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Growth by Optimization of Work (GROW) is a new modeling tool that automates fracture initiation,
propagation, interaction, and linkage. GROW predicts fracture growth by finding the propagation path
and fracture geometry that optimizes the global external work of the system. This implementation of
work optimization is able to simulate more complex paths of fracture growth than energy release rate
methods. In addition, whereas a Coulomb stress analysis determines two conjugate planes of potential
failure, GROW identifies a single failure surface for each increment of growth. GROW also eliminates
ambiguity in determining whether shear or tensile failure will occur at a fracture tip by assessing both
modes of failure by the same propagation criterion. Here we describe the underlying algorithm of the
program and present GROW models of two propagating faults separated by a releasing step. The dis-
cretization error of these models demonstrates that GROW can predict fault propagation paths within the
numerical uncertainty produced by discretization. Model element size moderately influences the pro-
pagation paths, however, the final fault geometry remains similar between models with significantly
different element sizes. The propagation power of the fault system, calculated from the change in work
due to fault propagation, indicates when model faults interact through both soft- and hard-linkage.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding how faults evolve and interact at different
stages of growth is fundamental to mitigating hazard in seismo-
genic regions. In addition, modeling fracture propagation, includ-
ing joints and faults, provides insight into subsurface processes
controlling the migration of water, ore-hosting fluids, and hydro-
carbons. The new modeling tool Growth by Optimization of Work
(GROW) uses a global work criterion to predict fracture propaga-
tion paths and interaction.

GROW provides an alternative to previous approaches of pre-
dicting fracture growth, which include the Hoek–Brown strength
criteria (Hoek and Brown, 1980; 1997), the Drucker–Prager cri-
terion (Drucker and Prager, 1952), and the Mogi criterion (Mogi,
1971). Another approach considers the energy release rate, or
energy per unit area required to create new fracture surface, G. G is
determined from the stress concentrations at a fracture tip (e.g.,
Irwin, 1958), which are controlled by the loading on, length and
shape of the fracture (e.g., Griffith, 1924; McClintock and Walsh,
1962; Lajtai, 1971). The direction of growth that maximizes G
ork; Wext, external work; W

eck).
predicts the collinear propagation path of opening-mode fractures
subject to mode-I loading, such as joints, veins and dikes (e.g.,
Pollard and Aydin, 1988; and references therein) and the curved
paths of opening-mode fractures under mixed-mode loading (e.g.,
Olson and Pollard, 1991; Cooke and Pollard, 1997; De Bremaecker
and Ferris, 2004). G also provides a criterion for in-plane growth in
shear (modes II or III) (e.g., Irwin, 1958). Although this criterion is
applicable to certain materials, it struggles to predict the growth of
faults within rock, where failure likely involves multiple, small-
scale processes of tensile failure and linkage (e.g., Schultz, 1999;
Crider and Peacock, 2004; Savalli and Engelder, 2005), which often
result in complex propagation paths.

Previous analyses have predicted the propagation path of faults
from the orientation of planes that maximize Coulomb stress (e.g.,
Crider and Pollard, 1998; Maerten et al., 2002; Olson and Cooke,
2005 ; Pollard and Fletcher, 2005). This approach determines two
potential failure planes on which the ratio of shear to normal
stress equals the internal coefficient of friction (Jaeger et al., 2007).
If the material has anisotropic strength, one of the failure planes
could be preferred; however, a robust numerical algorithm that
determines which of the two planes fails is not generalizable for
isotropic materials (Cooke and Madden, 2014). Furthermore, using
a tensile failure criterion and maximum Coulomb stress in parallel
can indicate that both tensile and shear failure are possible near a
fracture tip, but this approach cannot unambiguously indicate
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which failure mode is preferred (Cooke and Madden, 2014). Con-
sequently, mode-specific failure criteria struggle to simulate how
multiple faults may link and form one continuous structure. This
linkage is a primary mechanism by which fault networks evolve
(e.g., Crider and Peacock, 2004; and references therein).

GROW uses work minimization as an alternative method of
predicting failure orientation and fracture propagation in intact
rock. Numerous geologic problems related to the development of
crustal faults have been investigated with work minimization,
including slip-partitioning in transpressional environments (Jones
and Wesnousky, 1992), fault geometry in southern California
(Cooke and Kameda, 2002; Olson and Cooke, 2005), and the onset
of kink-folding in heterogeneous material (Maillot and Leroy,
2006). Work minimization also has been used extensively to in-
vestigate the dynamics of accretionary systems, including the
length of new accretionary forethrusts (Gutscher et al., 1998), the
temporal evolution of thrusts within accretionary wedges (e.g.,
Hardy et al., 1998; Del Castello and Cooke, 2007; Cubas et al.,
2008), and the distribution of stress in accretionary systems (e.g.,
Souloumiac et al., 2009, 2010; Yagupsky et al., 2014).

Cooke and Madden (2014) develop a general implementation of
work minimization to predict fault and joint propagation paths
with various failure modes and along complex propagation paths
by assuming that the crust deforms to optimize the external work,
Wext, acting on the system. Wext is the integral of the sum of the
products of shear traction and displacement, ss and us, and normal
traction and displacement, sn and un, along the boundaries of the
model, B:

σ σ=∯ ( + ) ( )W u u dB 1ext B s s n n

Wext reflects the overall mechanical efficiency of a system, such
that the most efficient fault propagation path will produce the
maximum change in external work, ΔWext, which is calculated as
the difference in Wext before and after fault propagation. Unlike
alternative methods of modeling fault growth, work minimization
provides a global approach that considers the energy expended in
deformational processes throughout the system. Searching for the
most efficient system with work minimization is an optimization
problem, and so work minimization and work optimization may be
used interchangeably.

In the following sections, we describe the GROW algorithm and
the functionality of Fric2D (Cooke and Pollard, 1997), which GROW
repeatedly executes to calculate Wext and thereby model fracture
growth. Madden et al. (submitted for publication) verify the
GROW algorithm by comparing GROW propagation paths to other
predictions of fault growth, and validates this tool by comparing
GROW results to laboratory observations. In this paper, we show
an application of GROW to two crustal-scale strike-slip faults se-
parated by a releasing step, because a significant advantage of
GROW is its application to the mixed-mode propagation of faults,
which occurs as the faults interact. We analyze the numerical error
of these models produced by discretization. We show that the
evolution of Wext closely parallels the propagation paths of the
modeled faults, and that changes in Wext can indicate when the
modeled faults transfer stress through soft- and hard-linkage.
2. Algorithm

The validated numerical modeling tool GROW, which is avail-
able under a free and open source license, models the evolution of
a fracture network by iteratively searching for the geometry of
fracture growth that maximizes the change in external work due
to that growth, ΔWext, divided by fracture area propagated in each
increment of growth,ΔA. We useΔWext/ΔA because systems with
more fracture area are more efficient than systems with less
fracture area due to the fact that they can accommodate more
strain under the same loading. GROW calculates fracture area by
considering fractures to have one unit width because it is a two-
dimensional, plane strain modeling tool.

To model fracture propagation, GROW first calculates the initial
external work of the system, Wext. Next, GROW identifies the most
efficient fracture geometry by (1) deforming the system and cal-
culating ΔWext/ΔA for the first fracture geometry, (2) modifying
the geometry in the input file to calculate ΔWext/ΔA for each
additional radial potential growth orientation, and (3) identifying
the geometry that maximizes ΔWext/ΔA. After GROW finds the
most efficient geometry, this geometry is set as the new fracture
geometry to which GROW now adds potential growth elements.
GROW will continue to simulate fracture propagation by repeating
the steps above until all of the fractures in the system intersect
other fractures or the boundary of the model, or if none of the tips
of the fractures fail in tension or shear.

In each propagation step, the most efficient fracture geometry
maximizes the magnitude of ΔWext/ΔA. However, the boundary
conditions of the system will determine whether Wext increases or
decreases with fracture growth. When displacements are prescribed
to the model boundaries, fracture growth decreases the tractions
along the boundaries and Wext decreases (Eq. (1)). If tractions are
prescribed to the boundaries, fracture growth increases the dis-
placements of the boundaries and Wext increases. Mixed boundary
conditions that include tractions on some model boundaries and
displacements on others only provide reliable analysis of Wext if one
of these conditions is set to zero. Under these conditions, the model
boundaries with either tractions or displacements set to zero do not
contribute toWext (Eq. (1)). For reliable GROWmodels, all of the non-
zero boundary conditions should be either displacement or traction
conditions. Either of these loading conditions may be prescribed to
analyze the increasing mechanical efficiency of a fracture network
with GROW, but displacement boundary conditions typically result in
faster execution times and more numerically stable results.

2.1. Fric2D and GROW input

GROW uses the two-dimensional boundary element method
numerical modeling tool Fric2D (Cooke and Pollard, 1997) to cal-
culate the stresses and displacements within the deforming frac-
ture system. Fric2D solves the quasi-static equations of deforma-
tion on each element to determine the displacement and tractions
produced by a given set of boundary conditions and influenced by
the fracture geometry. Fractures and boundaries are discretized
into linear elements of constant displacement discontinuity. Each
linear element defines the edge of a fracture plane that is one unit
length (e.g., one meter) in width within the plane strain system.
The fractures may open or slip, but may not interpenetrate, in
response to tractions or displacements applied to the model
boundaries, or from opening or slip along nearby elements.

Following a tension positive sign convention, opening occurs
when the normal stress along an element meets or exceeds its
tensile strength. Slip occurs when the shear stress meets or ex-
ceeds its frictional shear strength, which is the difference between
its cohesion and the product of normal stress and the coefficient of
friction along the fault. Fric2D uses the penalty method for fric-
tional slip with prescribed shear and normal stiffness along fault
elements to ensure that the elements do not interpenetrate (e.g.,
Cooke and Pollard, 1997; Maerten et al., 2010). Additionally, Fric2D
3.2.7 can simulate slip-weakening behavior along pre-existing
fractures and/or potential growth elements (Savage and Cooke,
2010). When an element slips beyond a prescribed slip-weakening
distance, the coefficient of friction along that element evolves
linearly from its static to its sliding value.
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To simulate fracture propagation with GROW, the user defines
the boundary conditions and initial fracture geometry in a Fric2D
input file. This input file also describes how the initial fractures can
grow. The user can specify that propagation will occur from one
point, multiple points, at one tip of one fracture, at both tips of one
fracture, at multiple tips of multiple fractures or any combination
of points and fracture tips. Because Fric2D is a boundary element
method modeling tool, fracture propagation in GROW is achieved
simply by the addition of a single element to the propagating
fracture tip. This direct approach differs from many finite element
method simulations of propagation, which require re-meshing or
constrain propagation paths to the boundaries of pre-existing
elements (e.g., Lisjak and Grasselli, 2014).

2.2. Propagation of one fracture tip

To simulate propagation with GROW, the user must specify
three angles that describe the orientations of potential radial
growth elements: the minimum and maximum angle to test, θmin,
θmax respectively, and the resolution angle, θr, which determines
the number of radial growth orientations tested in each increment
of growth. If the initial input file specifies growth from one tip of
one fracture, GROW adds a new element at the tip of that fracture
oriented θmin clockwise from the tip of the fracture, and calculates
ΔWext/ΔA from the Fric2D output (Fig. 1). Except in cases of in-
tersection (Section 2.6), the added element has the same length as
the elements of the initial fracture to ensure the stability of the
displacement discontinuity method. Next, GROW adds an element
at θminþθr to the initial input geometry and calculates ΔWext/ΔA
3Θr
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Fig. 1. Potential growth elements tested in an iteration of fracture growth when
minimum angle, θmin¼90°, resolution angle, θr¼45°, and maximum angle¼θmin

þCθr (where C44 in this example). Thin lines show potential growth elements.
Thicker lines show initial geometry. (A) Initial fracture geometry. (B–F) Potential
growth elements tested in first, lower-resolution search. Dashed line shows or-
ientation θmin clockwise from tip. (G and H) Geometries tested in higher-resolution
search. Orientation of potential element that maximizes ΔWext/ΔA in first broad
search of this propagation is θminþθr. In (G and H) dashed line shows location of
most efficiently oriented element identified in first lower resolution search.
for this new geometry. GROW continues calculating ΔWext/ΔA for
systems with different potential growth elements up to, but not
including, θmax. At the end of this search, GROW identifies the
orientation of the potential element, θopt, that maximizes ΔWext

/ΔA and thus optimizes the work of the system. If an element does
not fail in shear or tension, no slip or opening occurs on it and the
efficiency of the system does not change, soΔWext¼0. IfΔWext¼0
for all potential elements, propagation is arrested and the GROW
run terminates.

After all potential elements have been evaluated, and if at least
one potential growth element has failed, GROW refines the search
by finding ΔWext/ΔA of the system with an element oriented at
θoptþθr/2 and the system with an element oriented θopt�θr/2.
This additional step of the algorithm allows GROW to first search a
wide range of parameter space and then exact a higher-resolution
search close to the most efficient orientation found during the first
search. After GROW finds the most efficient growth orientation at
this fracture tip, GROW uses this efficient fracture geometry as the
initial input file for the next propagation step. In this subsequent
step, GROW searches for the most efficient orientation of an ele-
ment at the tip of the previously added element, which is now the
new fracture tip.

2.3. Propagation of multiple fracture tips

When two fracture tips are propagating, GROW searches for
and adds the most efficient element oriented from the tip of one
fracture, θopt1, without refining the search for the most efficient
element at that fracture tip (Fig. 2a). GROW then uses the new
Fric2D input file with the newly added potential element as the
starting input file to test the orientation of elements added to the
tip of the second fracture (Fig. 2b). After the most efficient or-
ientation is found for the second fracture, θopt2, GROW refines the
search by calculating ΔWext/ΔA for all combinations of θopt17θr/2
and θopt27θr/2 shown in Fig. 2d–g. GROW then uses the most
efficient geometry identified after this refined search as the input
Θopt1+Θr/2

A) initial geometry

B) test first fracture

C) test second fracture

D) refine first fracture

E) refine first fracture

F) refine second fracture

G) refine second fracture

H)optimal geometry found

Θopt1-Θr/2

Θopt2

Θopt2

Θopt1 

Θopt2-Θr/2

Θopt1

Θopt2+Θr/2

Fig. 2. Illustration of GROW algorithm when two fractures are propagating. Thin
lines show potential growth elements. Thicker lines show most efficient geometry
identified by GROW. (A) Initial fracture geometry. (B) Potential growth elements
tested in first iteration of propagation for upper fracture. (C) Potential growth
elements tested in first iteration of growth for lower fracture. (D–G) Geometries
tested in higher-resolution search. Dashed lines show elements that optimized
work for upper and lower fracture in first lower resolution search (B and C).
(H) Most efficient geometry identified in this iteration.
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Fig. 3. Example of fracture geometries tested in an iteration of growth when user
investigates fracture initiation at a point with resolution angle, θr,¼45°. Numbers
indicate order of orientations along which GROW adds elements and calculates
ΔWext/ΔA. User prescribes position (x,y) and length of one element, L. Element la-
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Fig. 4. Detection of fracture intersection and subsequent modification of element
nodes. (A) In intersection scenario one, a potential growth element intersects a pre-
existing fracture. To maintain kinematic compatibility among elements, GROW
replaces propagation element tip with smaller element I, and divides an element of
lower fracture into two smaller elements (labeled II and III) (B). (C) In intersection
scenario two, GROW detects fracture intersection because tip of newly added ele-
ment (thin line) falls within one element half-length of lower fracture. As a result,
GROW adds a smaller element (labeled I) to tip of upper, propagating fracture, and
divides element of lower fracture into two elements labeled II and III (D).
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file for the next propagation step. Additionally, GROW can in-
vestigate the initiation of fracture by searching for the optimal
orientation of a fracture at one or more prescribed points (Fig. 3,
and Supplementary material).

2.4. Evolving fracture properties

To simulate the process of failure at the tip of a fracture pro-
pagating through intact rock, the properties of the fracture ele-
ments evolve as their status changes from potential growth ele-
ments to fracture elements. Potential growth elements, which may
or may not become fracture elements, should have properties
consistent with those for intact rock (e.g., coefficient of internal
friction, inherent shear strength and tensile strength). This set of
properties ensures that tensile and/or shear failure of intact rock
are assessed for each potential radial path of propagation. After the
most efficient potential element is identified and added to the tip
of the fracture, GROW assigns to this element the strength prop-
erties of the pre-existing fracture (e.g., coefficient of static friction,
cohesion) prior to the next increment of growth. This approx-
imates the reduction in strength as a fracture propagates through
intact material.

2.5. Termination

A GROW simulation ends when all of the fractures in the sys-
tem stop propagating. A fracture stops propagating when it in-
tersects a model boundary, intersects itself or another fracture, or
if none of the potential growth elements fail in tension or shear.
Fig. 4 shows two possible intersection geometries. The first sce-
nario (Fig. 4a and b) occurs when the new element strictly inter-
sects a different fracture or boundary. In this situation, the new
element is shortened (Fig. 4b, element I), and a node is added to
the element of the other fracture or boundary, and thereby divides
the pre-existing element into two elements (Fig. 4b, element II and
III) so that the potential fracture tip intersects the other structure
at one node. The second scenario (Fig. 4c and d) shows that an
element is considered to intersect another element if its tip is
within half of the element length of another element. GROW uses
this criterion because the stresses within this distance of dis-
placement discontinuity elements can be unrealistically high,
which will generate an unrealistic assessment of failure. When a
potential growth element falls within this distance, GROW adds an
additional node to the nearby boundary or fracture element,
which produces two new elements (Fig. 4d, element II and III), and
adds a smaller element to the tip of the potential fracture element
(Fig. 4d, element I), so that the elements link at one node. GROW
identifies the most efficient growth orientation with ΔWext/ΔA so
that longer elements, which may have more slip, are not favored
over shorter elements, when intersection geometries require
varying element length.

Additionally, a fault will stop propagating in GROW if none of
the potential growth elements fail in either tension or shear. An
element fails in tension when the normal stress across its surface,
sn, which is positive when tensile, exceeds or equals the tensile
strength of the intact material at the fault tip, To:

σ ≥ ( )T 2n o

A potential growth element fails in shear following the Cou-
lomb criterion, when the magnitude of the shear stress across its
surface, τ, exceeds or equals the difference between the inherent
shear strength, So, and the product of the internal coefficient of
friction, μo, and normal stress, sn (tension positive), across the
potential element:

τ μ σ≥ − ( )S 3o o n

By determining if potential elements fail in the given stress
conditions, GROW incorporates robust failure criteria that have
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been validated by experimental studies (e.g., Sibson, 1977; Zhao,
2000) and field observations (e.g., Anderson, 1951; Nur et al., 1986;
Crider and Pollard, 1998). Each potential growth element must fail
by one of the above criteria to be considered a possible growth
direction, but the propagation direction is selected through work
optimization. If an element does not fail in either tension or shear,
then Wext equals that of the previous model and ΔWext/ΔA is zero
because no slip and/or opening along any new potential element
increased the efficiency of the system.

Under certain conditions, modeled faults will continue to pro-
pagate for many propagation steps. To free memory and reduce
processing time, GROW restarts automatically every five propa-
gation steps. When restarting a subsequent GROW run, GROW
uses the identical angle range and resolution (θmin, θmax, θr) ori-
ginally specified by the user, but sets the most efficient geometry
found in the previous propagation step as the initial input file.

2.6. Alternative algorithms for the development of multiple fractures

The algorithm implemented in this version of GROW assesses
the propagation of multiple fractures sequentially, which provides
a balance between computational efficiency and physical robust-
ness. When f tips of fractures are propagating, and a orientations
are tested in each increment of growth, GROW executes more than
fa Fric2D models. This sequential implementation finds the most
efficient radial element from the tip of one fracture before
searching for the efficient element at the tip of the other fracture.
One preliminary version of GROW propagated fractures simulta-
neously, rather than sequentially, so that GROW determined the
efficiency of systems with all the unique combinations of or-
ientations of fracture tips. However, this algorithm required fa

calculations in each increment of growth. For example, in a si-
multaneous propagation model with two fracture tips, growth
angles from θmin¼120° to θmax¼240°, and a resolution angle of
10°, Fric2D must solve the displacement discontinuity equations
4000þ times for each increment of fracture growth. In the current
sequential propagation implementation, these input parameters
only require �24 calculations for each growth increment. Future
versions of GROW may include a more computationally efficient
global optimization algorithm to determine the fracture geometry,
such as simulated annealing (e.g., Floudas and Gounaris, 2008),
which may permit simultaneous fracture growth.

In most fracture systems, the order in which GROW propagates
fractures only influences the resulting geometry when the tips of
the fractures closely approach other fractures or boundaries. This
influence may vary with loading conditions and fracture geometry.
The user may investigate this influence by changing the naming of
the fractures, as GROW propagates fractures in alphanumeric
order.
Fault and intact rock parameters used in GROW application. Intact rock properties
are prescribed to all potential elements that radiate from tip of propagating fault to
assess failure potential of each propagation orientation. Fault properties are pre-
scribed to elements of fault geometry that optimize work.

Property Value

Intact rock Poisson's ratio 0.17
Young's modulus 50 GPa
Tensile strength 18 GPa
Inherent shear strength 7 MPa
Internal friction 0.5

Fault Initial cohesion 0 MPa
Sliding cohesion 0 MPa
Static friction 0.3
Dynamic friction 0.3
Slip-weakening distance 0 m
3. Application to fault growth

Although GROW can assess both joint and fault propagation, its
utility is greatest for fault propagation, because work optimization
can directly compare the competing efficiency and likelihood of
tensile and shear failure (Cooke and Madden, 2014; Madden et al.,
Submitted for publication). To demonstrate an application of
GROW, we model the propagation and interaction of two kilo-
meter-scale faults separated by a releasing step. We investigate the
propagation paths of both faults and report on the evolution of
Wext andΔWext as the faults grow. We also investigate the effect of
element size on the propagation path of the faults and the nu-
merical error caused by discretization.
3.1. Input

To model fault growth within a releasing step, we apply dis-
placements along the model boundaries. Fig. 5 shows the
boundary conditions and initial fault geometry of 2 km of underlap
and 4 km of perpendicular separation between the faults.
Boundaries #1, 2 and 6 remain stationary as the upper portion of
the model moves. We prescribe rightward normal displacement of
1.5 m on boundaries #3 and #5, inward and outward respectively.
We set 1.5 m of rightward shear displacement along boundary #4,
which is consistent with the prescribed normal displacement
along the upper side boundaries (#3 and 5). Table 1 presents the
intact rock and fault characteristics used in this model. We use
intact rock and fault properties similar to values estimated for
granite (e.g., Hoek and Brown, 1997). However, in this example we
promote shear failure by using an elevated tensile strength for
intact granite of To¼18 MPa, which is somewhat larger than the
estimated average To of �0.01–1 MPa (Hoek and Brown, 1997).
Lower values of To would favor wing-crack propagation as opposed
to shear failure, which we wish to demonstrate in these models.

We specify the potential element orientation range that GROW
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searches with a resolution angle of θr¼15°, a minimum angle of
θmin¼150°, and a maximum angle of θmax¼270°. We execute three
GROW models that differ only by the element length of the faults
and boundaries, L, which we set as 125 m, 250 m, and 500 m. For
propagation to appropriately respond to the concentration of
stresses at fracture tips, the length of elements comprising a
fracture in a boundary element method model should be less than
1% of the total fracture length (e.g., Madden et al., Submitted for
publication). The initial fracture geometry of the models shown
here simulate half of two 28 km faults, so elements with length
o280 m will produce greater accuracy. We show results of a
model with an element length greater than the recommended size
(500 m), and two models with element length within the re-
commended range to demonstrate the effect of selecting element
sizes greater and less than this critical value.

The solutions for inelastic systems, such as those with frictional
slip, can vary with number of loading steps (e.g., Cooke and Pol-
lard, 1997). However, if the loading of the system is at or very near
failure, such as our application, then increasing the number of
loading steps has negligible impact on the solution because the
system is elastic until it fails. For the L¼125 m model of our ap-
plication, the ΔWext due to increasing the number of loading steps
by an order of magnitude for the initial model geometry is �4% of
the minimum ΔWext due to fault propagation calculated for any
growth increment in the evolution of the system. Applying the
displacement in only one loading increment likely does not
strongly influence the efficiency of the orientation determined by
GROW for the application presented here.

3.2. Results

For the three models investigated in this GROW application, the
faults propagate toward each other and eventually link (Fig. 6, and
animations in the Supplementary material). In the models with
L¼125 m and 250 m, the faults propagate collinearly for �2.9 km
before each begins to propagate toward the opposite fault. In
contrast, in the model with L¼500 m, the faults propagate out-of-
plane, at 187.5° clockwise to the fault tip and toward the opposite
fault, in the first iteration of growth. The propagating tips of the
faults with L¼500 m intersect one another closer to the center of
the model than in the models with smaller elements because
PPropagation 8Propagation 4Initial GeometryC) Element length=500 m
initial geometry

PInitial Geometry Propagation 40 Propagation 60A) Element length=125 m 
initial geometry

PPropagation 20Propagation 10Initial GeometryB) Element length=250 m
initial geometry

Fig. 6. Propagation path of faults for model with 125 m element length (A), 250 m eleme
lines. Faults propagated by GROW colored in gray lines. For all models, faults propag
intersection and nodes of each element in final propagation step. Each gray box has eq
these faults immediately begin propagating out-of-plane toward
the adjacent fault.

To further demonstrate the effect of element size, we show the
numerical error produced by discretization for models with
L¼500 m, 250 m, 125 m, 62.5 m, and 31.25 m (Fig. 7a). Here, we
calculate the discretization error of a model with an element size
of L as the difference in Wext between a model with element size L
and a model with element size 2 L because the exact analytical
solution of Wext for this system is not currently known, and may
not exist. For example, the discretization error calculated for the
model with L¼125 m is the initial Wext of the L¼125 m model
subtracted by the initial Wext for the L¼250 m model. The dis-
cretization error decreases with increasing number of elements
approximately as a power law with an exponent of �0.97 (Fig. 7a).
This asymptotic convergence rate suggests that defining dis-
cretization error as the difference in Wext between models with
different element sizes provides a viable approximation of the
numerical error due to discretization in the absence of an exact
analytical solution.

The computational time required to run one Fric2D model of
the initial fracture geometry with the five aforementioned ele-
ment sizes on one CPU of a 64 bit quad-core Linux server increases
as element size decreases as a power law with an exponent of
�3.3 (Fig. 7a). The exponents, or rates of convergence, of the best-
fit power laws of the run time and discretization error reveal that
run time increases much more rapidly than discretization error
decreases for this range of element sizes. The total run time for a
complete GROW propagation sequence depends on the time re-
quired to run one Fric2D model, the number of fracture geometries
tested within one increment of growth, and the total number of
increments of fracture growth in the GROW run. The number of
increments of growth, run time of an individual model with
L¼125 m, and angle range and resolution of search for the effi-
cient orientation produced a total run time of �2.5 weeks for this
model. Future implementations of GROWwill explore parallelizing
the search for efficient fracture geometries to take advantage of
distributed CPU.

The distribution of ΔWext for each potential element added to
the tip of the lower right fault in the first growth increment in-
dicates that some of the potential elements (θ¼150°, 240°) did not
meet either failure criterion implemented in GROW, as ΔWext¼0
Final Propagationropagation 12 Propagation 16

ropagation 80 Final PropagationPropagation 100

Propagation 40 Final Propagationropagation 30

nt length (B), and 500 m element length (C). Initial fault geometry colored in black
ate toward adjacent fault until they link. Inset gray boxes show details of fault
ual area, so differing element size may be directly compared.
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for these orientations (Fig. 7b). The discretization errors calculated
for each model are less than the amplitude of each respective
ΔWext curve, and as the element size decreases, the predicted
orientation of the most efficient element converges to the same
value (Fig. 7b). These relationships lend support to the supposition
that GROW can discern the optimal growth orientations in this
system.

The evolution of Wext with fault growth for the model with
L¼125 m indicates that as the faults propagate under the applied
displacements, Wext decreases and the overall mechanical effi-
ciency of the fault system increases (Fig. 8a). In GROW models, the
evolution of the system due to fracture growth serves as a proxy
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for time, so we refer to the change in efficiency rate (ΔWext) as
propagation power because power is the rate of change in work
with respect to time. The largest increase in propagation power
occurs when the faults hard-link to one another in the final pro-
pagation step (Fig. 8b). Generally, propagation power decreases as
the faults grow until it begins to increase late in the development
of this fault system when the faults approach one another
(425 km*m total new fault area in Fig. 8b). After that point, the
propagation power quickly increases with fault growth. This in-
crease in propagation power starts when the tips of the faults are
�2 km from each other and begin to propagate more directly
toward each other.
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Before �25 km*m new fault area has propagated, episodic in-
creases in propagation power are followed by periods of decreas-
ing propagation power. These transient increases in propagation
power occur when the faults do not propagate exactly inline
(θ≠180°). The non-collinear propagation at one fault tip, at 187.5°
clockwise from the tip, produces this first transient increase in
propagation power (Fig. 8b, inset i). Similar episodic increases in
propagation power occur at two additional instances in the evo-
lution of the fault network, and similarly correspond to when the
faults propagate out-of-plane.

3.3. Discussion

This application of GROW demonstrates that the evolution of
propagation power is closely related to the propagation path of the
modeled faults. When the faults first begin to propagate, the sys-
tem becomes increasingly efficient with relatively high propaga-
tion power. Propagation power then decreases as each increment
of growth contributes a smaller gain in efficiency, except when the
fault propagation paths periodically propagate along a more direct
path towards the adjacent fault (Fig. 8b, i). The increase in pro-
pagation power as the faults grow within 2 km of each other, and
their propagation paths deflect towards each other, shows that
work minimization can detect the interaction between, and soft-
linkage of the faults. The most significant increase in propagation
power occurs when the faults hard-link through the releasing step
in the final propagation increment (Fig. 6a). This hard-linkage
causes Wext to decrease to �0 J/m2 in the final increment (Fig. 8a)
because the faults intersect each other.
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Previous workers have identified soft-linkage from the slip
distribution of faults. In contrast to isolated fault segments that
host an elliptical slip distribution along strike according to classical
linear elastic fracture mechanics (e.g., Pollard and Segall, 1987), or
a bell-shaped distribution following elastic–plastic theory (e.g.,
Cowie and Scholz, 1992), fault segments that interact, but have not
hard-linked, often display an asymmetric slip distribution profile
with maximum slip shifted toward the nearby fault (e.g., Man-
ighetti et al., 2001; and references therein). If the aggregate slip
distribution of all the faults in a network produces an approxi-
mately elliptical shape, then individual fault segments within the
network are considered to function as one coherent structure (e.g.,
Soliva and Benedicto, 2004; and references therein) and may be
identified as soft-linked. Individual faults will function as one
structure when the stress perturbations produced by slip on or
propagation of a fault in the network affects any nearby faults. In
the application of GROW shown here, we identify soft-linkage as
when fault interaction begins to contribute to relatively large gains
in efficiency (Fig. 8b, ii), but before the faults link to each other.

Slip profiles of the modeled fault network at two stages of
growth, which encompass the increment when we identify soft-
linkage through ΔWext, show that as the faults propagate, slip
along the parallel traces of the faults decrease, while additional
slip is accommodated near the growing fault tips (Fig. 9). The soft-
linkage of the faults, after GROW has propagated 24 km*m of new
fault area, promotes slip transfer between the faults and increases
slip near the tips of the faults. The increasing efficiency of the
system shown by ΔWext, and the change in the slip distribution
suggest the transfer of stress through soft-linkage.
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For all three models, the first-order similarities of the final fault
geometries are striking considering that the element size differs by
a factor of four, which corresponds to a difference of more than
800 elements. The variation of the L¼500 m model from the
L¼125 m and 250 m models may reflect inaccuracy arising from
the inability of the long element (4 1% total fracture length) to
respond to the localized fracture tip stress field. In each model, the
faults in the releasing step propagate toward the adjacent fault
and eventually link with the opposite fault. These modeled paths
resemble the pattern of faulting often observed in natural releas-
ing steps (e.g., Cunningham and Mann, 2007).

The discretization errors calculated for each model are less than
the amplitude of each respective ΔWext curve, and as the element
size of the models decrease, the optimal orientation predicted by
GROW converges to the same value (Fig. 7b). These relationships
lend confidence to the propagation paths predicted by GROW,
because they imply that the most mechanically efficient orienta-
tion of potential fault growth element can be differentiated from
less optimally oriented elements within the error margin.

4. Conclusions

GROW can predict fracture initiation, non-linear propagation,
and interaction between multiple fractures through intact rock by
iteratively searching for the radial propagation path that optimizes
the external work of the system, and thus its overall efficiency. The
work optimization approach implemented in GROW provides the
functionality to model the evolution of fracture networks in a broad
range of tectonic environments that follow complex propagation
paths. Similar to the maximum Coulomb stress and energy release
rate criteria, GROW can be used to investigate the mode-I failure
and propagation of joints and veins. GROW also can predict the
complex, out-of-plane propagation paths of faults and fractures that
propagate by both shear and tensile failure. This work optimization
approach directly compares the efficiency of shear and tensile fail-
ure at a fracture tip and so predicts a unique propagation path at
every increment of growth. Additionally, this boundary element
method approach allows fracture propagation to be modeled simply
by adding an element to a fracture tip, and does not require com-
plex re-meshing. GROW allows the user to set the intact rock
properties, fracture properties, initial fracture geometry, and
boundary conditions in order to simulate a specific system or test a
general hypothesis. The application of GROW shown here demon-
strates that element size can influence the final fault geometry, but
that the first-order shape of the final fault geometry remains rela-
tively similar even when element size differs by a factor of four. The
evolution of propagation power, as calculated from GROW output,
provides significant information about fault interaction and de-
lineates the timing of soft- and hard-linkage.
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