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The mineralization area (Altınpınar, Torul–Gümüşhane) is situated in the Southern Zone of the Eastern Pontides
Orogenic Belt (EPOB), which is one of the important metallogenic provinces in the Alpine–Himalayan belt and is
intruded by the late Carboniferous granitic rocks (Gümüşhane Granitoid), an early to middle Jurassic volcano-
sedimentary unit consisting mainly of basaltic–andesitic volcanic and pyroclastic rocks (Şenköy Formation)
and Eocene basaltic–andesitic volcanic rocks (Alibaba Formation). The studied Pb–Zn ± Au mineralizations are
related to silica veins ranging from a fewmillimeters to amaximumof 40 cm in thickness and are localizedwithin
fracture zones developed along the contact between the Gümüşhane Granitoid and Şenköy Formation. Silicic,
sulfidic, hematitic, argillic, intense chloritic and carbonate alteration are the most common types from the fault
lines toward the outer zones. Cavity filling and banded structures are widely observed. The mineral paragenesis
comprises galena, sphalerite, pyrite, chalcopyrite, tennantite and quartz. Mineral chemistry studies indicate
that ion exchange occurs between Zn and Fe in sphalerites, and the Zn/Cd ratio of sphalerites varies between
50.65 and 144.64. The homogenization temperatures measured from fluid inclusions vary between 170 °C and
380 °C, especially between 250 °C and 300 °C, and the wt.% NaCl eqv. salinity of ore-forming fluids is between
2.4 and 7.3 (4.7 on average), supporting an epithermal system in their origin. The values of sulfur isotopes,
which are obtained from pyrite and galena minerals, range between−8.3‰ and −2.3‰, indicating that sulfur,
which enables mineral formation, originates from magmatic genesis. The average formation temperature of the
ore is 317 °C as determined with a sulfur isotope geothermometer. The values of oxygen and hydrogen isotopes
vary between 8.5‰ and 10.2‰ and−91‰ and−73‰, respectively. With regard to the compositions of oxygen
and hydrogen isotopes, fluids comprising the mineralization are formed by the mixture of magmatic water and
meteoric water. This situation is supported by the fact that the increase in the homogenization temperature
indicates dilution with surface water but depends on the increase in the salinity of fluid inclusions. Considering
all the data, it is clear that the studied mineralization is an epithermal vein-type mineralization that is related to
granitic magmas.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Pontides orogenic belt, which geographically corresponds to the
northern part of Turkey and constitutes an important part of the Alpine–
Himalayan system, was shaped by subduction of Tethyan oceanic litho-
sphere beneath the Pontide continental crust during Meso-Cenozoic
time (e.g., Dewey et al., 1973; Şengör and Yılmaz, 1981; Bektaş et al.,
1999; Eyuboglu et al., 2011a, 2014). However, the subduction polarity
is still controversial owing to a lack of systematical geological and
geochemical data. The Pontides belt is divided into three subzones as
western, central and eastern Pontides from west to east. The Eastern
Pontides Orogenic Belt (EPOB) is restricted by Central Pontides in the
west and Lesser Caucasus in the east.

The EPOB is one of most important metallogenic provinces and hosts
many types of economical ore deposits, such as volcanogenicmassive sul-
fide (VMS), porphyry copper, skarn and epithermal vein-types. Yalçınalp
(1992) asserted in his research in Güzelyayla (Maçka–Trabzon) that the
Güzelyayla porphyry Cu–Mo deposit had a mesothermal characteristic
and emerged between 280 and 460 °C. Turkish volcanic-hostedmassive
sulfide deposits are hosted by Upper Cretaceous felsic volcanics. These
massive sulfide deposits are mainly Cu–Pb–Zn type owing mainly to
the Cu-rich underlying rock section (Çiftçi, 2000). Tüysüz (2000) re-
ported that silicification is restricted mainly to the ore-bearing dacites,
whereas sericitic, argillic and carbonate alteration occurs widely both
in dacites and overlying tuffaceous units in Murgul massive sulfide de-
posit (Artvin, NE Turkey). Detailed mineralogical and geochemical
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studies indicate that the hydrothermal alteration zones developed wall
rocks, passing away from the deposit; sericite–carbonate zone, quartz–
sericite zone, Mn–Fe carbonate zone and outer propylitic zone and δ34S
values (+2 to +6.7‰) of sulfur minerals indicate a magmatic source
for the sulfur in Midi (Gümüşhane, NE Turkey) epithermal Pb–Zn
deposit (Lermi, 2003). Demir et al. (2008) determined that the forma-
tion of the Köstere (Gümüşhane) mine was related to the settlement
of Torul Pluton, which is the youngest unit in the district; additionally,
meteoric waters were also effective in ore formation per the average
salinity values of 5.4% obtained from fluid inclusion studies. Sipahi
(2011) suggested that the Fe skarn deposit at Arnastal and the skarn
occurrence at Camiboğazı (Maçka–Trabzon) formed as a result of con-
tact pyrometasomatic activities related to I-type granitoid intrusion. Ac-
cording to result of O, H and S isotopes coupled with mineralogical and
textural data, Aslan (2011) emphasized that the Mastra (Gümüşhane)
Au deposit is a low sulfidation type epithermal system. Akaryalı and
Tüysüz (2013) came to the conclusion, as a result of studies conducted
on the gold mineralization in the Arzular district that the gold mineral-
ization in the Arzular (Gümüşhane) district emerged within the hydro-
thermal vein-type, sulfur-containing epithermal system. Demir et al.
(2013) emphasized that the reason for the high silver content in the
Istala deposit is (Gümüşhane) due to the input of later-stage, copper-
rich, low-temperature hydrothermal fluids. Eyuboglu et al. (2014)
suggested that the geodynamic setting and host rock geochemical
characteristics (calc-alkaline to shoshonitic) of the eastern Pontides
volcanic-hosted massive sulfide deposits are different from those of
Fig. 1. Tectono-geological map showing the main lithological un
After Eyuboglu et al. (2015a).
classic Kuroko-type VMS deposits and named them as ‘’Black Sea-type
Volcanogenic Massive Sulfide Deposits”. In another study performed
in Murgul Mine (Artvin), it has been suggested that the Murgul volca-
nics were derived from an enriched source, whichwas previouslymod-
ified by subduction fluids in a geodynamic setting (Sipahi et al., 2014).
On the other hand, the alteration patterns and ore formation in the
Murgul (Artvin, NE Turkey) volcanic-hosted massive sulfide deposit in
the northern part of the Eastern Pontides metallogenic belt were
formed by hydrothermal fluids, a mixture of seawater and magmatic
fluids resulting from the emplacement of late Cretaceous granitoid
intrusions (Abdioğlu et al., 2015).

The Pb–Zn ± Au vein-type mineralizations are hosted by early to
middle Jurassic (Lermi, 2003), late Cretaceous (Demir, 2005; Demir
et al., 2008, 2013), and Eocene (Tüysüz et al., 1994; Tüysüz and Akçay,
2000; Aslan, 2011; Akaryalı, 2010; Akaryalı and Tüysüz, 2013) volcanic
and pyroclastic rocks exposed in the EPOB. The studiedmineralization is
found in the early to middle Jurassic volcanic rocks exposed along the
contact between the late Carboniferous Gümüşhane Granitoid and
early to late Jurassic Şenköy Formation. Although the geological and
geochemical characteristics of the rock units exposed in themineraliza-
tion field have been researched (e.g., Güner and Yazıcı, 2011; Dokuz,
2011; Eyuboglu et al., 2013a; Eyuboglu, 2015), the origin of ore deposits
and hydrothermal alterations have not yet been studied.

In contrast to previous works, this study presents new geological,
geochemical, fluid inclusion and stable isotope data on the origin of
epithermal vein-type Altınpınar mineralization, which is exposed in
its and tectonic zones of the Eastern Pontides Orogenic Belt.
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the Southern Zone of EPOB and its host rocks and also discusses their
possible source areas and geodynamic setting considering new and
old data.

2. Geological background

The EPOB can be divided intoNorthern, Southern andAxial subzones
depending on its tectonic characteristics, lithological units and facies
changes (Bektaş et al., 1995; Eyuboglu et al., 2006, 2015a, Fig. 1). The
Northern Zone is generally represented by late Cretaceous and Tertiary
volcanic rocks and granitic and gabbroic intrusions (e.g., Kaygusuz and
Aydınçakır, 2011; Kaygusuz et al., 2014; Eyuboglu et al., 2015a). In
this zone, the late Cretaceous sequence consisting mainly of basaltic–
andesitic–dacitic volcanic and associated pyroclastic rocks hosts numer-
ous economical massive sulfide deposits such as Murgul, Kutlular,
Harköy, Köprübaşı and Lahanos (Fig. 2). The basement units including
Paleozoic Pulur, Ağvanis and Tokat metamorphic massifs and also late
Carboniferous Gümüşhane and Köse granitoids are well exposed in
the Southern Zone of EPOB (e.g., Topuz et al., 2010; Dokuz, 2011). In ad-
dition to the basement rocks, late Carboniferous to Triassic Alaskan-type
mafic–ultramafic intrusions (Eyuboglu et al., 2010), late Cretaceous
high-K volcanic rocks (Eyuboglu, 2010) and late Paleocene–early Eo-
cene adakitic rocks (Topuz et al., 2005; Karslı et al., 2010; Eyuboglu
et al., 2011a) are the most common rock units in the Southern Zone.
The Axial Zone is characterized by an existence of large ultramafic bod-
ies (Kop and Erzincan ultramafic massifs) and also middle to late Creta-
ceous ophiolitic olistostromalmélange (Eyuboglu et al., 2007; Eyuboglu
et al., 2015b). These zones are separated from each other with NW, NE
and EW-trending regional fault zones, which are the main tectonic
structures that control the opening and closing of the basins and the
emplacement of magmatic bodies and relatedmineralizations in the re-
gion (Eyuboglu et al., 2006, 2015a, Fig. 1).

The study area is situated in the Southern Zone of EPOB (Fig. 1). The
oldest rock unit is the Kurtoğlu metamorphic complex, consisting
Fig. 2. The geological map, showing the distribution of the m
After Eyuboglu et al. (2014).
mainly of mica schists, gneisses and metagranitic dikes cutting them.
The minimum age of themetamorphic event in this unit is the late Car-
boniferous at approximately 320Ma (Topuz et al., 2007). Themetamor-
phic lithologies are cut by the late Carboniferous non-metamorphic
Gümüşhane and Köse granitoids, which include many rock types such
as granite, granodiorite, quartz diorite, dacite and rhyolite (Topuz
et al., 2010; Dokuz, 2011). These basement units are unconformably
covered by the early to middle Jurassic Şenköy Formation, which hosts
the studied mineralizations. This rift-related formation starts with
coarse-grained clastic sedimentary rocks, grades upward with red
pelagic limestones of Rosso-Ammonitico facies, continues with a
volcano-sedimentary sequence including mainly clastic sedimentary
rocks and basaltic–andesitic volcanic and associated pyroclastic rocks
and is overlain by late Jurassic to early Cretaceous carbonate rocks
(Berdiga Formation) deposited during long-lived thermal subsidence
in the entire belt (Eyuboglu et al., 2006). In a recent study, Eyuboglu
et al. (2015b) indicated that the basement units of the Şenköy Forma-
tion are cut by Aalenian–Bajocian granitic to quartz dioritic intrusions.
The late Cretaceous time is represented by a thick turbiditic sequence
with interlayered felsic tuffs (Tokel's, 1972Kermutdere Formation). Zir-
con U–Pb age determinations from the felsic tuffs indicate that the se-
quence was deposited on the carbonate platform in Campanian
(Eyuboglu, 2015). These pre-Cenozoic lithological units exposed in the
Gumushane area are cut by early Eocene adakitic porphyries (Karslı
et al., 2010; Eyuboglu et al., 2011a, 2013b) and are uncomfortably
covered by the middle Eocene Alibaba Formation including mainly
basaltic–andesitic volcanic rocks and their pyroclastic equivalents. All
rock units are cut by basaltic dikes of unknown age.

In the Altınpınar mineral field, the late Carboniferous Gümüşhane
Granitoid, early to middle Jurassic Şenköy Formation and Eocene
Alibaba Formation are the main lithological units (Fig. 3). The
Gümüşhane Granitoid is one of the two large plutons exposed in the
Southern Zone of EPOB and consists mainly of granite, granodiorite
and quartz diorite. However, in the study area, it is represented only
ain ore deposits in the Eastern Pontides Orogenic Belt.



Fig. 3. Geological map of the Altınpınar mineralization field.
After Güner and Yazıcı (2011).
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by granite that is well exposed in the southwestern corner of the map
area (Fig. 3) and can be easily distinguished from surrounding rocks
by its pinkish color owing to high abundances of orthoclase in the
rock. It has well-developed fractures that are generally filled by second-
ary calcite and quartz. The zircon U–Pb age determinations indicated
that the Gümüşhane Granitoid is Carboniferous in age (Topuz et al.,
2010). The Gümüşhane Granitoid is unconformably covered by an
early to middle Jurassic volcano-sedimentary sequence that occurred
between the Sinemurian and Callovian stages (Eyuboglu et al., 2015a,
2015b). In the study area, the sequence is represented by basalts and as-
sociated pyroclastic rocks that host the mineral systems. The youngest
unit exposed in the study area is the Eocene Alibaba Formation, which
consists predominantly of basaltic–andesitic volcanic rocks and their
pyroclastic equivalents and has a tectonic contact with the early to
middle Jurassic Şenköy Formation (Fig. 3).

3. Field characteristics and alteration

The studied Pb–Zn ± Au mineralizations are related to silica veins
ranging from a few millimeters to a maximum of 40 cm in thickness
and are localizedwithin fracture zones. Themain ore occurs in a fracture
zone, trending N70°W and dipping 40°SW, extending along the contact
between the Gümüşhane Granitoid and Şenköy Formation. Siliceous,
sulfidic, hematitic, argillic, chloritic and carbonate alteration are most
common around the main mineralization zone (Fig. 4). Chloritic alter-
ation is widespread in the most outer sections of the fracture zone, in-
cluding the main ore zone, and is easily distinguished from the other
alteration types with its green and greenish gray color (Figs. 5b and c),
as well as with a brownish green color when in contact with hematitic
alteration (Fig. 5a and d). The stockwork of secondary calcite (Fig. 5c),
which cut each other, is observed in the fractures with a width of a
few millimeters that developed in the intense areas of chloritic alter-
ation. Hematite and limonite are well exposed along the contact
between the Gümüşhane Granitoid and Şenköy Formation and also lo-
cally in themineralization site (Fig. 5a). Small-scale and local sulfidation
type alteration (Fig. 5d) is observed in the zones near the ore, depending
on the disseminated pyrite that develops on quartz veins (Fig. 5e and f),
which emerges because of intense silicification in the ore-bearing
fracture zones of granitic rocks.

4. Analytical methods

The chemical compositions of pyrite, chalcopyrite, sphalerite, galena
and tennantite were measured on a Cameca SX-100 electron probe
micro-analyzer (EPMA) at the New Mexico Institute of Mining and
Technology, Socorro, NM, USA, using an accelerating voltage of 15 kV
and a beam current of 20 nA.

Fluid inclusion analyses were performed at the Mineral Research &
Exploration General Directorate (MTA, Ankara). The heating and
cooling stages of Linkam MDSG 600 (motorized), which is a fully
automatic and programmable system, were used for fluid inclusion
studies. The stage was mounted to the Leica DM 2500 M microscope.
Lenses with magnifications of 20× and 50× were used for examina-
tions. The Linksys32 software application was used because of its pro-
grammability. The temperature intervals of the Linkam stage varied
between −196 °C and 600 °C. Heating and cooling rates increased



Fig. 4. Alteration map of the Altınpınar mineralization field.
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from 0.1 °C/min to 150 °C/min. In the cooling procedures, liquid nitro-
gen (N2) was used.

Hydrogen and oxygen isotope analyses were performed on sericite
and quartz, respectively, at ACTLAB (Canada). They are reacted with
BrF5 at ~650 °C in nickel bombs following the procedures described
by Clayton and Mayeda (1963). The fluorination reaction converts O
in the mineral(s) to O gas, which is subsequently converted to CO2 gas
using a hot C rod. All reaction steps are quantitative. Isotopic analyses
are performed on a Finnigan MAT Delta, dual inlet and isotope ratio
mass spectrometer. The data are reported in the standard delta notation
as per mil deviations from V-SMOW. External reproducibility is
±0.19‰ (1σ) based on repeated analyses of our internal white crystal
standard (WCS). Our value for NBS 28 is 9.61 ± 0.10‰ (1σ). Samples
weighing 0.02 to 1.0 g are wrapped in molybdenum foil and placed in
a platinum crucible, which is then suspended inside a quartz extraction
vessel. The vessel and its contents are outgassed in a vacuum at 120 °C
for 4 h to remove surface-adsorbedwater. The sample is then inductive-
ly heated at 1400 °C for up to 20 min, and the gases are collected in a
trap held at −196 °C. Nearly all of the hydrogen is released in the
form of water, but miniscule quantities of hydrocarbons or molecular
hydrogen released or produced during this treatment are oxidized
over CuO at 550 °C to form H2O and CO, which are also collected in
the trap. The accumulated water representing the total amount of hy-
drogen in the samples is separated from the other gases by differential
freezing techniques. Thewater is reactedwith uraniumat 900 °C to pro-
duce H2 and collected on charcoal at −196 °C. The volume of the H2 is
measured manometrically. Analyses of the water contents are repro-
ducible to ±0.2 wt.%. Isotopic analyses, conducted by conventional iso-
tope ratio mass spectrometry, are reported in the familiar notation per
mil relative to the V-SMOW standard. Duplicate analyses are made of
some of these samples, and the δD values agree to better than ±3.
Using the procedure described above, we measured a δD value of −65
for the NSB-30 biotite.

For sulfur isotopes, pyrite and galena minerals were analyzed at
ACTLAB (Canada). Pure BaSO4 and pure sulfide samples are combusted
to SO2 gas under ~10−3 Torr of vacuum. The SO2 is inlet directly from
the vacuum line to the ion source of a VG 602 Isotope Ratio Mass Spec-
trometer (Ueda and Krouse, 1986). Quantitative combustion to SO2 is
achieved bymixing 5mg of samplewith 100mg of a V2O5 and SiO2mix-
ture (1:1). The reaction is carried out at 950 °C for 7min in a quartz glass
reaction tube. Pure copper turnings are used as a catalyst to ensure con-
version of SO3 to SO2. Internal Lab Standards (SeaWaterBaSO4 and
FisherBaSO4 are run at the beginning and end of each set of samples (typ-
ically 25) and are used to normalize the data as well as correct for any
instrument drift. All results are reported in the per mil notation relative
to the international CDT standard. The precision and reproducibility
using this technique are typically better than 0.2‰ (n = 10 internal
lab standards).



Fig. 5. Field photos showing the relations between mineralization and host rocks and also alterations in the mineralization field.
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5. Results

5.1. Ore petrography and mineral chemistry

Microscopic examinations of ore-bearing samples collected from
veins in the Altınpınarmineralization field showed that galena, sphaler-
ite, pyrite, chalcopyrite and tennantite are the main ore minerals,
whereas quartz is a gangue mineral that is euhedral and presents a jag-
ged and cavity structure, suggesting an existence of epithermal system
in their origin. Pyrite, which is the most common observed mineral
Fig. 6. Photomicrographs taken under reflected light images showing the textural relations amo
and euhedral quartz with jagged structure, (b) quartz gangue and cataclastic Pyrite, (c) cata
sphalerite, (f) pyrite inclusions in chalcopyrite (Qz: quartz, Gn: galena, Sp: sphalerite, Py: pyrit
after galena and sphalerite, presents cataclastic texture and is mostly
found in thequartz gangue (Fig. 6b and c); pyrite is sometimes observed
anhedrally as residual inclusions from replacementwithin chalcopyrite.
Microprobe analysis showed that pyrites do not contain significant
amounts of Cu and Zn (Table 1). Chalcopyrite, which is found in the
quartz gangue and mostly precipitated simultaneously with galena
(Fig. 6f), is anhedral and present exsolution texture within sphalerite.
Chalcopyrite includes low amounts of Zn (0.01–0.33 wt.%). Galena,
which is easily recognized by their grayish white reflection and present
triangular pits in their euhedral minerals, is the most abundant ore
ng the oreminerals in the studiedmineralization. (a) Replacement of galena by sphalerite
clastic texture in pyrite, (d) galena and euhedral quartz, (e) chalcopyrite exsolutions in
e, Ccp: chalcopyrite, Scale bar = 200 μm).



Table 1
Statistical data of microchemical analysis of ore minerals.

S
wt.%

Fe
wt.%

Cu
wt.%

Zn
wt.%

Mn
wt.%

Cd
wt.%

Sb
wt.%

As
wt.%

Ag
wt.%

Au
wt.%

Pb
wt.%

Zn/Cd

Pyrite n = 19 Min. 51.55 45.54 0.00 0.01
Max. 54.85 47.89 0.22 0.50
Mean 53.36 46.38 0.08 0.9

Chalcopyrite n = 9 Min. 34.08 29.63 33.48 0.01
Max. 34.79 30.57 33.97 0.33
Mean 34.39 30.18 33.71 0.05

Sphalerite n = 20 Min. 32.34 0.01 0.01 61.75 0.01 0.44 50.65
Max. 33.51 1.42 1.24 64.42 0.15 1.48 144.64
Mean 32.81 0.59 0.23 63.4 0.04 0.75 94.77

Tennantite n = 6 Min. 26.67 0.59 31.25 8.81 0.01 19.35 0.03 0.01 0.05
Max. 28.22 1.53 37.96 12.11 0.14 21.33 0.05 0.03 0.19
Mean 27.68 0.87 35.16 10.19 0.03 20.46 0.04 0.02 0.10
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mineral in sphalerite (Fig. 6a and d). Ore microscopy examinations
showed that galena coexists mostly with the sphalerite. Microchemical
analysis demonstrated that galena does not contain any trace elements
and is crystallized similarly to the stoichiometric composition. Sphaler-
ite presents darker gray colors than galena, exhibits a replacement rela-
tionshipwith galena and forms an exsolution texture, which signifies its
concurrent formation with chalcopyrite mineral (Fig. 6a and e). Micro-
probe analysis indicates that Fe, among trace elements, features the el-
emental characteristic thatmostly suits Zn (r=0.50),which is themain
component of sphalerite (Fig. 7a). This highly negative correlation be-
tween Fe and Zn shows that Fe substitutes for Zn as a function of tem-
perature, and these elements can be used as sphalerite geobarometers
(Scott and Barnes, 1971; Browne and Lowering, 1973). In the ore mi-
croscopy studies conducted using polished sections prepared from the
samples of the Altınpınar mineralization site, the Fahlerz group min-
erals, which are determined as the uncommon minerals among all ore
minerals, and generally amorphous grains are observed as exsolutions
within galena minerals. Considering microchemical data (Fig. 7b and
Table 1), Fahlerz minerals in the studied mineralization are tennantite
in composition with high contents of As (19.35–21.33 wt.%) and low
contents of Sb (0.01–0.14 wt.%). Fahlerz also includes 0.01–0.03 wt.%
Au and 0.05–0.19 wt.% Pb (Table 1).

5.2. Fluid inclusions

Microthermometricmeasurementswere taken on the quartzminer-
al in single-phase (liquid), which constitutes amajor part of primary in-
clusions, and two-phase (liquid+ gas) inclusions. Primary single-phase
(liquid) and two-phase (liquid + gas) inclusions occur as irregular, cir-
cular, ellipsoid, lenticular, triangular, square and/or rectangular shapes
Fig. 7. (a) Fe versus Zn variations in sphalerite, (b) comp
in quartz (Fig. 8a–d). The sizes of single-phase inclusions vary between
b1 and 20 μm. The sizes of the two-phase (liquid+ gas) inclusions vary
between b1 and 8 μm, and some inclusions even reach 15–16 μm. The
ratio of the liquid phase to the gaseous phase is high in the primary
two-stage inclusions. Fluid inclusion examinations showed that some
primary two-phase inclusions also contain daughter minerals. Howev-
er, the composition of these daughter minerals could not be identified.
In the Altınpınar mineralization, the ice melting temperatures
measured in the quartzes are between −4.6 °C and −1.4 °C (−2.9 °C
on average), and the salinity of the fluids in the quartz samples calculat-
ed by Bodnar (1993) is 4.7wt%NaCl eqv. on average.When the frequen-
cy distribution graphics of the homogenization temperatures (Th)
prepared per Th values are reviewed in Fig. 9, Th values vary between
170 °C and 380 °C and are condensed at 250–300 °C.

5.3. Hydrogen and oxygen isotopic systematics

In the Altınpınar mineralization, H isotope analyses were con-
ducted on three sericite minerals, whereas O isotope analyses were
conducted on three quartz minerals. The results are given in
Table 2. The oxygen and hydrogen isotope analyses results vary be-
tween 8.5‰ to 10.2‰ and −91‰ to−73‰, respectively. This varia-
tion shows that the oxygen and hydrogen isotope compositions are
similar to those of both surface and magmatic waters (Hoefs,
1987). The δ18O compositions of fluids were balanced with quartz
and calculated using Δquartz-fluid = δ18Oquartz − δ18Ofluid =
3.38 × (106/T2) − 2.90 (O'Neil and Taylor, 1969) with the homogeni-
zation temperature value (277 °C) measured from the fluid inclusions
in quartzes. The δ18O composition of the fluids balanced with quartz
varies between 0.31 and 2.01.
ositional variations of fahlores on As versus Sb plots.



Fig. 8. Photomicrographs showing of the fluid inclusions in quartz. (a, d) Irregular shaped liquid + gas inclusions, (c, d) ellipsoid shaped liquid + gas inclusions.
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5.4. Sulfur isotopic compositions

Sulfur isotope analyses (δ34S) were performed on pyrite and galena
minerals, and the results obtained,which range from−8.3‰ to−2.3‰,
are presented in Table 3. The temperatures of ore formation calculated
using a sulfur geothermometer vary between 264 and 370 ± 20 °C
with an average temperature of 317 ± 20 °C, which is consistent with
the homogenization temperatures obtained from fluid inclusions
(Fig. 9).

Compared to the isotope data of various geological environment,
rock and ore types reported in previous studies (Ohmoto and Rye,
1979; Field and Fifarek, 1985; Hoefs, 1987), it is clear that our results
are consistent with the δ34S values of granitic rocks and base
metal vein-type deposits, which indicate magmatic sulfur (Cooke and
Simmons, 2000; Hedenquist et al., 1994). Sulfur was present mainly as
HS− and S2−, and the δ34S values of deposited pyrite and galena can
Fig. 9. Frequency chart showing the distribution of homogenization temperatures of fluid
inclusion in quartz.
therefore indicate δ34S of S in the ore-forming fluid (Ohmoto, 1972;
Ohmoto and Rye, 1979). Data in this study for δ34S from the hydrother-
mal fluid systems in the deposit reveal a very narrow compositional
range, indicating that the sulfur was derived from the mantle source
(Hoefs, 1987; Gemmell and Large, 1992).

6. Discussion

6.1. Ore-forming material sources

The Zn/Cd ratio of sphalerite is important for determining the
mineralization type. Song (1984) suggested that the Zn/Cd ratio is be-
tween 104 and 214 in hydrothermal deposits (including volcano-
hydrothermal deposits), 252 and 330 in metamorphosed sedimentary
deposits and carbonate-hosted strata-bound and stratiform deposits
and 417 and 531 in volcano-sedimentary type deposits. Similarly,
Gottesmann and Kampe (2007) suggested that the Zn/Cd ratio is N477
in the mineralizations related to basaltic magmas, between 328 and
427 in the mineralizations related to andesitic magmas, b300 in the
mineralizations related to rhyolitic magmas and below 250 in the hy-
drothermal deposits related to granitic magmas. Microchemical studies
reveal that the Zn/Cd ratio of sphalerite minerals varies between 50.65
and 144.64 (Table 1), supporting that the Altınpınar mineralization is
a hydrothermal deposit related to granitic magmatism.

The coexistence of the liquid- and gas-enriched inclusions in quartz
suggests an open system during their evolution, except for fluid inclu-
sions that form as a result of necking down and ranges on the same
line (Roedder, 1984; Shepherd et al., 1985). The coexistence of both
liquid and gas-rich inclusions in quartzes and their random distribution
clearly indicate that Altınpınar mineralization occurred in the open
system, and the measured inclusions are not a result of necking down.

The sources of hydrothermal solutions in the low-sulfidation
epithermal systems are dominantly meteoric and rarely magmatic
(Giggenbach, 1992; Hedenquist and Lowenstern, 1994; Matsuhisa and
Aoki, 1994). Only a limited number of studies have been conducted on
the fluid inclusions in quartzes and O-H isotopes in alteration minerals
observed in the epithermal vein-type mineralization fields exposed in



Table 2
Stable isotope data from Altınpınar mineralizations.

Location Sample Mineral
δ18O
‰ Sample Mineral

δD
‰

Altınpınar Pb-Zn ± Au (this study)

H9 Quartz 9.8 A3 Sericite −91
H11 Quartz 10.2 A7 Sericite −79
H13 Quartz 8.5 A15 Sericite −73

Arzular Au ± Ag (Akaryalı and Tüysüz, 2013)

L1 Quartz 15 C2 Sericite −91
L2 Quartz 14.5 C11 Sericite −87
L3 Quartz 16.7 D12 Sericite −93

Mastra Au–Ag (Aslan, 2011)

GR Quartz 11.3 GR Quartz −63
B1280K Quartz 10.3 B1280K Quartz −66
D1265K Quartz 10.2 D1265K Quartz −56
G5 Quartz 10.5 G5 Quartz −71
O1 Quartz 11 O1 Quartz −64
YD1-2 Quartz 11.5 YD1-2 Quartz −64
O3 Quartz 11.2 O3 Quartz −84
O6 Quartz 11.4 O6 Quartz −77
YD2-3 Quartz 9.8 YD2-3 Quartz −79
B1340G Quartz 10.2 B1340G Quartz −78
KMK-10 Illite-kaolin 8.1 KMK-10 Illite-kaolin −96
KMK15 Illite 9.5 KMK15 Illite −60
KZM46/11 Illite 8.3 KZM46/11 Illite −72
KMK100 Illite 12.4 KMK100 Illite −81
KMK70 Smectite-kaolin 10.8 KMK70 Smectite-kaolin −67
KMK23 Smectite-kaolin 12.3 KMK23 Smectite-kaolin −63

Mastra Au–Ag (Tayyar, 2005)

MA1 Quartz 10.6 MA1 Fluid in quartz inclusion −97
MA2 Quartz 10.5 MA2 Fluid in quartz inclusion −94
MA3 Quartz 10.9 MA3 Fluid in quartz inclusion −92
MA4 Quartz 9.9 MA4 Fluid in quartz inclusion −88
MA5 Quartz 9.8 MA5 Fluid in quartz inclusion −92
MA6 Quartz 13.2 MA6 Fluid in quartz inclusion −93
MA7 Quartz 11.3 MA7 Fluid in quartz inclusion −84
MA8 Quartz 10.9 MA8 Fluid in quartz inclusion −90
MA9 Quartz 11.0 MA9 Fluid in quartz inclusion −79
MA10 Quartz 17.8 MA10 Fluid in quartz inclusion −85
MA11 Quartz 11.5 MA11 Fluid in quartz inclusion −84
MA12 Quartz 11.0 MA12 Fluid in quartz inclusion −79
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the Southern Zone of EPOB (e.g., Lermi, 2003; Tayyar, 2005; Aslan, 2011;
Akaryalı and Tüysüz, 2013; Figs. 10 and 11). Fluid inclusion studies indi-
cate that there is a close relationship between homogenization temper-
ature and salinity (e.g., Shepherd et al., 1985;Wilkinson, 2001), and the
type of ore deposit can be determined using these values (Roedder,
1984). In the Altınpınar mineralization, the homogenization tempera-
tures measured from fluid inclusions vary between 170 °C and 380 °C,
especially between 250 °C and 300 °C, and the wt.% NaCl eqv. Salinity
of ore-forming fluids is between 2.4 and 7.3 (4.7 on average). These
Table 3
Sulfur isotope data from Altınpınar mineralizations [equilibrium temperature of pyrite–galena

Location Sample no
Pyrite
‰

Chalcop
‰

Altınpınar Pb–Zn ± Au (this study)

H9 −2.3
H11 −2.8
H13 −8.3

Midi Pb-Zn (Lermi, 2003)

TG2-61 6.7
TG2-82 3.9
TG1-22 5.2
Hd11b 5.1

Arzular Au ± Ag (Akaryalı and Tüysüz, 2013)

L1 3
L2 2.2
L3 2.6

Mastra Au–Ag (Aslan, 2011)

O1
O2
O3
O4
O5 −2.9 −3.6
O6 −3.1
O7 −3.2 −3.3
G2 −3
G5 −3.6
G8
results are consistent with the results presented in the previous studies
and indicate dilution by surface-derived waters (Fig. 10a). On the salin-
ity versus homogenization temperature discrimination diagram
(Roedder, 1984), they fall into field of epithermal vein-type deposits
(Fig. 10b). The values of oxygen and hydrogen isotopes obtained
from quartz and sericite vary between 8.5‰ and 10.2‰ and −91‰
and −73‰, respectively, indicating that hydrothermal solutions that
produced Altınpınar mineralization were derived from a mixture of
magmatic and meteoric waters (Fig. 11).
(T1), sphalerite–galena (T2) and pyrite–sphalerite (T3) mineral pairs].

yrite Sphalerite
‰

Galena
‰

T1 °C
(py–gn)

T2 °C
(sph–gn)

T3 °C
(py–sph)

−4.7 370 ± 20
−6.3 264 ± 20
−2.9

4.4 2.5 347 ± 25
5.3 3.3 331 ± 25
5.2 3.1 313 ± 21
2.0 4.3 232 ± 20
0 −0.7 251 ± 20

−0.6 291 ± 20
−0.5 −1.2 244 ± 20
−3.5 −6.2 254 ± 19
−3.5 −5.6 313 ± 21
−4 −6 328 ± 21
−3.6 −5.4 360 ± 22

−2.3
−1.7 −5.8 353 ± 20 147 ± 15
−3.7 384 ± 48

4.6
−2.7 −4.8 313 ± 21



Fig. 10. (a) Schematic diagram showing typical trends in homogenization temperatures-
salinity space due to various fluid evolution processes (after Wilkinson, 2001),
(b) homogenization temperature and wt.% NaCl eqv. diagram (Roedder, 1984) for fluid
inclusions in quartz.

Fig. 11. δD (‰) versus δ18O (‰) diagram showing the distributions of the hydrogen iso-
tope values in sericite and oxygen isotope values in quartz from the Altınpınarmineraliza-
tion field (after Taylor, 1974 and Ohmoto, 1986; SMOW: Standard Mean Ocean Water).
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6.2. Ore genesis

The epithermal mineralizations can be divided into two main
groups of low- and high-sulfidation deposits based on sulfur content
(e.g., Hedenquist et al., 1994). The low-sulfidation deposits are charac-
terized by hosting in intermediate volcanic rocks occurring in the frac-
ture zones; the existence of sericite, illite and chlorite as alteration
minerals; and the formation temperature changing by 100 and 300 °C
(Barton and Skinner, 1979; Henley and Ellis, 1983; Ransome, 1907;
Hedenquist et al., 1994; White and Hedenquist, 1990; Heald et al.,
1987). The high-sulfidation deposits are different from the low-
sulfidation deposits with their host rocks comprising felsic volcanic
rocks, alteration minerals including mainly kaolinite and alunite and
high formation temperature. The Altınpınar mineralization is hosted
by basaltic–andesitic volcanic rocks consisting mainly of plagioclase,
pyroxene and amphibole are that extensively altered to sericite and
chlorite in the mineralization field. Sulfur isotope studies reveal that
the formation temperature for the Altınpınar mineralization is between
264 and 370 °C. Considering all data, it is clear that the studied mineral-
ization carries the traces of low-sulfidation epithermal deposits. The for-
mation depth and pressure of ore deposits can be calculated using
homogenization temperatures obtained from fluid inclusion (Roedder
and Bodnar, 1980; Roedder, 1984; Shepherd et al., 1985; Knight and
Bodnar, 1989). Several numerical models have been developed to repre-
sent the PVTX properties of H2O–NaCl, facilitating interpretation of data
from fluid inclusions. In this study, HOKIEFLINCS_H2O-NACL program
(Steele-MacInnis et al., 2012) is used for depth andpressure of Altınpınar
mineralizations. HOKIEFLINCS_H2O-NACL can be used to determine the
properties of fluid inclusions that homogenize to the liquid phase. The
program is generally valid from −21.2 to 700 °C, the LV curve to
6000 bar and 0 to 70 wt.% NaCl for fluid inclusions that homogenize by
vapor bubble disappearance; and from Th of 100 to 600 °C, the LVH
curve to 3000 bar and 28–75 wt.% NaCl for fluid inclusions that homog-
enize by halite disappearance.

Aslan (2011) concluded that the Mastra gold mineralization, which
is one of the most economical mines in the Alpine–Himalayan belt,
formed under changing pressures between 690 and 460 bar, indicating
that the formation depth is between 2605 and 1737m. Similarly, Lermi
(2003) suggested that Midi Pb–Zn mineralization, which is situated
19 km south of Mastra gold mineralization (Fig. 12b), formed at the
depth of 1963 m and under the pressure of 520 bar. According to the
HOKIEFLINCS_H2O-NACL program, the trapping pressure has been cal-
culated to vary between 62 and 181 bar (average 94 bar), indicating
that the formation depth is between 630 and 1842 m (average 963 m)
in Altınpınar mineralizations. The Altınpınar mineralization has a very
similar trapping pressure and formation depth as well as geological
and geochemical characteristics to those ofMastra andMidimineraliza-
tions, supporting that a similar magmatic source has played an impor-
tant role formation in the three mineralizations.

Detailed studies about vein-type mineralizations are limited in the
northern part of the EPOB (e.g., Gökçe and Bozkaya, 2003; Bozkaya
and Gökçe, 2003; Kudun-Yozgat, 2009; Yaylalı-Abanuz and Tüysüz,
2010; Demir et al., 2015). Bozkaya and Gökçe (2003) indicated that sul-
fur in the Inler Yaylası (Giresun, NE Turkey) lead zinc mine hosted by
extensively altered, Upper Cretaceous volcano-sedimentary rocks had
originated frommagmatic sources according to the isotope values rang-
ing from −3.9 to 0.4‰. Similarly, Demir et al. (2015) reported that the
δ34S compositions of sulfur isotope varied between 2.14 and −1.47‰,
and the oxygen and hydrogen isotope compositions varied between
7.8 and 8.5‰ and −40 and 57‰, respectively in the Kabadüz (Ordu,
NE Turkey) ore veins that occur in the Upper Cretaceous andesitic



Fig. 12. a) Early Cenozoic magma series and potential epithermal gold fields of the Eastern Pontides Orogenic Belt (Eyuboglu et al., 2011c). b) Generalized geological map of the
Gümüşhane area (after from Güven 1993).
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rocks. The authors suggested that Kabadüz mineralization is associated
with younger granitic intrusions than those in the Upper Cretaceous.
Akoluk (Ordu) vein-type mineralization occurs along fault systems in
dacitic tuffs of Upper Cretaceous age in the northern part of the EPOB.
Yaylalı-Abanuz and Tüysüz (2010) suggested that the presence of
framboidal and colloidal ore minerals and textures indicated that
Akoluk (Ordu) vein-type mineralization occurred at low temperatures
in an epithermal system. To summarize, mineralizations in the northern
part of EPOB are associated with the Upper Cretaceous volcanic rocks.
Unlike the northern zone, mineralizations in the southern part of
EPOB occur in Eocene and Jurassic rocks. However, stable isotope (S, O
and H) composition of mineralization in the northern and southern
zones are similar, which implies a magmatic source in the formation
of mineralizations.

BurnhamandOhmoto (1980) proposed that graniticmagmas are re-
sponsible for the formation of variousmineralizations such as porphyry,
skarn and epithermal. The sulfur isotope values obtained from both this
and previous studies in the Gümüşhane region located on the Southern
Zone of EPOB (Lermi, 2003; Aslan, 2011; Akaryalı and Tüysüz, 2013)
vary in range from−8.2‰ to 2‰ (Table 3). This relatively tight cluster-
ing of sulfur isotope values can be interpreted to indicate that the fluid
redox state was below the SO2/H2S boundary, and H2S was the
dominant reduced sulfur species in the fluids. In addition, this range of
isotope values can support an origin related to granitic magmas
(Ohmoto and Rye, 1979). Considering all geological, geochemical and
geochronological data obtained from the granitic bodies exposed in
the Gumushane region (Karsli et al., 2007; Kaygusuz et al., 2008;
Eyuboglu et al., 2011a, 2011b, 2013a, 2015b), the studied epithermal
vein-type mineralizations hosted by early to middle Jurassic volcanic
rocks could be produced by middle Jurassic, late Cretaceous or Eocene
granitic magmas. However, Mastra and Arzular gold mineralizations
occur in basaltic–andesitic lithologies of Eocene Alibaba Formation,
supporting that their origin is related to Eocene or later granitic
magmas. Eyuboglu et al. (2011a, 2013a) suggested that the Eocene



Fig. 13. Cartoon diagram showing the formation of the Lutetian granitic magmas and related epithermal vein-type mineralizations in the Southern Zone of EPOB.
Modified from Eyuboglu et al. (2015a).
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granitic magmas were generated in a slab window-related setting and
occurred at two different cycles in the southern part of eastern Pontides.
The first cycle is represented by adakitic intrusions exposed in the south
of the Torul–Bayburt–Ispir line. The second cycle of granitic magmatism
is represented bynon-adakitic intrusions that arewell exposed immedi-
ately north of the Torul–Bayburt–Ispir line (Fig. 12a). According to
Eyuboglu et al. (2011c), the adakitic intrusions exposed in the southern
part of EPOB are devoid of ore deposits, which leads us to propose that
the Lutetian or later non-adakitic granitic intrusions, which are exposed
at the north of the Gumushane–Bayburt–Ispir line, were probably re-
sponsible for the epithermal goldmineralization in this belt. All data ob-
tained from this study supports their idea that the epithermal vein-type
mineralizations in the Southern Zone of EPOB are related to non-
adakitic Lutetian granitic magmas (Fig. 13).

7. Conclusions

Themain conclusions of this study focusing on the geology,mineral-
ogy and genesis of the Altınpınar mineralization (Torul–Gümüşhane,
NE-Turkey) located in the Southern Zone of the Eastern Pontides
Orogenic Belt are summarized below.

• Altınpınar mineralization is well exposed along the contact between
Carboniferous Gümüşhane Granitoid and basaltic rocks of the early
tomiddle Jurassic Şenköy Formation and is related to silica veins rang-
ing from a few millimeters to a maximum of 40 cm in thickness.

• The main ore minerals are sphalerite, galena, pyrite, chalcopyrite and
tennantite, whereas quartz ismostly found as the ganguemineral. The
jagged and cavity structure of the quartz minerals points to an
epithermal system.

• Microchemical analyses conducted on sphalerite minerals showed
that the Zn/Cd ratios vary between 50.65 and 144.64, indicating that
the studied mineralization is related to granitic magmas.

• Thehomogenization temperaturesmeasured from thefluid inclusions
vary between 170 °C and 380 °C, the condensation varies from 250 to
300 °C (277 °C on average), and the wt.% NaCl eqv. salinity of ore-
forming fluids varies between 2.4 and 7.3 (4.7 on average). These
findings indicate that the mineralization developed in the epithermal
system.

• The values obtained in sulfur isotope analysis conducted on pyrite and
galena minerals are between −8.3‰ and −2.3‰. This variation
shows that sulfur, which enables mineral formation, originates from
magmatic genesis. The average formation temperature of the ore
calculated using a sulfur isotope thermometer is 317 °C.

• Oxygen isotope values range between 8.5‰ and 10.2‰, and hydrogen
values vary between −91‰ and −73‰. Accordingly, the fluids that
formed the mineralization are magmatic and mixed with surface
waters.

• Considering all geological, geochemical and isotopic data, it is clear
that the Altınpınarmineralization is an epithermal vein-typemineral-
ization and is related to non-adakitic graniticmagmas produced in the
Southern Zone of the Eastern Pontides Orogenic Belt in Lutetian.
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