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A B S T R A C T

SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and
detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent
trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we
propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM)
method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces
parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the
image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result,
significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows
excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method.
Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the
effectiveness of the proposed method.
1. Introduction

Synthetic Aperture Radar applications include aerial surveillance
using high-resolution imaging, sub surface imaging for mineral estima-
tion, oceanography, climatic studies, space science and defense. SAR
imaging being coherent in nature (Moreira et al., 2013), is affected by
granular disturbances called speckle, which follows multiplicative model
(Frost et al., 1982). Echoed radar waves go out of phase randomly for the
same target region and, these signals when combined interferes
constructively or destructively to form speckle (Argenti et al., 2013).
Presence of speckle makes visual analysis and detail extraction from SAR
images a difficult task and hence despeckling is a fundamental step in
SAR image processing. Fine details and edge information in the image
should also be preserved during the despeckling process.

Numerous SAR despeckling techniques have been proposed in the last
three decades. Lee filter (Lee, 1980) is a classic technique in despeckling
which makes use of the local statistics within the noisy image. Minimum
Mean Square Error (MMSE) estimation is then applied to estimate the
noise free pixel values. Kuan (Kuan et al., 1985), Frost (Frost et al., 1982)
and Gamma MAP (Lopes et al., 1990a) filters also belong to this category
of spatial adaptive filters which employs MMSE estimation. Lopes et al.
(1990b). proposed an improved adaptive filter which makes use of scene
heterogeneity for edge preservation. Apart from spatial domain filters,
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several despeckling techniques have been proposed in the wavelet
domain also. Filtering in the wavelet domain involves inter-domain
transform of the original image with Discrete Wavelet Transform
(DWT), Undecimated Discrete Wavelet Transform (UDWT) (Argenti
et al., 2013) or other similar techniques. Noise free wavelet coefficients
are then estimated followed by the inverse transform to the original
domain to generate the denoised image. Speckle filters in wavelet
domain can preserve edges with appropriate thresholding techniques,
but they may introduce ring like artifacts (Bianchi et al., 2008; Tao
et al., 2012).

Buades et al. (2005). proposed a Non Local Means (NLM) method in
2005 in which the true underlying intensity is estimated by computing
the weighted average of non local pixels within the image. NLM gave
excellent results for Additive White Gaussian Noise (AWGN). Several
modifications were proposed for NLMwhich includes - adaptive selection
of the search region, early termination of similarity check and intro-
duction of new similarity measures (Jojy et al., 2013). Bayesian Non
Local Means (BNLM) (Coupe et al., 2008) originally proposed for Ultra-
sound despeckling adapted the NLM concept to denoise multiplicative
speckle using Bayesian framework. In Zhong et al. (2009), a new simi-
larity measure based on likelihood is adopted and applied Bayesian Non
Local Means concept to SAR despeckling. An iteratively refined des-
peckling based on the noise model which uses maximum likelihood
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Fig. 1. Comparison of proposed method against SAR-BM3D, PPB and GGF-BNLM for
phantom image.
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estimation technique was proposed in Deledalle et al. (2009). This iter-
ative Maximum Likelihood denoising with probabilistic weights give
excellent speckle suppression in homogeneous regions, but fails to pre-
serve sharp details in images with high noise level (Ni and Gao, 2016).

He et al. (2013) introduced the concept of guided image filtering (He
et al., 2013) for AWGN, which filters the input image with the aid of a
guidance image. Guidance image can be the same noisy input image or an
explicit one. A linear relationship between the noisy image and guidance
image is assumed and the guidance image guides the structure trans-
ferring filter operation. In Verdoliva et al. (2014),(2015), co-registered
optical guidance image of the same target scene were used for guided
17
SAR despeckling. These techniques require an optical image of the same
target region to despeckle the SAR image which is a severe restriction.
Generalized Guided Filter with Bayesian Non Local Means (GGF-BNLM)
(Ni and Gao, 2016) used guided filtering to derive the priori component
within probabilistic patch based weights discussed in Deledalle et al.
(2009) for the despeckling of SAR images. In GGF-BNLM, the relative
contribution of likelihood and priori components in estimating the
probabilistic weights is determined by coefficients whose values are
derived based on heuristics.

In this paper, we propose an improvement for the GGF-BNLMmethod
by replacing the coefficients based on heuristics with dynamically
derived weights based on local image statistics. The relative contribution
of priori component in weight estimation is decided by the degree of
variance within the local patches. This adaptive approach helps in pre-
serving the edges in a better way. We also replaced the coefficient of
likelihood component based on heuristics with the normalization
parameter discussed in Deledalle et al. (2009). As a second improvement,
we replaced the adaptive filtering based on Maximum-Likelihood rule
with more detail preserving MMSE estimation technique to estimate the
guidance image. With the above modifications in place, the proposed
method performs better in terms of smoothing and detail preservation
than the conventional GGF-BNLM method. Results are also compared
with other state-of-the-art filters which includes PPB (Deledalle et al.,
2009), BNLM-SAR (Zhong et al., 2009) and SAR-BM3D (Parrilli et al.,
2012) to demonstrate the effectiveness of the proposed method.

Remaining sections of the paper are organized as follows. Section 2
discusses the noise characteristics of SAR images. Section 3 contains a
detailed analysis of GGF-BNLM method highlighting the drawbacks and
the scope of improvement. In Section 4 we introduce the proposed
method. Experimental results and comparative analysis are included in
Section 5. Concluding remarks are drawn in Section 6.

2. Noise characteristics in SAR images

If there are no point scatterers (Moreira et al., 2013) in the target
resolution cell, back scattered echoes from the same region will have
approximately the same reflectivity levels. They can be represented as
collective sum of individual back-scattered echoes in the form
Aejϕ ¼ ΣiAiejϕi , where Ai and ϕi represents amplitude and phase of the
individual components (Argenti et al., 2013). The phase angle ϕi varies
randomly within the range ð�π; πÞ because of which echoes interfere
constructively or destructively creating positive or negative amplitude
peaks. This random variation in amplitude appears as speckle in homo-
geneous regions even if the underlying target region has same reflectiv-
ity. Distribution of amplitude component A in a fully developed speckle
with standard deviation σ follows Rayleigh distribution whose proba-
bility density function can be represented as (Argenti et al., 2013; Tur
et al., 1982),

PðAÞ ¼ 2A
σ
e�

A2
σ : (1)

SAR image is a representation of mean intensity values of the back
scattered echoes where intensity ðI ¼ A2Þ is the square of amplitude
represented by negative exponential distribution. Based on the PDF of
intensity values, it can be shown that speckle follows a multiplicative
model represented as Uðx;yÞ ¼ Vðx;yÞ�Nðx;yÞ, where x and y are the pixel
coordinates, U is the noisy image, V the original image and N is the noise
component (Goodman, 1976; Tur et al., 1982).

Filtering techniques and noise models used in the early days of SAR
despeckling were originally proposed for AWGN. It was common to
convert the multiplicative speckle into additive noise to leverage the
benefits of existing filters and noise models. Non linear logarithmic
transformation alters the statistical properties of speckle, and the model
prior to transformation cannot be applied to the log transformed image
for denoising. According to Xie et al. (2002), SAR image in intensity



Table 1
Comparison based on Lee's phantom image.

Method SAR-BM3D PPB GGF-SAR PROPOSED

L L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

PSNR 36.98 37.99 37.82 37.01 37.52 38.83 36.54 36.9158 36.64 36.89 38.97 38.83
ENL 113.04 167.72 181.92 101.66 151.01 130.58 124.23 166.10 172.99 127.89 157.48 166.74

Fig. 2. 2-Look horse track image.
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format when undergone logarithmic transformation follows Gamma
distribution. Images in amplitude format obeys Fisher-Tippet density
function (Kaplan and Ma, 1993) and amplitude SAR images which is
estimated indirectly as the square root of intensity adheres to χ distri-
bution. High resolution SAR images of urban regions generally comes
under the category of non-Rayleigh distributed speckle as discussed in
Delignon and Pieczynski (2002). In such SAR images, number of scat-
terers in the resolution cell can be considered as a random variable which
follows Poisson distribution with its mean itself as another random var-
iable. If the mean follows Gamma distribution, then the distribution of
resulting intensity image obeys K distribution (Delignon and Pieczynski,
2002). In order to accommodate the impulsive and skewed behavior of
speckle distribution, several other models where suggested which in-
cludes Weibull, log-normal, α-stable and Generalized (heavy-tailed)
Rayleigh distributions. In Kuruoglu and Zerubia (2004), non-Rayleigh
speckle models are discussed and it is shown that α-stable distribution
can be considered as a generalized case of Rayleigh distribution.

Imaging same target region at different intervals and combining those
images together is called multi-looking, which reduces speckle at the cost
of spatial resolution. Considering the number of looks L and the multi-
plicative model by Goodman (1976), recent works in SAR denoising
(Deledalle et al., 2009; Ni and Gao, 2016; Zhong et al., 2009), assumes
Nakagami-Rayleigh distribution for the amplitude SAR image repre-
sented as:

PðujrÞ ¼ 2
�
L
r

�L 1
ΓðLÞe

�Lu2
r u2L�1 (2)

where u is the observed noisy image, r the reflectivity image (square of
amplitudes in the observed noisy image) and L is the number of looks.

3. GGF-BNLM

Generalized Guided Filter with Bayesian Non-Local Means (GGF-
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BNLM) (Ni and Gao, 2016) used an explicit guidance image to derive the
prior component of PPB (Deledalle et al., 2009). PPB calculates likeli-
hood and prior component of probability from noisy image alone. In this
section, we discuss the concepts of PPB and guided filtering to under-
stand the principle behind GGF-BNLM. Parametric constants used in
GGF-BNLM method are discussed along with their impact on the per-
formance. The drawbacks of the method are also pointed out.
3.1. Probabilistic patch-based weights

Noise free intensity value at location x surrounded by a patch Δx for a
noisy image u is estimated based on the statistical similarity between
other patches Δy around pixel y in the search window. Similarity is
represented in terms of probability as Πipðθx;i ¼ θy;i

��ux;i; uy;iÞ where ux;i
and uy;i represents the ith pixel within their respective patches (Deledalle
et al., 2009). θ is an unknown parameter which describes the parametric
model. The PPB being iterative method, considers parameters from
previous iteration. Similarity probability can be rewritten as Πipðθx;i ¼
θy;i
��ux;i; uy;i; θt�1Þ where θt�1 represents the estimate of θ at ðt � 1Þth

iteration (Deledalle et al., 2009). In the absence of any information on
pðux;i; uy;iÞ and on assumption that pðux;i; uy;i

��θx;i ¼ θx;iÞ is independent of
the previous estimate θ, the modified similarity probability is rewritten
based on Bayesian framework as (Deledalle et al., 2009):

p
�
θx;i ¼ θy;i

��ux;i; uy;i; θt�1
�
∝p
�
ux;i; uy;i

��θx;i ¼ θy;i
�
p
�
θx;i ¼ θy;i

��θt�1
�

(3)

Prior term pðθx;i ¼ θy;i
��θt�1Þ in (3) measures the validity of assumption

θx;i ¼ θy;i given the information about θt�1 in hand. Assuming Nakagami-
Rayleigh distribution (Goodman, 1976; Deledalle et al., 2009), for
speckle, the distribution of amplitude A can be represented by (4)
(similar to (2)), where intensity of the noisy image R serves as the dis-
tribution parameter (Deledalle et al., 2009).

PðAjRÞ ¼ 2
�
L
R

�L 1
ΓðLÞe

�LA2
R A2L�1 (4)

Likelihood and Prior terms at tth iteration in (3) is then approximated
respectively as (Deledalle et al., 2009):

p
�
Ax;i;Ay;i

��Rx;i ¼ Ry;i

�
∝

 
Ax;iAy;i

A2
x;i þ A2

y;i

!2L�1

(5)

p
�
Rx;i ¼ Ry;i

��Rt�1
�
∝ exp

0B@� L
T

����Rt�1
x;i � Rt�1

y;i

����2
Rt�1
x;i R

t�1
y;i

1CA (6)

Combining likelihood and prior terms, the weight of similarity be-
tween patches Δx and Δy at iteration t is rewritten as (Deledalle
et al., 2009):

wðx; yÞ ¼ exp

"
�
X
k

 
1
h
log
�
Ax;i

Ay;i
þ Ay;i

Ax;i

�
þ L
T

��Rt�1
x;i � Rt�1

y;i j2
Rt�1
x;i R

t�1
y;i

!#
(7)

here h is the normalization constant. Detailed analysis on the significance
of h and its decisive role in controlling the smoothing is discussed in
Section 5. T represents the number of iteration and it extends to ∞ until



Fig. 3. Filtered outputs and their corresponding edge maps for 1-Look Horse track image.

Table 2
Edge Preservation Factor: Horse Track image.

Method EPF ENL

SAR-BM3D 0.3026 197.2627
PPB 0.2777 264.8479
GGF-BNLM 0.2028 326.8252
PROPOSED 0.5371 285.2966
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the required level of convergence is achieved.

3.2. Guided filtering

In Guided Filtering, a linear relationship is assumed between the
guidance image g and the denoised output image v. For every window of
pixels Δx surrounding the pixel x, this linear relationship is represented
as vi ¼ ax;igi þ bx; ∀i 2 Δx, where ax and bx are linear coefficients which
are constant for the window Δx (He et al., 2013). Weights ax and bx
which forms the coefficients for linear model are then calculated for each
window Δx from noisy input u and g by means of linear ridge regression
analysis and is expressed as (He et al., 2013; Ni and Gao, 2016),
19
ak ¼
X
i2Δx

Ax;iðgÞui (8)

bk ¼
X
i2Δx

Bx;iðgÞui (9)

The functionsAx;iðgÞ and Bx;iðgÞ depends only on g (Ni and Gao, 2016).
In order to solve the problem of multiple estimations for the same pixel vi
under different overlapping windows Δx, all the possible values are
averaged together using jΔxj.

3.3. Generalized guided filter with Bayesian non-local means

GGF-BNLM derives Likelihood from noisy image u and prior as-
sumptions are made from an explicit guidance image g. Substituting the
expressions for ak and bk given in (8) and (9), in the expression
vi ¼ ax;igi þ bx;∀i 2 Δx, the noise free pixel value at location i, vi can be
expressed according to Guided Filter as below (Ni and Gao, 2016):

vi ¼ 1
jΔxj

X
i2Δx

X
j2Δx

	
Ax;jðgiÞgi þ Bx;jðgiÞ



uj (10)

By rearranging the order of summation and considering the sym-
metric nature of patches, (10) is reduced and rewritten as (He et al.,
2013) (Ni and Gao, 2016),

vi ¼
X
j

Wi;jðu; gÞuj (11)

where Wi;jðu; gÞ is the weight function Ax;jðgiÞgi þ Bx;jðgiÞ. GGF-BNLM
used a modified non-linear weight function (Ni and Gao, 2016) that is
different from (7) as given below (He et al., 2013)

wi;jðu; gÞ ¼ exp

(
�
"
1
K1

X
m

log
�
u2i;m þ u2j;m
ui;muj;m

�

þ L
K2

X
m

����gi;m�2 � �gj;m�2j2�
gi;m
�2�

gj;m
�2

#)
(12)

here, constants K1 and K2 determines the relative contribution of likeli-
hood and prior components, u is the noisy input image and g is the
guidance image.

3.4. Drawbacks of GGF-BNLM

With the number of looks L and K2 set to constant values, K1 de-
termines the relative contribution of likelihood component estimated
from u in deriving the exponential weight. Smaller values for K1 makes
the GGF-BNLM similar to that of a Non-Local filter with probabilistic
weights. On the other hand with a constant L and K1, K2 decides the
contribution of prior component from guidance image g in calculating the
exponential weights. Values K1 and K2 are derived based on heuristics
and it can be experimentally shown that one set of values which gives
optimal result for an image need not work well for all the other images.
K1 and K2 are derived from experimental analysis such that the pair
which gives optimal values in terms of PSNR and ENL are chosen. GGF-
BNLM is found to introduce unwanted swirling artifacts in homogeneous



Fig. 4. Comparison of filters for 3-Look Lena image.

Table 3
Performance analysis of the proposed method against SAR-BM3D, PPB and GGF-BNLM.

Method PSNR ENL

(a) Lena Image
SAR-BM3D 34.4661 255.3220
PPB 33.0526 244.9020
GGF-BNLM 33.5673 235.9337
PROPOSED 36.1627 270.2453
(b) House Image
SAR-BM3D 35.4634 154.1602
PPB 33.0519 396.3305
GGF-BNLM 36.4944 645.9174
PROPOSED 37.8950 695.6984
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regions of the filtered output (Ni and Gao, 2016) and this happens
because of the high variance in homogeneous regions. Feature preser-
vation in GGF-BNLM is better when compared to PPB, but speckle sup-
pression and smoothing in homogeneous region is compromised in
achieving this.

4. Guided SAR despeckling with probabilistic non-local weights

We propose a modified edge preserving SAR despeckling technique,
which is based on Guided Filtering in the Bayesian Non-Local framework.
The proposed technique use dynamically derived coefficients for likeli-
hood and prior components in the probabilistic weight function, instead
of parametric constants based on heuristics in GGF-BNLM. This ensures
that the proposed technique gives optimal performance across various
SAR images irrespective of the parametric constants used. We also pro-
pose an alternative method for more accurate construction of the guid-
ance image, as the prior assumptions about noise distribution is made
from the guidance image. The proposed SAR despeckling consists of
construction of guidance image, estimation of controlling parameters,
weight coefficient for likelihood component and weight coefficient for
prior component.
20
4.1. Coefficients for likelihood and prior components

Parameters K1 and K2 given in (12) for GGF-BNLM determines the
relative contribution of likelihood and prior components in estimating
the noise free pixel values at location i. They decides the degree of
smoothing and also controls the role of guidance image g and the noisy
image u in weight estimation. In the proposed method, K1 and K2 are
replaced by statistical measures based on u.

NLM used a parametric constant h, which controls the degree of
smoothing. h also influences the decay of exponential weight function
(Buades et al., 2005) and is deterministically related to the statistical
properties of the image. NLM estimates the value h as the standard de-
viation of noise in the input image. In PPB, similarity criteria between
patches in terms of probability is represented as (Deledalle et al., 2009)

wðx; yÞ∝ exp
�
1
h
logp

�
θx ¼ θy

��u�� (13)

Parameter h normalizes the similarity criterion and have similar
functionality to h used in NLM. The parameter h is approximated as the
α-quantile of the normalized similarity criteria between noisy patches Δx

and Δy having identical parameters θx ¼ θy , which is calculated as
(Deledalle et al., 2009)

h ¼ q� E
	
c
�
Δx;Δy

�

(14)

here q is the α-quantile of the similarity criteria given by q ¼ F�1
cðΔx ;Δy ÞðαÞ

and F is the cumulative distribution function (CDF) of the similarity
criteria represented by (Deledalle et al., 2009)

c
�
Δx⋅Δy

� ¼ �
X
k

log
�
p
�
ux;k; uy;k

��θx ¼ θy
��

(15)

We suggest to use the parameter h discussed in PPB in place of the
parameter K1 used in GGF-BNLM as the controlling parameter for like-
lihood component. This will ensure that the weight estimated from
similarity probability is directly related to the range of the similarity



Fig. 5. Comparison of proposed method with the other state-of-the-art filters for House image.

Fig. 6. Original speckled lunar image from CHANDRAYAN-I mission with
size 2027� 2027.
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criteria used and will in turn control the degree of smoothing. Consid-
ering the number of looks L, the normalization parameter h is then
modified as (He et al., 2013):

bh ¼ h
2L� 1

(16)

We also suggest to use coefficient of variance based on local image
21
statistics as the coefficient for prior component in the exponential weight
function given in (12). Prior component is purely assumed from the
guidance image and it decides the relative contribution of guidance
image in weight calculation. If the relative contribution of guidance
image g is minimal, then the entire weight estimation is more aligned to
the PPB filtering approach with negligible contribution from guided
filtering part. For the estimation of weights wði; jÞ for those pixels i inside
patches Δi having lot of details like edges, prior component is given more
weightage, as the guidance image g has more edge information than the
noisy input image. Coefficient of variance within patch Δi is taken into
consideration for determining the coefficient for prior component. Co-
efficient of variance Ci is represented as (Lee, 1980):

Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðΔiÞ

p
E½Δi� (17)

where var is the variance and E is the expectation of the patch Δi.
Rather than having a fixed weight coefficient for prior component, a

value based on information richness within the local patch would make
the prior component contribute towards weight estimation adaptively.
Coefficient of variance is the ratio of standard deviation to mean within
the local image patch. With the new weight coefficients for likelihood
and prior components as given in (16) and (17), wi;jðu; gÞ can be
rewritten as:

wi;jðu; gÞ ¼ exp

(
�
"
1bh Xm log

�
u2i;m þ u2j;m
ui;muj;m

�

þ LCi

X
m

����gi;m�2 � �gj;m�2j2�
gi;m
�2�

gj;m
�2

#)
(18)

4.2. Construction of guidance image

Accurate approximation of the guidance image g helps in making
better prior assumptions about the noise distribution. GGF-BNLM used



Fig. 7. (a) Cropped CHANDRAYAN-I image. Results for (b) SAR-BM3D [ENL ¼ 21.8425], (c) PPB [ENL ¼ 24.5322], (d) GGF-BNLM [ENL ¼ 26.2100] and (e) Proposed
Method [ENL ¼ 29.1174].
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region homogeneity analysis for the construction of guidance image,
where variance of the pixel is used as measure of region homogeneity.We
propose to use a more elegant and simple linear local statistic filter based
on MMSE (Lee, 1980) for the construction of guidance image. This helps
in construction of a guidance image with more detail being preserved and
in turn makes better prior assumptions while calculating the exponential
weights. Linear filters which follows MMSE estimation can be repre-
sented as (Argenti et al., 2013):

vi ¼ bui þ ½ui � bui ��wðiÞ (19)

where vi is the denoised value, ui and bui are the noisy pixel and mean of
the moving window centered at position i respectively in the noisy input
22
image u. wðiÞ is a weight function which has value ranging from 0 to 1
depending on the local image statistics. Among the classic adaptive linear
filters, Lee filter performs better in terms of edge preservation and hence
in our method, we suggest to use the weight function wðiÞ as discussed in
Lee (1980).

wðiÞ ¼ 1� C2
n

C2
I ðiÞ

(20)

where Cn ¼ σnbI and CI ¼ σibIi . σn is the standard deviation of the entire noisy

image and bI is its expectation. σi is the standard deviation of the local

window around pixel i and bIi is the expectation within local window.
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5. Experimental results and analysis

In this section, we present the results of the experiments conducted to
demonstrate the effectiveness of the proposed SAR despeckling tech-
nique. Experiments were conducted on synthetic and real SAR images to
illustrate the edge preservation and speckle suppression capabilities of
the proposed filter. Results are also compared against some of the pop-
ular and state-of-the-art NLM based SAR despeckling techniques which
includes PPB (Deledalle et al., 2009), Block Matching 3D filter for SAR
despeckling (SAR-BM3D) (Parrilli et al., 2012) and GGF-BNLM (Ni and
Gao, 2016). Synthetic images are created by adding multiplicative
Goodman speckle (Goodman, 1976) into noise free images.

5.1. Experimental setup

For the experimental analysis, search window and similarity window
of the proposed method are chosen as 21� 21 and 3� 3 respectively.
The parameter α for determining the normalization factor h is set to 0.92
as recommended in (Deledalle et al., 2009). In GGF-BNLM, a search
window of size 21� 21 and similarity window of size 7� 7 and pa-
rameters K1 and K2 are set as 45 and 100 respectively, as recommended
in Ni and Gao (2016). For an iterative version of PPB, the default search
and similarity windows of size 10� 10 and 3� 3 are chosen respectively
with α set to a value of 0.92 and T is fixed to 0.2 as recommended in
Deledalle et al. (2009). In SAR-BM3D, the block size is set to 8 with a
search area diameter of 39, step size of sliding window is chosen as 3 and
parameter β for 2D Kaiser window is set to 2.0 as mentioned in Parrilli
et al. (2012). The above mentioned parameters are used throughout the
experimental analysis, unless specified explicitly. Experiments were
carried out on a workstation with Intel Xeon E5-2670 v3@2.30 Ghz
processor and 128 GB RAM using Matlab R2015a on Windows 10
operating system.

5.2. Evaluation metrics

In order to quantify speckle suppression and feature preservation
capabilities, we used - Peak Signal to Noise Ratio (PSNR), and Equivalent
Number of Looks (ENL) as the metrics for performance evaluation.
Higher the PSNR value, better the results are. ENL indicates the degree of
smoothing achieved in homogeneous regions. To evaluate the edge
preservation performance in the absence of ground truth, we used a
metric called Edge Preservation Factor (EPF) (Sattar et al., 1997). More
closer the EPF value is to 1, better the edge preservation is.

5.3. Experimental results for synthetic and real SAR images

Experiment results for phantom image as per Lee's protocol
(Moschetti et al., 1788) is given in Fig. 1. ENL is calculated for a rect-
angular region marked in Fig. 1a. From the experimental results, it is
evident that the proposed method is able to strike a balance between
speckle suppression and feature preservation and this is backed by the
numerical results in Table 1.

In order to analyze the edge preservation capabilities of the proposed
filter, experiments were carried out on a 2-Look horse track image shown
in Fig. 2. Laplacian operator is then applied on the filtered outputs to
identify the salient edges and thereby to demonstrate how well the edges
are preserved after filtering. Results of this experiment is shown in Fig. 3
with the quantitative analysis given in Table 2 for comparison. It is
evident from Fig. 3h that the proposed method performs well in terms of
edge preservation and has produced an EPF value higher than the other
methods under consideration. ENL is calculated for region marked by
rectangle in Fig. 2. Only GGF-BNLM has higher ENL value than the
proposed method for the given image. This is because of the excessive
smoothing achieved at the cost of image details.

Experimental results for Lena image is given in Fig. 4. Noise free
image is corrupted with 3-Look speckle to form the noisy image and is
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shown in Fig. 4a. The filtered results for SAR-BM3D, PPB, GGF-BNLM and
proposed method are given in Fig. 4b–e respectively. SAR-BM3D is found
to retain residuals of speckle in homogeneous regions and this is evident
in visual analysis. PPB suppresses the speckle to an extend but lags
behind SAR-BM3D in terms of feature preservation. GGF-BNLM on the
other hand suffers from excessive smoothing. From the experimental
results, it is evident that the proposed method is able to strike a balance
between speckle suppression and feature preservation and this is backed
by the numerical results in Table 3a for Lena image. Proposed method
outperforms other filters in terms of PSNR and ENL due to excellent
speckle suppression achieved and also the high degree of smoothing
achieved in the homogeneous regions.

Results of the experiments carried out on a noise free House image
(Fig. 5a) corrupted with 3-Look speckle (Fig. 5b) is given in subsequent
sub figures of Fig. 5. Quantitative analysis in terms of PSNR and ENL is
given in Table 3b.

The proposed method was also tested on real speckled lunar SAR
images collected from Chandrayan-I mission. Chandrayan-I is an active
remote sensing lunar probe launched in October 2008 by Indian Space
Research Organisation, which pictured the polar regions of the moon
using an active SAR system which operated in 2.5 GHz frequency. The
original 2027� 2027 lunar image corrupted with speckle is shown in
Fig. 6. For better visual inspection, only a zoomed in region (marked by
red rectangle in Fig. 6) is presented in Fig. 7 as the outputs from various
filters. ENL is calculated for the region marked by rectangle in Fig. 7a.
Proposed method gave highest ENL value for the marked region, in
comparison with other techniques.

5.4. Computational complexity

Computational complexities of SAR-BM3D, PPB, GGF-BNLM and the
proposed method are asymptotically analyzed and compared in this
section. All of the above listed techniques fits into the category of non
local filtering and hence, the computational cost depends on size of the
image ðIÞ, search window ðWÞ and similarity window ðSÞ. PPB is an
iterative approach which iteratively refines the probabilistic weights for
T iterations and hence, its complexity is of the order of OðT*IWSÞ.
Complexity of SAR-BM3D is of the order of OðIWSþ IWÞ (Ni and Gao,
2016). GGF-BNLM has a complexity of OðIWSþ ISÞ. In the proposed
method, the coefficient of likelihood is calculated only once based on the
α-quantile of the noisy input. Coefficient of variance Cv is calculated once
for each windowW and hence the complexity of the proposed method is
of the order of OðIW þ IWSÞ. Search window and similarity window
being negligible when compared with size of image, complexity pre-
dominantly depends on I, the image size.

6. Conclusion

Despeckling of SAR images is an active area of research with several
new methods being proposed every year. Two highly desired qualities of
despeckled SAR images are high level of speckle suppression and excel-
lent feature preservation. Most of the techniques proposed so far, ach-
ieves speckle suppression by over smoothing and while doing so,
important features are lost. In order to bridge this gap, an improved SAR
despeckling technique based on guided filtering in the Bayesian non-local
framework was proposed which achieves smoothing, without compro-
mising feature preservation. Normalization coefficients for likelihood
and prior components were adaptively derived from the image statistics
itself, unlike the earlier guided SAR despeckling techniques which
determined the coefficients based on heuristics. In order to improve the
prior assumption on the noise distribution, we used simple and more
efficient linear filter based onMMSE estimation for creating the guidance
image. Experiments were carried out on both synthetic and real SAR
images to evaluate the performance of the proposed method. Results
were compared with other state-of-the-art SAR despeckling filters in the
NLM framework which includes PPB, SAR-BM3D and GGF-BNLM. On
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experimental analysis, the proposed method gave better results for
speckle suppression with high degree of smoothing achieved in homo-
geneous regions. Edge and feature preservation capabilities of the pro-
posed method were found to be effective in comparison with the
other filters.
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