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Feature extraction has been a major area of research in remote sensing, and fractal feature is a natural
characterization of complex objects across scales. Extending on the modified triangular prism (MTP)
method, we systematically discuss three factors closely related to the estimation of fractal dimensions of
remotely sensed images. They are namely the (F1) number of steps, (F2) step size, and (F3) estimation
accuracy of the facets' areas of the triangular prisms. Differing from the existing improved algorithms
that separately consider these factors, we simultaneously take all factors to construct three new algo-
rithms, namely the modification of the eight-pixel algorithm, the four corner and the moving-average
MTP. Numerical experiments based on 4000 generated images show their superior performances over
existing algorithms: our algorithms not only overcome the limitation of image size suffered by existing
algorithms but also obtain similar average fractal dimension with smaller standard deviation, only 50%
for images with high fractal dimensions. In the case of real-life application, our algorithms more likely
obtain fractal dimensions within the theoretical range. Thus, the fractal nature uncovered by our algo-
rithms is more reasonable in quantifying the complexity of remotely sensed images. Despite the similar
performance of these three new algorithms, the moving-average MTP can mitigate the sensitivity of the
MTP to noise and extreme values. Based on the numerical and real-life case study, we check the effect of
the three factors, (F1)–(F3), and demonstrate that these three factors can be simultaneously considered
for improving the performance of the MTP method.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Feature extraction for land cover classification and change de-
tection has been a major concern in remote sensing research
(Townshend et al., 1991; Read and Lam, 2002; Ollier et al., 2003;
Melgani and Bruzzone, 2004). In addition to pixel-based in-
formation, features reflecting spatial context of pixels have been
considered important in the analysis of remotely sensed images in
recent years (Lam, 2008). Fractal feature is a natural character-
ization of the texture of complex objects, particularly their self-
similarity across scales (Mandelbrot, 1982). Theoretically, self-si-
milarity means that the form of objects is invariant with respect to
scales (Emerson et al., 1999). An ideal fractal object has no char-
acteristic scale. However, the real-life geographical phenomena
usually show different self-similarity properties at different scales,
which was discussed by Emerson et al. (1999) as a multi-scale
t of Geography and Resource
g, Shatin, N.T., Hong Kong,
fractal feature. In addition, Emerson et al. (1999) showed that
different landscapes exhibit different dependence of fractal fea-
tures on the scales. Actually, the fractal features of many geo-
graphic phenomena, such as topography and urban landscapes in
general and remotely sensed images in particular, have been dis-
covered by Pentland (1984), Goodchild and Mark (1987), Lam and
De Cola (1993), Batty and Longley (1994), and Gao and Xia (1996).
Discussions on scale, resolution and fractal feature of geographical
phenomena and processes have been made by Lam and Quattrochi
(1992), Quattrochi et al. (1997), Xia and Clarke (1997), Emerson
et al. (1999); papers in the 1994 special issue of the International
Journal of Remote Sensing on ‘Scaling in Remote Sensing’, and the
recent review by Sun et al. (2006).

Fractal dimension is an important concept that provides a rule
to quantitatively measure the features of fractal objects (Feder,
1988). Because of its conceptual and computational simplicity,
measure consistency and clarity, possession of a theoretical max-
imum and minimum, global and local computability, and applic-
ability to classified and unclassified images, fractal dimension Df is
an important index for quantifying the complexity and roughness
of images in many real-life studies (Lam, 2008). For a fractal object
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defined on a support with topological dimension Dt, the theore-
tical range of fractal dimension is [ + ]D D, 1t t (Feder, 1988). With
regard to a surface (Dt¼2), its fractal dimension corresponds well
to our intuitive notion of roughness and has a theoretical range
from 2 to 3 (Pentland, 1984; Jaggi et al., 1993). The rougher surface
has a larger value of fractal dimension. The extreme examples are
a totally flat surface and an infinitely complex image whose fractal
dimensions are 2 and 3, respectively (Jaggi et al., 1993; Qiu et al.,
1999).

Fractal analysis has been applied to handle many problems in
remote sensing. For example, Myint (2003) did some comparative
studies between fractal features and some spatial indicators, such
as autocorrelation and standard deviation; Hodgson (1998) paid
attention to the effect of scales on image classification; Bretar et al.
(2013) employed fractal dimension to characterize surface topo-
graphy; Zhu et al. (2011) classified land-use/landcover types over a
subtropical hilly region on the basis of fractal features; James et al.
(2007) investigated the effects of DEM error on the study of fractal
dimensions and scaling behaviors; Jiao et al. (2012) utilized fractal
dimension as a shape metric for land-use classification or image-
based land-use analysis; Liang et al. (2013) evaluated the effec-
tiveness of fractal features for characterizing urban landscapes
using multi-sensor satellite images; Shen et al. (2013) checked the
correlation between corn progress stages and the fractal feature
extracted from MODIS-NDVI time series; Cheng and Agterberg
(2009) proposed a local singularity mapping technique which can
be used to estimate the local fractal dimension of surfaces or maps.
These studies have shown the important role fractals playing in
feature extraction the different land use/land cover types, ex-
emplified by vegetation types and urban landscapes. These fea-
tures can be employed in the classification of remotely sensed
problem and they have been shown to be superior to those ob-
tained by the traditional methods. Such importance motivates the
development of the fractal analysis of remote sensing data.

The ability of fractal dimension to extract features from re-
motely sensed images motivates many researchers to develop
better estimation methods. The three most common methods are
the triangular prism (TP) (Clarke, 1986), the variogram (Mark and
Aronson, 1984) and the isarithm (Shelberg et al., 1983) methods.
However, the original TP method tends to underestimate the
fractal dimension (Jaggi et al., 1993), and a modified TP (MTP)
method has been formulated and validated mathematically and
experimentally (Lam et al., 2002; Zhao, 2001). Integrating the MTP
and the other two methods, an image characterization and mod-
eling system (ICAMS) has been developed for remote sensing
analysis (Quattrochi et al., 1997). However, due to the difference in
their estimation algorithms, the three methods may obtain dif-
ferent results for the same numerical experiment. Based on nu-
merous comparisons, the MTP appears to be most reliable in
analyzing complex remotely sensed images (Lam et al., 2002; Zhou
and Lam, 2005). Even for images which may not be ideal fractals,
the feature extracted by fractal analysis still can be treated as a
fractal feature containing textural information of an image (Xia
et al., 2010).

Despite its advantages, the MTP has been shown to be in-
accurate in estimating the local surface area of the triangular
prism facets (Sun, 2006) and incomplete in covering the triangular
prisms on a surface (Ju and Lam, 2009a,b). It is thus necessary to
have a more thorough examination of such estimation method.
Because very little effort has been made on the systematic study of
the algorithms of the MTP, we aim at the algorithmic investigation
of the MTP and its improvement in this paper. As shown in more
details in what follows, we systematically discuss the effects of the
three factors on the estimation of fractal dimension, namely (F1)
the number of steps; (F2) the step sizes; and (F3) estimation ac-
curacy of the facet areas of the triangular prisms. Existing
algorithms usually only focus on only one factor, such as (F2) in
the divisor-step algorithm by Ju and Lam (2009a,b), and (F3) in the
eight-pixel algorithm by Sun (2006). Taking into consideration all
factors simultaneously, we propose three algorithms in the pre-
sent study, namely the modification of the eight-pixel algorithm,
the four-corner MTP and the moving-average MTP.

Although it is beyond the discussion in this study, we would
like to point out another problem of the MTP for fractal analysis of
remotely sensed images. It can be seen, from the implementation
procedure of the MTP as we will describe in the following dis-
cussion, that the MTP can only be applied to a one-band imagery.
For a multi-band imagery, it has to be transformed into some one-
band images by using some data reduction methods, exemplified
by the spectral indices (Ceccato et al., 2002), such as the NDVI (Lo,
1986; Jensen, 1986), the tasseled cap transformation (Kauth and
Thomas, 1976), the principal component analysis (Munyati, 2004),
and the rough set approach (Leung et al., 2013). An alternative way
is to calculate the fractal dimension for each band so that a multi-
band imagery can be studied via a spectrum consisting of fractal
dimensions corresponding to each band (Qiu et al., 1999).
2. Materials and methods

2.1. Data

In this study, two types of data are employed, namely synthetic
data and a real-life remotely sensed image.

The synthetic data are the fractional Brownian surface (FBS).
FBS is a typical fractal surface, which has been widely employed to
model the fractal process and to check the performance of algo-
rithms in estimating fractal dimensions (Pentland, 1984; Zhao,
2001; Zhou and Lam, 2005; Sun, 2006; Emerson et al., 1999; Ju and
Lam, 2009a,b). Given a position denoted by a two-dimensional
vector →x , a function (→)I x can be called a FBS if for all →x and in-

crement Δ→x , probability of ( )<(→ + Δ→) − (→)
|| Δ→ ||

yI x x I x

x H equals F(y), where H

is known as the Hurst exponent and F(y) is a cumulative dis-
tribution function (Pentland, 1984). For a FBS, H can be related to
the corresponding fractal dimension Df as = −D H3f . Therefore,
the FBS with smaller H corresponds to the larger Df so that it is
rougher. Fig. 1 visually illustrates this relationship using the FBS
with H equals 0.2, 0.5 and 0.8 respectively.

Similar to the work by Silvetti and Delrieux (2013), we used
two real-life examples to substantiate the application. One is a
remote sensing image with size 250�250 pixels extracted from an
IKONOS image of the Pearl River Delta, China. The bit depth and
the spatial resolution of the IKONOS image are 11-bit and 4 m
respectively. And the extracted image covers a typical residential
landscape. The other is a nighttime light (NTL) image with the
same size and covering the southeastern part of the USA. The NTL
image is derived from the visible bands collected by the Defense
Meteorological Satellite Program-Operational Line Scanner with
annual visible band digital number (DN) of each pixel ranging
from 0 to 63 and the spatial resolution of 1 km respectively.
Comparing to the IKONOS image, the NTL image contains much
less variation.

2.2. The TP and MTP method

In the following discussion, the size of a surface or an image is
measured by the number of composing pixels. For simplicity, all
surfaces considered are squares. As a matter of fact, the study
using the fractal analysis can be extended to more irregular shapes
(Schertzer and Lovejoy, 1987; Cheng, 2005). Because we usually
pay attention to the square/rectangular remotely sensed images, in
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Fig. 1. Panels are arranged from the top left to the bottom as (a)–(c), corresponding to the FBS with Hurst exponent equaling 0.2, 0.5, and 0.8 respectively.
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this work all studies focus on the square surface to facilitate dis-
cussion. These studies and discussions can be easily extended to
the rectangular case.

The basic idea of the TP for estimating the fractal dimension of
a surface of size N�N is as follows. First, for a given step size s, the
surface is divided into non-overlapping subsurfaces of size s� s.
When s is not a divisor of −N 1, part of the surface will be outside
these subsurfaces. In general, it is known as the edge-effect pro-
blem in fractal analysis (Cheng, 2014). Some methods have been
proposed to handle this problem, such as the gliding-box fractal
analysis (Cheng, 1999). In a more specific way, we call it the in-
complete coverage henceforth. Second, one triangular prism is
constructed for each subsurface. The heights of the four corner
vertices of the triangular prism are equal to the values of the
surfaces of the corresponding four pixels. Their average constitutes
the height of the central vertex. Third, the area of the subsurface
can be estimated by the area of the prism facets consisting of four
triangles formed by two adjacent corner vertices and the central
vertex. Fig. 2(a and b) shows a 3D and top view of one triangular
prism with step size s and height of four corner pixels and the
central pixel a, b, c, d, and = + + +e a b c d

4
. Then, this subsurface area

for the step size s, A(s), can be estimated by the summation of the
four prism facets, e.g. Ak(s) with k¼1, 2, 3, 4 shown in Fig. 2(a). The
fractal dimension Df can be estimated via the power law
( ) ∼ ( )( − )A s s D2 2 f (Clarke, 1986). However, Zhao (2001) pointed out

the inappropriate employment of the squared step size s2 in the TP
and proposed a modified TP (MTP) to estimate Df via the re-
lationship between A(s) and s

( ) ∼ ( )( − )A s s . 1D2 f

Ju and Lam (2009a,b) claimed that the MTP is very robust in its
estimation of the fractal dimension, and two factors, namely the
number of steps and the step size, affect the estimation. Actually,
the fractal dimension is estimated via the relationship between A
(s) and s (Eq. (1)), which is a straight line in the double-logarithmic
plot if the power law exists. Fig. 2(c) gives an illustrative example
of such relationship. It can be observed that the number of steps
and the step size indeed affect the determination of the slope. If
the number of steps is too small, then it will lead to statistically
unreliable results. Given enough number of steps, if the step sizes
are fixed at normal scales, they will become uneven (s with larger
values becomes closer) at logarithmic scales, resulting in a biased
estimation of the regression slope affected more likely by larger s
and the corresponding A(s). It is true that such biased estimation
brings no impact on ideal fractals. However, in real life, images
usually possess some noisy or non-fractal components. In this



Fig. 2. Panels are arranged from the top left to the bottom right as (a)–(d). (a) A 3D view of one triangular prism with step size s. (b) A top view of one triangular prism with
step size s, showing the corners employed in conventional algorithms of the TP and MTP method. (c) An illustrative example of the relationship between A(s) and s. Here we
employ the conventional MTP, which selects the step sizes as 1, 5, 9, …, 34. The analyzed surface is a FBS with size 69�69 and fractal dimension 2.4. (d) A top view of one
triangular prism with step size s, showing the corners employed in the eight-pixel algorithm of the MTP method.
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case, if we want to extract some features using fractal analysis in
the concerned scaling range, an unbiased estimation of the slope
can ensure us to obtain the averaged descriptors containing equal
information at all scales. If the features at some specific scales are
desired, we then just need to look into the behavior in a corre-
sponding scaling range. Furthermore, it should also be noted that
for large s, A(s) may drop suddenly and then grows gradually
(referring to Fig. 2(c)). Such behavior breaks the power law and
makes negative impact on the slope estimation. This drop-and-
grow behavior should come from the incomplete coverage of the
constructed triangular prisms considered in Ju and Lam (2009a,b).
It is reckoned that non-overlapping triangular prisms with some
sizes, s, may not cover the whole surface. Introducing the coverage
ratio Rc as the percentage of surface covered by constructed tri-
angular prisms (Ju and Lam, 2009a,b), A(s) corresponding to s
having lower Rc should have less values.

Scrutinizing carefully the above procedure and Fig. 2(c), there
should be an assumption behind the two factors suggested by Ju
and Lam (2009a,b): “the values of each A(s) should be accurate
enough.” However, as suggested by Sun (2006), the conventional
way to estimate the area of the facet of a triangular prism covering
each subsurface may introduce some errors. One of these errors is
that the value e is calculated by averaging a, b, c, and d instead of
by using the real height at the central pixel. The effect of this error
might be very large for large s. Another one is the insufficiency of
the employment of the four corners of the square subsurfaces.

Therefore, we have three factors that should be considered:

� (F1) the number of steps;
� (F2) the step size;
� (F3) estimation accuracy of the facets areas of the triangular

prisms.

With respect to (F1), sufficient number of steps, actually the
more the better, is needed to ensure estimation reliability. It is
especially important if the surface is small. In terms of (F2), we
have a twofold consideration. On one hand, step sizes should be
even at logarithmic scales, i.e. the size should be increased by
raising it to a certain power (Clarke, 1986). On the other hand, as
suggested by Ju and Lam (2009a,b), step sizes have to be carefully
selected to ensure that the constructed triangular prisms cover the
whole surface, i.e. the sizes have to be divisors of −N 1, here N is
size of the surface. As a matter of fact, the number of steps has an
upper limit, −N 1. This upper limit corresponds to the smallest
step size, i.e. one pixel. Therefore, our purpose is to select as many
step sizes as possible from [ − ]N1, 1 with two constraints: these



Fig. 3. An illustrative description to show the procedure of the four-corner MTP.
Here the size of the studied surface N is 11, and the size of the covering triangular
prism s is 4.
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step sizes should be even at logarithmic scales and should over-
come the incomplete coverage problem. With regard to (F3), Sun
(2006) proposed the max-difference, mean-difference, and eight-
pixel algorithms and showed the equivalence of the three algo-
rithms. Referring to Fig. 2(d), the eight-pixel algorithm employs
more corners compared with the conventional MTP so that the
surface area of each triangular prism can be estimated by eight
facets rather than four (Sun, 2006). Furthermore, Sun (2006)
suggested the use of the actual height at the central pixel as e
instead of computing it as the averaged height of other eight
corners, i.e. a–d and e–i. Despite the above efforts made to improve
the performance of the MTP, there are still some problems that
need to be resolved. For example, there is insufficient number of
steps for some N, e.g. only two usable divisors for N¼22 and 23,
and none for N¼24. If the step sizes have to be increased by
raising it to a certain power, then even a fewer number of steps
can be selected, particularly for the estimation of the fractal di-
mensions for a small surface. Furthermore, these algorithms con-
sider these three factors separately. The modifications made by
Sun (2006) intend to solve problems of the third point but actually
ignore problems caused by incomplete coverage. Because of the
equivalence of the three algorithms proposed by Sun (2006), only
the eight-pixel algorithm is considered in the following discussion.

2.3. Proposed MTP methods

To overcome the problem of incomplete coverage, the step si-
zes have to be carefully selected as the divisors of −N 1. However,
this selection method may significantly reduce the number of
steps. Therefore, we need other ideas to handle the incomplete
coverage problem. With these ideas, for factors (F1) and (F2) it is
expected that we can use all step sizes ∈ [ − ]s N1, 1 being even at
logarithmic scales without other constraint. In addition, we em-
ploy the eight-pixel algorithm for factor (F3) because it should be a
better estimate of the facets area of triangular prisms compared
with the conventional MTP which employs only four corners.

In this subsection, we propose three algorithms accounting for
all three factors simultaneously.

2.3.1. The modification of the eight-pixel algorithm
To give an approximation to the whole area when the con-

structed triangular prisms cannot completely cover the surface, a
simple modification is to estimate the whole area of triangular
prisms ( )

⁎
A s as the area of the covered part A(s) obtained by the

eight-pixel algorithm divided by Rc. Here, Rc is the percentage of
surface covered by the constructed triangular prisms (Ju and Lam,
2009a,b). In this sense, the fractal dimension Df is estimated by the
relationship ( ) = ( ) ∼

⁎
( − )A s A s R s/ c

D2 f instead of Eq. (1) directly.
This is a simple idea to handle the incomplete coverage.

However, such modification is based on the assumption that a
surface has similar properties for the covered part and the un-
covered part. This assumption is true for some surfaces, e.g. re-
motely sensed images with single land cover/use, but it is invalid
for some other surfaces, e.g. images with multiple land covers/
uses. To overcome such weakness, we propose the following two
algorithms.

2.3.2. The four-corner MTP
To avoid using the covered part to estimate the area of the

uncovered part, we develop the four-corner MTP. The basic idea of
this algorithm is illustrated in Fig. 3. In this example, the size of the
surface is N�N with N¼11 and the four corners of this surface are
marked as A, B, C, and D. For illustration, we use step size s¼4. The
procedure can be easily extended to other N and s. First, the tri-
angular prisms are constructed to start the cover from corner A,
only four triangular prisms C1, C2, C3, and C4 are constructed.
Similar cover can be constructed from the other three corners,
namely B, C, and D. Second, we denote the covers starting from the
four corners by the same symbols A, B, C, and D respectively and
divide cover A into four parts A1, A2, A3, and A4, depending on
how they are covered by A, B, C, and D. It can be observed that A1
can only be covered by the cover A, A2 and A3 by both cover A and
cover B, while A4 by all four covers. Then, the contribution of cover
A to the whole surface area should be + ++A1 A2 A3

2
A4
4
. Denoting

the size of A1 as R�R with = − −R N s1 , the areas of A1, A2, A3,

and A4 can then be estimated as follows: =A1 C1 R

s

2

2 ,

= ( + ) −A2 C1 C2 A1R
s

, = ( + ) −A3 C1 C3 A1R
s

, and A4¼A–A1–A2–
A3. Similarly, the contribution of covers B, C, and D can also be
computed. Therefore, the whole of the surface area for step size
s¼4 can be estimated as ( ) = + + +

⁎
A s A B C D. Df then can be

estimated by ( ) ∼
⁎

( − )A s s D2 f .

2.3.3. The moving-average MTP
Inspired by the idea of the gliding box employed in the im-

provement of other fractal analyses (Cheng, 1999), we employ the
moving triangular prism with overlappings to ensure a complete
coverage. Moving the triangular prism by one pixel once, we can
ensure that the surface is covered by at least one triangular prism
no matter how the step size s is selected. Then the area con-
tributed by each pixel (i,j) is determined by { ˜ ( )}A ski j, with

= …k w1, ,i j i j, , , where { ˜ ( )}A ski j, are the areas of the triangular
prisms covering the pixel (i,j) and wi j, is the number of these tri-
angular prisms which can be represented as follows:

� for ≤ +j s 1:

=
· ≤

( + )· < ≤ −
( − + )· > −

⎧
⎨⎪

⎩⎪
w

i j i s

s j s i N s

N i j i N s

, if

1 , if

1 , if

;i j,

� for + < ≤ −s j N s1 :

=
·( + ) ≤

( + ) < ≤ −
( − + )·( + ) > −

⎧
⎨⎪

⎩⎪
w

i s i s

s s i N s

N i s i N s

1 , if

1 , if
1 1 , if

;i j, 2

� for > −j N s:



Fig. 4. An illustration showing the way the triangular prism is moved to cover the
surface and the number (expressed as the number in this figure) of triangular
prisms covering each pixel. Here the size of surface N is 6, the step size of the
covering triangular prism s is 2.
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=
·( − + ) ≤

( + )·( − + ) < ≤ −
( − + )·( − + ) > −

⎧
⎨⎪

⎩⎪
w

i N j i s

s N j s i N s

N i N j i N s

1 , if

1 1 , if

1 1 , if

.i j,

Denote , then *( ) = ∑ ∑ ˜ ( )=
−

· =A s A si j
N

w s k
w

k, 1
1 1

1
i j i j

i j
i j

,
2 ,

,
, . To facilitate the

understanding of this algorithm, we give a visual example in Fig. 4
by taking the surface size N¼6 and step size s¼2. By checking the
relation ( ) ∼⁎ ( − )A s s D2 f , Df can be computed.
Fig. 5. The comparison of the mean of computed fractal dimensions (the upper
panel) and the RMSE (the bottom panel) obtained by the divisor-step algorithm and
the modification of the eight-pixel algorithm. Subpanels (A)–(E) of the bottom
panel correspond to fractal dimensions 2.9, 2.7, 2.5, 2.3, and 2.1 respectively.
3. Calculation

For the synthetic data, the experimental design is the same as
that of Ju and Lam (2009a,b), except for the additional consideration
of sizes 129�129 and 257�257. Similar to Sun (2006) and Ju and
Lam (2009a,b), performances of the algorithms are evaluated by the
mean of the computed fractal dimensions and their root mean
squared error (RMSE) relative to the expected values.

With regard to the extracted remotely sensed image, the pro-
posed algorithms and the divisor-step algorithm, as a comparison,
are applied to compute the local fractal dimensions. Here, the
concept of local fractal dimension is similar to that employed by
De Jong and Burrough (1995). We introduce a local kernel that
moves vertically/horizontally just one pixel once of the extracted
image and then estimate the local fractal dimension of the part of
the image in this kernel. The size of the moving kernel ranges from
9�9 to 69�69 with a step 4. After obtaining the fractal dimen-
sion in the moving kernel, a fractal layer can be composed. Actu-
ally, it is impossible to obtain a fractal dimension for just one pixel
but for an image or sub-image. Here one local fractal dimension
can be estimated for the moving kernel at each position. Therefore,
the fractal layer has the large spatial resolution. To provide a
benchmark for comparison by observation at the same spatial
resolution, we also resample the image using the same moving
kernel. We calculate the local average in the kernel as the re-
sampled value. In addition, we check the dependence of the
computed local fractal dimension on the moving-kernel size. For
each algorithm, we calculate the mean of the computed fractal
dimensions in the moving kernel for each of the 16 sizes (from
9�9 to 69�69). Furthermore, we calculate the mean values, the
corresponding standard deviations, extremes and the ranges for
the local fractal dimensions obtained by each algorithm. For the
NTL example, we calculate the local fractal layer using the moving
kernel with size 21�21 and 23�23 for comparison.
4. Results and discussion

4.1. Synthetic data

Here, the divisor-step, modification of the eight-pixel, four-
corner, and moving average algorithm are marked by the algo-
rithms I, II, III, and IV, and they are applied to the simulated FBSs.
We present the results in Figs. 5, 7 and 8. In all these figures, the
horizontal lines in the upper panels indicate the expected value of
the fractal dimensions. Thus, the closer to the corresponding line,
the better the performance achieved by the algorithm. In the
bottom panel, the smaller the RMSE, the better of the algorithm
performs.



Fig. 6. The comparison of the mean of computed fractal dimensions (the upper
panel) and the RMSE (the bottom panel) obtained by the modification of the MTP
and the modification of the eight-pixel algorithm. Subpanels (A)–(E) of the bottom
panel correspond to fractal dimensions 2.9, 2.7, 2.5, 2.3, and 2.1 respectively.

Fig. 7. The comparison of the mean of computed fractal dimensions (the upper
panel) and the RMSE (the bottom panel) obtained by the four-corner and mod-
ification of eight-pixel algorithm.
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It can be observed from Fig. 5 that with regard to both the
mean of the computed fractal dimensions and the RMSE, algo-
rithm II works better than algorithm I for all simulated FBSs. In
particular, such superiority obviously appears in FBSs with large
fractal dimensions and/or large sizes. It is because, in general, the
larger the fractal dimension, the more complex the surface. In
addition, it is more likely to have large variations on surface with
large size. For a subsurface covered by a constructed triangular
prism, eight triangles employed by algorithm II should fit the real
situation, better than the four triangles in algorithm I, especially
for surfaces of higher complexity and variability.

One may argue that the superiority of algorithm II is due to the
different selections of the step size. To check the effect of the step
size selection, we give a modification of algorithm I by using geo-
metric-step sizes. The way for estimating the whole area is the
same as that in algorithm II under incomplete coverage. The com-
parison presented in Fig. 6 confirms the superiority of algorithm II.

Fig. 7 shows that performance of the algorithm III is at least
comparable to that of algorithm II, but it is even better for some
step sizes, e.g. s¼17, 29. Fig. 8 depicts the comparison of algo-
rithms III and IV. No significant difference can be found between
them from either the mean of the computed fractal dimensions or
the RMSE.
To give a more quantitative comparison of algorithms I–IV, we
calculate the averaged values of the computed fractal dimensions
and the RMSE for all 18 different step sizes for each algorithm. The
numerical results are listed in Table 1. The mean values of fractal
dimensions are similar. However, the divisor-step algorithm re-
sults in larger RMSE. It should also be emphasized that the divisor-
step algorithm just works for the surface with specific size, but our
proposed algorithms are free from such limitation.

Fig. 9 shows the relationship between A(s) and s obtained by
algorithm II using the same FBS employed in Fig. 2(c). Compared
with the relationship obtained by the conventional MTP, this re-
lationship has been significantly improved, exhibiting a very good
power-law for the estimation of the fractal dimension.

Although the performance of the MTP algorithm has been
improved, some problems still remain. They are related to factor
F1. Results obtained by the proposed algorithms depicted in
Figs. 5, 7 and 8 show that for surfaces with large sizes, i.e.
129�129 and 257�257, all algorithms underestimate the fractal
dimension and the RMSE is large, particularly for surfaces with
large fractal dimensions ( =D 2.7f , 2.9). It can be attributed to
greater variations in larger surfaces, and higher surface complexity
due to larger fractal dimensions. Therefore, it is more difficult to
accurately estimate the area. However, the proposed algorithms
perform much better than the divisor-step algorithm for large



Fig. 8. The comparison of the mean of computed fractal dimensions (the upper
panel) and the RMSE (the bottom panel) obtained by the four-corner and moving-
average algorithm.

Fig. 9. An illustrative example of the relationship between A(s) and s. Here we
employ the four-corner MTP. The analyzed surface is a FBS with size 69�69 and
fractal dimension 2.4.
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surfaces. With regard to surfaces with small sizes, the computed
fractal dimension seems to be fine, but the RMSE is greater than
those of moderate sizes. Such phenomenon should be due to the
fact that the computed fractal dimension is unstable because the
number of usable step sizes is small. As a conclusion, the proposed
algorithms are able to obtain reliable results for the moderate si-
zes, e.g. from 17�17 to 69�69, of all fractal dimensions. With
regard to the surface with smaller or larger sizes, the results be-
come less accurate, especially for simulated FBMs with fractal di-
mension larger than 2.5.
Table 1
The averaged fractal dimensions respectively obtained by algorithms I, II, III, and IV, co
algorithm, and their RMSE for all 18 step sizes (from 9�9 to 69�69 as well as 129�1

Algorithms Computed fractal dimensions

(Expected values) 2.90 2.70 2.50 2.30
I 2.88 2.69 2.50 2.31
II 2.89 2.69 2.50 2.31
III 2.89 2.69 2.50 2.31
IV 2.89 2.69 2.50 2.31
4.2. Real-life remotely sensed image

The effectiveness of algorithms I–IV in analysis of the real-life
image is discussed in this subsection.

The original image, the resampled image and the visualized
fractal layers obtained by algorithms I–IV for step size s¼21 are
depicted in Fig. 10. To visually compare results on the same basis,
all images are rescaled to 0–255 for display. Fractal layers obtained
by algorithms I–IV correspond to panels (c)–(f) in Fig. 10. As a
whole, fractal layers can generally reflect the basic texture in-
formation of the image shown in panel (a). In particular, referring
to the resampled image in panel (b), obvious features such as the
road running vertically across the image about one-third from the
right and some house roofs appearing as white lumps can find
good correspondence at fractal layers: the edge of the road is
white with large fractal dimensions indicative of strong variations,
but the roofs black lumps suggest their smoothness and flatness.
To see fractal layers separately, the fractal layer (panel (c)) ob-
tained by the divisor-step algorithm is brighter than the others,
indicating higher fractal dimensions than those of the others. The
modified eight-pixel algorithm and the four-corner algorithm re-
sult in the similar fractal layers (panel (d) and (e) respectively).
Many black points can be detected in panels (c)–(e), which might
be caused by the sensitivity of the MTP to the noise or extreme
grey level values (Qiu et al., 1999; Sun et al., 2006), the cars
parking on the road or the blinks on the roofs as extreme values in
here. Visually, the fractal layer in panel (f) seems to be blurrier
than the other fractal layers. These different effects may be at-
tributed to the moving-average procedure of the algorithm, which
mitigates the sensitivity. Compared to the resampled image in
panel (b), such blurring, however, makes the basic features more
obvious in the fractal layers. Furthermore, it should be emphasized
that more information can be observed from the fractal layers than
the resampled image. For example, the road which is obvious in
rresponding to the divisor-step, modified eight-pixel, four-corner, moving-average
29 and 257�257). The expected values are also listed for reference.

RMSE

2.10 0 0 0 0 0
2.12 0.10 0.10 0.10 0.10 0.09
2.12 0.07 0.07 0.07 0.08 0.08
2.11 0.06 0.06 0.07 0.08 0.07
2.12 0.04 0.05 0.07 0.09 0.08



Fig. 10. Panels are arranged from the top left to the bottom right as (a)–(f). (a) The image extracted from an IKONOS image covering a typical residential land cover.
(b) Resampled image of the image in panel (a) using overlapping moving kernel with size 21�21. Panels (c)–(f) are fractal layers obtained for moving kernel with size
21�21 by the divisor-step algorithm, the modified eight-pixel algorithm, the four-corner algorithm and the moving-average algorithm, respectively. The images displayed in
all panels are rescaled to 0–255 for visual comparison.
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Fig. 11. The averaged values of the estimated fractal dimensions using the divisor-
step algorithm and our proposed algorithms.

Table 2
Averaged value of the computed local fractal dimensions and standard deviations
(SD) of the extracted IKONOS residential image for each of the 16 moving-kernel
sizes (from 9�9 to 69�69) for algorithms I, II, III, and IV, corresponding to the
divisor-step, modified eight-pixel, four-corner, and moving-average algorithms
respectively.

Sizes Computed fractal dimensions (7SD)

Algorithm I Algorithm II Algorithm III Algorithm IV

9�9 2.51 (70.23) 2.43 (70.22) 2.43 (70.22) 2.44 (70.18)
13�13 2.53 (70.18) 2.47 (70.15) 2.49 (70.17) 2.50 (70.15)
17�17 2.54 (70.17) 2.51 (70.18) 2.50 (70.14) 2.51 (70.13)
21�21 2.55 (70.14) 2.51 (70.12) 2.51 (70.12) 2.51 (70.11)
25�25 2.56 (70.12) 2.51 (70.10) 2.52 (70.11) 2.52 (70.10)
29�29 2.56 (70.12) 2.53 (70.11) 2.53 (70.10) 2.53 (70.09)
33�33 2.56 (70.11) 2.53 (70.10) 2.53 (70.09) 2.53 (70.08)
37�37 2.56 (70.10) 2.53 (70.09) 2.54 (70.08) 2.54 (70.08)
41�41 2.56 (70.09) 2.54 (70.08) 2.54 (70.08) 2.54 (70.07)
45�45 2.56 (70.09) 2.54 (70.09) 2.54 (70.07) 2.54 (70.07)
49�49 2.56 (70.08) 2.54 (70.08) 2.55 (70.07) 2.55 (70.07)
53�53 2.56 (70.09) 2.55 (70.08) 2.55 (70.07) 2.55 (70.06)
57�57 2.56 (70.08) 2.55 (70.07) 2.55 (70.07) 2.55 (70.06)
61�61 2.57 (70.07) 2.55 (70.07) 2.55 (70.06) 2.55 (70.06)
65�65 2.56 (70.08) 2.55 (70.07) 2.56 (70.06) 2.55 (70.06)
69�69 2.55 (70.08) 2.55 (70.07) 2.56 (70.06) 2.55 (70.05)

Table 3
The extremes, maximum (Max) and minimum (Min), and the ranges of the local fractal
kernel sizes (from 9�9 to 69�69) for algorithms I, II, III, and IV, corresponding to
algorithm respectively.

Sizes Algorithm I Algorithm II

Max Min Range Max Min Rang

9�9 4.09 1.62 2.47 3.81 1.67 2.14
13�13 3.65 1.80 1.85 3.41 1.83 1.58
17�17 3.42 1.72 1.70 3.50 1.76 1.74
21�21 3.08 1.93 1.15 3.21 2.06 1.15
25�25 3.04 1.99 1.05 2.97 2.16 0.81
29�29 3.07 1.96 1.11 2.99 2.09 0.89
33�33 3.01 1.96 1.05 2.88 2.19 0.69
37�37 2.95 2.13 0.82 2.86 2.24 0.62
41�41 2.89 2.07 0.82 2.81 2.26 0.55
45�45 2.94 1.97 0.96 2.85 2.24 0.61
49�49 2.97 2.17 0.80 2.88 2.24 0.64
53�53 2.91 2.12 0.80 2.85 2.29 0.56
57�57 2.85 2.20 0.65 2.84 2.28 0.57
61�61 2.87 2.30 0.56 2.86 2.25 0.61
65�65 2.84 2.22 0.62 2.80 2.27 0.52
69�69 2.83 2.22 0.62 2.82 2.25 0.57
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the original image shown in panel (a) becomes obscure in panel
(b). However, it is still observable in panels (c)–(e), especially in
panels (d)–(e). It means that the fractal layers can also retain the
detailed information at the original resolution in panel (a), in ad-
dition to the information in the moving kernel shown in panel (b).

To check dependence of local fractal dimensions on the kernel
size, we calculate the mean values for each size and plot against
the corresponding size in Fig. 11. The calculated values are plotted
against the kernel sizes (Fig. 11). The mean values obtained by the
divisor-step algorithm are larger and with greater fluctuation than
those obtained by algorithms II–IV for kernel size no more than
61�61. As to sizes 65�65 and 69�69, four algorithms give si-
milar values. With regard to algorithms II–IV, their mean values
are very close to one another for all kernel sizes. However, it
should be noted that a little bit more fluctuation at the sizes
17�17 and 29�29 can be found in the results obtained by algo-
rithm II.

The mean values and the corresponding standard deviations
are listed in Table 2. For all kernel sizes, algorithms II–IV have
smaller deviations than algorithm I, in particular the moving-
average MTP reaches the minimum deviation. In addition, for all
four algorithms, their computed fractal dimensions also grow
while the standard deviations become smaller with the increase of
the moving-kernel size. Such pattern indicates that, among all four
algorithms, algorithm I is most sensitive to variations while algo-
rithm IV is most robust.

As mentioned, the fractal dimension of a surface should be
between 2 and 3. Thus, we list the extremes and their ranges
obtained by each of the four algorithms for each of the 16 moving-
kernel sizes in Table 3. The extremes obtained by algorithm I are
outside the theoretical range for kernel sizes less than 37�37,
with the maximum computed fractal dimensions getting to be
even larger than 4. On the other hand, our proposed algorithms
give local fractal dimensions within the theoretical ranges for sizes
larger than 21�21, except for a value equaling 3.01 obtained by
the four-corner MTP for size 25�25.

Although it is impossible to know the exact values of the fractal
dimensions of real-life images, the above comparisons show that,
compared with the divisor-step algorithm, our proposed algo-
rithms more likely obtain fractal dimensions within the theoretical
range. In addition, these three algorithms are constructed from
three different perspectives but can obtain similar mean of the
dimensions of the extracted IKONOS residential image for each of the 16 moving-
the divisor-step, modification of the eight-pixel, four-corner, the moving-average

Algorithm III Algorithm IV

e Max Min Range Max Min Range

3.81 1.67 2.14 3.58 1.74 1.83
3.61 1.82 1.79 3.27 1.97 1.31
3.41 1.99 1.42 3.13 2.07 1.06
3.21 2.04 1.17 3.04 2.11 0.92
3.01 2.17 0.84 2.94 2.13 0.80
2.95 2.22 0.73 2.87 2.19 0.68
2.89 2.22 0.67 2.79 2.23 0.57
2.89 2.25 0.63 2.76 2.25 0.51
2.84 2.28 0.56 2.75 2.28 0.47
2.80 2.30 0.50 2.74 2.30 0.44
2.78 2.31 0.46 2.72 2.33 0.40
2.76 2.24 0.52 2.70 2.32 0.38
2.77 2.27 0.50 2.69 2.33 0.37
2.77 2.33 0.45 2.69 2.34 0.35
2.81 2.33 0.49 2.68 2.35 0.33
2.77 2.33 0.45 2.67 2.35 0.32



Fig. 12. Panels are arranged from the top left to the bottom right as (a)–(d). (a) Resampled image of the image in Fig. 10(a) using overlapping moving kernel with size 23�23.
Panels (b)–(d) are fractal layers obtained for moving kernel with size 23�23 by the modified eight-pixel algorithm, four-corner algorithm and moving-average algorithm,
respectively. The images displayed in all panels are rescaled to 0–255 for visual comparison.
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local fractal dimensions, which is smaller than that obtained by
the divisor-step algorithm. Thus, it is reasonable to conclude that
although the four algorithms can lead to similar results for the
simulated FBSs, the divisor-step algorithm more likely over-
estimates in real-life applications. Furthermore, the divisor-step
algorithm is only applicable to images with specific size. In con-
trast to this algorithm, our proposed algorithms can break this
limitation. To show this advantage, we apply the three proposed
algorithms to the same extracted image shown in Fig. 10(a) with
another moving-kernel of size 23�23. The resampled image and
the obtained fractal layers are shown in Fig. 12. The obtained
fractal layers can also reflect the textural features in panel (a).

With regard to the NTL example, Figs. 13 and 14 respectively
show the results using the moving kernel with size 21�21 and
23�23. The performance of the divisor-step algorithm and the
three proposed algorithms are generally similar to the IKONOS
example shown in Figs. 10 and 12. However, the correspondence to
the resampled image in panel (b) is not as good as that shown in
the IKONOS example. Since the coastal line at the right-bottom
corner can be well identified, the slightly worse performance in
the NTL case should be due to the following two reasons: one of
the reasons is that the NTL image has much less variation than the
IKNONS image. Especially, the urban area with the saturation DN
63 and the totally dark area with DN 0 in panel (a) are actually the
flat surfaces corresponding to the same fractal dimension 2. The
other reason is that the NTL image consists of some clusters with
different sizes. Some of these clusters are very small, even smaller
than the size of the moving kernel. In this case, for each position,
the moving kernel may cover both the NTL cluster and the dark
area. Then the fractal dimension for each position as an index for
this mixed status is not so much different from one another.

Based on the results of these two real-life examples, the texture
feature extracted by the fractal analysis is largely from the varia-
tion of images, which can be intuitively understood as a kind of
roughness. In this sense, we do not recommend the fractal analysis
for the relative simple image, such as the NTL image with less
variation.



Fig. 13. Panels are arranged from the top left to the bottom right as (a)–(f). (a) The image extracted from an NTL image covering a southeastern part of the USA. (b) Re-
sampled image of the image in panel (a) using overlapping moving kernel with size 21�21. Panels (c)–(f) are fractal layers obtained for moving kernel with size 21�21 by
the divisor-step algorithm, the modified eight-pixel algorithm, the four-corner algorithm and the moving-average algorithm, respectively. The images displayed in all panels
are rescaled to 0–255 for visual comparison.
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Fig. 14. Panels are arranged from the top left to the bottom right as (a)–(d). (a) Resampled image of the image in Fig. 13(a) using overlapping moving kernel with size 23�23.
Panels (b)–(d) are fractal layers obtained for moving kernel with size 23�23 by the modified eight-pixel algorithm, four-corner algorithm and moving-average algorithm,
respectively. The images displayed in all panels are rescaled to 0–255 for visual comparison.
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5. Conclusions

Although claimed to be the most reliable method among the
MTP, isarithm, variogram, probability, and variation method (Zhao,
2001; Lam et al., 2002; Zhou and Lam, 2005), the MTP has been
shown to have much room for improvement from different per-
spectives (Sun, 2006; Ju and Lam, 2009a,b). To improve the MTP,
we algorithmically investigate the MTP in this study and identify
three factors affecting the estimation of fractal dimensions,
namely (F1) the number of steps; (F2) the step sizes; and (F3)
estimation accuracy of the facet areas of the triangular prisms.
Existing algorithms usually focus on only one factor, such as (F2) in
the divisor-step algorithm by Ju and Lam (2009a,b), and (F3) in the
eight-pixel algorithm by Sun (2006). Taking into consideration all
factors simultaneously, we propose three algorithms in the pre-
sent study, namely the modification of the eight-pixel algorithm,
the four-corner MTP and the moving-average MTP. It should be
emphasized that the proposed algorithms are not limited by spe-
cific image size, which is required by the divisor-step algorithm.

Numerical experiments show that our algorithms are
comparable to the divisor-step algorithm, but superior to the
eight-pixel algorithm with respect to the mean of the computed
fractal dimensions and the RMSE. All proposed algorithms obtain
reliable results for moderate sizes for all selected fractal dimen-
sions but become less accurate for smaller or larger sizes, espe-
cially when the fractal dimension is larger than 2.5. In the real-life
application, our proposed algorithms and the divisor-step algo-
rithm can all extract the basic textural features. In addition, it is
found that the moving-average algorithm has the capacity to re-
duce the sensitivity of the MTP to the noise or extreme value of
pixels. It is impossible to know exactly the actual value of the
fractal dimension of real-life remotely-sensed images. However,
the comparison of the mean values of the fractal dimensions
shows that our algorithms obtain similar results while the divisor-
step algorithm tends to obtain larger values. Considering that
three algorithms are proposed from different perspectives, what
we could conclude is that similarity of their results more likely
estimate the real fractal dimensions. In addition, the divisor-step
algorithm more likely gives the local fractal dimensions beyond
the theoretical range. With regard to the selection of algorithms
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for fractal analysis, especially in application to remotely sensed
images, we recommend the four-corner MTP and the moving-
average MTP, which can overcome the limitation of the divisor-
step algorithm to specific moving-kernel sizes and can handle the
incomplete coverage issue without making any specific assump-
tion. In addition, the moving-average MTP is insensitive to noise or
extreme values. By combining and comparing the results of both
algorithms, we can evaluate the influence of extreme values of
pixels and then have a complete profile of the analyzed images.

Despite the importance of using fractal dimension as an im-
portant index for quantifying the complexity and roughness of
images, it is still difficult to give its specific meaning. Even for a
non-ideal fractal image, the obtained fractal dimension reflects
some texture information about it in average. It has been shown
that the texture feature uncovered by the fractal analysis is basi-
cally from the roughness/variation of the image. However, finding
out the specific meaning is one of the important tasks in future
research.
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