position of
the mouse cursor, as shown in examples in Fig. 9. The interpreter
can also modify the radius of FoV and the opacity of the feature
evidence layer.

The FoV based visualisation may be useful to guide the map-
ping process of a specific structure, but is also useful in identifying
regions of data with high feature evidence to ensure objective
analysis of data. Previously, Sivarajah et al. (2014) showed that an
nted in colour) and RTP data (represented in intensity) with the opacity level 1; and
ed in intensity) with the opacity level 0.3. (The reader is referred to the web version



Fig. 8. An example of the usefulness of inverting the luminance, highlighing strong feature evidence in low-intensity areas. The valley feature evidence is shown using the
data overlaying method with normal luminance in (a) and with inverted luminance in (b). (The reader is referred to the web version of this article for coloured figures.)
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interpreter’s visual attention in magnetic data is drawn to the
features with high contrast in intensity, colour and orientation to
their surroundings. The use of contrast invariant feature evidence
provided by phase congruency and symmetry to assist inter-
preters' search for geological features will address this challenge
as features in magnetic data may not present in high contrast to
the surroundings.

Interactive user control of the location, radius and opacity of
the FoV allow interpreters to access feature evidence in modifying
interpreted structures or drawing new structures by shifting the
feature evidence information to match the scope and position of
their attention.

4.2.3. Vector based visualisation

This is a visualisation method to display feature evidence over
existing, mapped line features. When in this mode, the vector line
features are rendered as thick lines (rectangular sections) which
act as a window through which the user can view restricted sec-
tions of feature confidence (using the data overlaying method
shown in Fig. 7). Fig. 10 shows the interpreted lines whilst visua-
lised in this mode. This method is intended primarily as a spell-
check for feature lines; a user can enable the vector visualisation
mode after having completed an interpretation, and receive im-
mediate visual feedback (in the form of polygons revealing “hot”
Fig. 9. Two examples of the FoV data overlay visualisation method, with the circular p
feature evidence layer, as well as area radius size. The inset in (a) shows the evidence of in
the web version of this article for coloured figu
or “cold” areas) on feature evidence along the structure lines they
have drawn. Through this feedback, a user can then see where
their lines begin to deviate from the strongest feature evidence,
and the direction in which they may wish to adjust their inter-
pretation. It allows interactive control on the width of the lines to
specify the size of the neighbourhood on which feature evidence is
viewed. When a line is being actively moved (either during the
original placement of a line or in subsequent position adjust-
ments), the vector based confidence visualisation is updated in-
teractively as the line’s position is changed. As with the FoV base
visualisation, both the opacity of the evidence layer as well as the
line widths can be adjusted by the user in real-time.
5. Conclusions

The paper presents an innovative data analytics method to
improve confidence on structural interpretation of magnetic data
by harnessing the power of automated feature detection and in-
teractive visualisation. The interpretation support is built upon
relationships between data evidence and interpreted structures,
providing at its most basic level the geological equivalent of a spell
checker. Automated lineament detection techniques analyse the
evidence of features, specifically ridges, valleys and edges. Their
feature strengths are used to provide evidence on interpreted
osition controlled via the mouse cursor, with additional controls for opacity of the
terpreted structure continuing beyond the annotated line. (The reader is referred to



Fig. 10. Example of the vector-based visualisation which provides an at-a-glance view of the feature evidence supporting interpretation: (a) the edge feature evidence with
non-inverted data luminance; and (b) a closer view of the area indicated by the dashed box in (a). Note that the data luminance can be inverted, as shown in Fig. 8. (The
reader is referred to the web version of this article for coloured figures.)
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structures. Two different methods are proposed: one is quantified
feature evidence measures on interpreted structural interpreta-
tion, and the other is interactive visualisation of feature evidence
over the interpreted map by controlling colour and intensity of the
display to allow visual validation of the interpretation based on
their data evidence.

Using the magnetic data from the Kimberley region of northern
Western Australia and two different structural interpretations, an
experiment was conducted to quantify the feature evidence on
different types of structures. The results show that these measures
align with their appearance characteristics represented by differ-
ent types of features (i.e. ridge, valley and edge), with edge
strength being the most reliable feature evidence measure. We
also showed that enhanced grids using RTP-PPDRC filters provide
slightly higher feature evidence measures than RTP-only filtered
output, warranting the use of a suitable enhancement technique
for feature evidence quantification. In addition, interactive visua-
lisation techniques are developed to quickly and visually assess
interpretation. They are based on a display method which overlays
feature strengths on magnetic data using colour and intensity of
the display. Two types of visualisation techniques are proposed:
one allows the viewing of feature evidence through interactive
control on viewing location and opacity of feature evidence; the
other allows an at-a-glance overview of feature evidence over all
of the interpreted structures by displaying the feature strength
along interpreted lines. Although our data analytics approach is
applied to magnetic data interpretation, the concept of using au-
tomated analysis as feature evidence to improve the quality of
image interpretation is widely applicable beyond magnetic sur-
veys and even geoscience itself.

5.1. On-going development

A number of improvements are being made to the proposed
methodology. The first is to improve the scope of quantified con-
fidence on interpreted structures by integrating feature evidence
from multiple datasets which are often used as complementary
datasets for interpretation, such as gravity combined with mag-
netics. Our on-going research focuses on developing a methodol-
ogy to effectively integrate feature evidence from different data-
sets. The second is to develop a workflow to utilise the proposed
feature evidence measure to minimise/define uncertainty in 3D
models. Previous works on 3D model uncertainty analysis (Lindsay
et al., 2012, 2013; Wellmann, Regenauer-Lieb, 2012) have identi-
fied that understanding uncertainty within interpreted input data,
prior to model integration, is key to understanding the effects of
uncertainty in geological modelling. We aim to use the feature
evidence measure in building a 3D modelling workflow to mini-
mise and quantify interpretation uncertainty and evaluate their
effectiveness in improving the integrity of 3D models. The third
planned improvement is to develop methodologies to support li-
thology interpretation. An example approach would be testing
whether rock attributes given by the input data sets are consistent
with each other and with the labels assigned by the interpreter.
This will involve the application of pattern recognition techniques
to provide the geological equivalent of a grammar checker.
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