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a b s t r a c t

This paper introduces a software system (GeoCube) for three dimensional (3D) extraction and integration
of exploration criteria from spatial data. The software system contains four key modules: (1) Import and
Export, supporting many formats from commercial 3D geological modeling software and offering various
export options; (2) pre-process, containing basic statistics and fractal/multi-fractal methods (con-
centration–volume (C–V) fractal method) for extraction of exploration criteria from spatial data (i.e.,
separation of geological, geochemical and geophysical anomalies from background values in 3D space);
(3) assessment, supporting five data-driven integration methods (viz., information entropy, logistic re-
gression, ordinary weights of evidence, weighted weights of evidence, boost weights of evidence) for
integration of exploration criteria; and (4) post-process, for classifying integration outcomes into several
levels based on mineralization potentiality. The Nanihu Mo (W) camp (5.0 km�4.0 km�2.7 km) of the
Luanchuan region was used as a case study. The results show that GeoCube can enhance the use of 3D
geological modeling to store, retrieve, process, display, analyze and integrate exploration criteria. Fur-
thermore, it was found that the ordinary weights of evidence, boost weights of evidence and logistic
regression methods showed superior performance as integration tools for exploration targeting in this
case study.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mineral prospectivity mapping (MPM) is one of the most cru-
cial steps in mineral resources exploration and assessment. It aims
to delineate prospective areas within a region of interest through
analysis and integration of several layers of geoscience informa-
tion from diverse datasets including geological data, geophysical
data, geochemical data and remote sensing data (Zuo and Car-
ranza, 2011; Abedi et al., 2013). Many approaches to MPM that
have been proposed and introduced can be categorized as either
knowledge-driven or data-driven methods according to the type
of inference mechanism used (Bonham-Carter, 1994; Pan and
Harris, 2000; Carranza, 2008). Data-driven methods include
weights of evidence (WofE) (Bonham-Carter et al., 1990; Agterberg
and Bonham-Carter, 1990; Carranza, 2004), logistic regression
(Agterberg and Bonham-Carter, 1999; Carranza and Hale, 2001;
Mejía-Herrera et al., 2015), neural networks (Singer and Kouda,
1996; Oh and Lee, 2010), evidential belief modeling (Carranza and
Hale, 2003; Carranza et al., 2005; Carranza, 2014), and Random
Forest (Carranza and Laborte, 2015a, 2015b, 2015c). Knowledge-
driven methods include fuzzy logic (An et al., 1991; Chung and
Moon, 1991; Carranza and Hale, 2001), evidential belief functions
(An et al., 1992, 1994a, b), and wildcat mapping (Carranza and
Hale, 2002; Carranza et al., 2008).

Fractal geometry was developed by Mandelbrot (1983) for de-
scribing complex scaling attributes of objects and phenomena in
nature. In the geosciences, the concentration–area (C–A) fractal
method has been used to describe the morphology and distribution of
geological objects and to separate geochemical anomalies from back-
ground values (Cheng et al., 1994). The C–A and concentration–volume
(C–V) methods (Afzal et al., 2011; Wang et al., 2013) also have been
applied to MPM and quantifying mineralization.

3D geological modeling has been regarded as an essential
method to interpret and visualize the subsurface geology
(Houlding, 1994; Mallet, 2002; Sprague et al., 2006; Smirnoff et al.,
2008; Caumon et al., 2009). Several software systems have been
developed for 3D geological modeling, including GOCAD (Mallet,
1992), Micromine (Micromine, 2015) and Surpac (Geovia, 2015).
Presently, 3D predictive modeling of exploration targets is desir-
able because of its particular advantages over traditional 2D
methods for extracting ore-forming information from geoscience
data (Carranza, 2011). In contrast with 2D models, a 3D geological
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model provides a more realistic way to delineate zones of high
potential at depth (Fallara et al., 2006; Hamedani et al., 2012;
Mejía-Herrera et al., 2015). Analysis and modeling of 3D geological
objects by integrating geophysics, geochemistry and geology
generally provides further insights into the realm of exploration
targeting, although it does not totally eliminate uncertainty for
mineral exploration (Lindsay et al., 2012).

GeoCube, as a 3D exploration criteria decision-making software
system, provides many important functions in four main modules:
(1) Import and Export, for compatibility with commercial 3D
geological modeling software formats (e.g., GOCAD, Micromine
and Surpac); (2) Pre-process, for extracting anomaly information
(e.g., Boolean operations, threshold segmentation based on C–V
fractal method and 3D buffer analysis); (3) Assessment, for in-
tegration of 3D exploration criteria using five data-driven meth-
ods; and (4) Post-process, for classifying integration outcomes into
several levels according to mineralization potentiality.
1 ASCII: American Standard Code for Information Interchange.
2. Software system description

GeoCube is written in Visual C# and developed using Visual
Studio, which is an integrated development environment (IDE)
from Microsoft. The program is based on .Net Framework 4.0, and
has a standalone graphical user interface (GUI) developed using
the Direct3D software development kit (SDK). GeoCube applies
many Windows application programming interfaces (APIs) as well
(Fig. 1).

The complete list of menu options is as follows:

(1) Import and Export: Data import and export; data conversion,
etc. (Figs. 1 and 3).

(2) Edit: Modification of exploration criteria properties (Fig. 1).
(3) View: Operations for 3D models; rendering and style options

(Fig. 1).
(4) Pre-process: 3D-grid cells; Boolean operations; exploration

criteria statistics; “Rarefy”; “Discrete” (Fig. 4).
(5) Assessment: Information Entropy, Logistic Regression, Ordinary

WofE, Weighted WofE and BoostWofE (Fig. 5).
(6) Post-process: Cluster analysis; C–A fractal; C–V fractal (Fig. 6).
(7) Window: Display mode of the software (Fig. 1).
(8) Help: Help for using the software (Fig. 1).

Main work flow for 3D quantitative modeling in the GeoCube
software system is as shown in Fig. 2, and the descriptions of each
module are as follows:

2.1. Data import and export module

This module can be applied to import or convert data from
some commercial 3D geological modeling software to GeoCube,
and the processed data can be exported to these commercial 3D
geological software as well.

GeoCube is an application based on 3D-grid cell datasets. Si-
milar to the pixel in 2D cell datasets, the basic 3D-grid cell can be
observed as a block with x, y, z coordinates and a series of property
values in 3D space. Because most 3D geological modeling software
supports the function of transforming a wireframe model into a 3D
grid cell block model, the data exported from these software
packages can be imported into GeoCube. For the convenience of
computation, GeoCube provides a series of interfaces to convert
data from other formats (e.g., *.csv, *.xls, *.mdb, etc.) to its custom
formats, namely, the GeoCube Header File (*.ghf) and GeoCube
Data File (*.gdf) (Fig. 3). In this way, data from different software
can be processed in a unified way. Coordinate and property in-
formation is saved in the GeoCube Data File, which is a type of text
file in ASCII1 format. For improving the efficiency of reading and
writing, spatial data indices for each point are introduced. Geo-
Cube can also export the results to many common formats sup-
ported by other geomodeling software systems (e.g., GOCAD,
FLAC3D, Micromine, and Surpac).

2.2. Pre-process module

GeoCube provides some preprocessing functions such as “Rar-
efy” and “Discrete.” “Rarefy” consists of a series of randomization
methods and is usually used to divide deposit-type locations into
two parts: training data and verification data. Other potential uses
of "Rarefy" include declustering data and reducing data re-
dundancy and relevance. Because many MPM methods require
either binary or ternary input data, a threshold must be set to
binarize or ternarize continuous data. “Discrete” provides C–V
fractal modeling to classify data according to its spatial distribu-
tion characteristics. GeoCube supports custom settings to apply
these functions.

GeoCube also offers a function for obtaining the optimum
buffer distance around faults, folds, and intrusive rocks based on
the ordinary WofE Model. The method that GeoCube uses for
buffer distances is based on a research study by Wang et al. (2015).
3D buffer analysis of exploration geochemistry also can be ac-
complished using GOCAD software (Sprague et al., 2006; Fallara
et al., 2006).

2.3. Assessment module

The Assessment module in GeoCube contains five data-driven
MPM methods: ordinary WofE, weighted WofE, boost WofE, lo-
gistic regression, and information entropy. The assessment module
can be used to integrate spatial data representing exploration
criteria by combining their weights and probability in each 3D grid
cell of the study area, and the integration results can be divided
into specific categories using C–V fractal modeling for delineating
prospecting exploration targets.

2.3.1. Ordinary WofE model
The ordinary WofE model is a bivariate statistical model based

on Bayes' rule and probabilistic uncertainty theory, and it is
usually applied in areas where a number of mineral occurrences
are known (Agterberg, 1992). The ordinary WofE model aims at
acquiring the posterior probability (Pposterior) of each unit within
the study area. Before that, the prior probability (Pprior) must be
obtained, which is the probability of occurrence of a mineral de-
posit without consideration of any known evidence. For the data of
the i-th binary exploration criterion, +Wi represents the weight for
the presence of the exploration criterion, and −Wi represents the
weight for the absence of the exploration criterion. +Wi and −Wi can
be estimated respectively as:
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In Eqs. (1) and (2), P is the probability, Bi is the presence of the
i-th exploration criterion, ̅Bi is the absence of the i-th exploration
criterion, D is the presence of mineral deposit and D̅ is the absence
of mineral deposit. The strength of correlation between an ex-
ploration criterion and mineral deposits can be estimated by
computing the contrast = −+ −C W Wi i i , which can be tested for



Fig. 1. Main graphical user interface of the GeoCube software system.

Fig. 2. Main processing steps for 3D quantitative modeling in the GeoCube soft-
ware system.
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statistical significance. Probability can be expressed in terms of
odds, Oprior can be estimated as PPrior/(1�Pprior), and if the ex-
ploration criteria are independent with each other, then Oposterior

can be estimated as:
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1 represents the accumulated
weights for the N exploration criteria in a unit within the study
area. It is linked to the +Wi when the i-th exploration criterion
exists in the unit, otherwise it is linked to the −Wi . The natural
logarithm of Eq. (3) is as follows:
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Finally, the posterior probability of each unit can be obtained
from Eq. (4).
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2.3.2. Weighted WofE based on the logistic regression model
Agterberg (2011) combined ordinary WofE with weighted lo-

gistic regression (WLR), and proposed a modified weights of evi-
dence method. This approach achieves unbiased estimates of the
posterior probabilities while keeping the form of WofE. An addi-
tional advantage of this approach is that it can cope with missing
data on some exploration criteria by setting the weights of unit
cells with missing data equal to zero in WofE applications.

2.3.3. Boost WofE model
Cheng (2012) proposed a new form of weights of evidence

model, BoostWofE, which can significantly reduce the influence of
conditional dependency among exploration criteria on the out-
come of information integration. This approach integrates binary
exploration criteria in sequence and updates the prior logits with
independent weights for the first exploration criterion and the
conditional weights for the subsequent exploration criteria. The
conditional weights not only depend on the characteristics of each
exploration criterion, but they are also related to the order of ex-
ploration criteria added. BoostWofE is more generic and it does
not rely on other models and later corrections compared with
other ways of handling conditional dependency (Cheng, 2015).

2.3.4. Logistic regression
As with any other regression methods, logistic regression is

generally used for describing the relationship between a response



Fig. 3. A: Import and Export modules of GeoCube software system. B: Data conversion workspaces in commercial software and GeoCube software system.
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Fig. 4. Application of the “Discrete” function to binarize a data set of exploration criterion.
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variable and one or more predictor variables. The response vari-
able in logistic regression must be binary or dichotomous unlike in
linear regression models (Hosmer and Lemeshow, 2004). Logistic
regression can obtain the true conditional probabilities if the joint
distribution of predictors and the response variable is of log-linear
form (Schaeben, 2014). Logistic regression need not satisfy the
assumption of conditional independence. Maximum likelihood is
the most common approach to estimating the regression coeffi-
cients and the constant term in multivariate logistic regression
(Zhang et al., 2014).
2.3.5. Information entropy
Information entropy is a method of statistical analysis in-

troduced by Vysokoostrovskaya and Zelenetsky (1968) into the
regional mineral prediction field. The information entropy model
can be defined as:

∑= −
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H P Pln
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N
i

N
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1

In Eq (6), HN is the information entropy of N exploration cri-
teria, and Pi represents the exploration criteria i in N exploration
criteria system. Information entropy modeling is based on geolo-
gical, geophysical, geochemical and remote sensing data and is
guided by the geo-anomaly theory in this paper. The model de-
termines favorable locations for mineralization by calculating the
geological factors and prospecting indicators.
2.4. Post-process module

A study area generally needs to be classified into several levels
according to mineralization potentiality for clarity. GeoCube pro-
vides the C–V fractal method (Afzal et al., 2011; Wang et al., 2013)
for classification. The specific approach is to map posterior prob-
abilities computed by an MPM method on a log–log plot, apply
fitting methods (e.g., Least Square Fitting) and obtain the cutoff
values of adjacent segments, and finally to classify the data based
on the cutoff values.
3. Application to the study area

3.1. Geological setting

The case study area is the Nanihu camp in the Luanchuan re-
gion, China. It mainly consists of Nannihu porphyry-type Mo
(W) deposits, Sandaozhuang skarn-type Mo (W) deposits, and
Shangfanggou porphyry-type Mo (Fe) deposits. The surface of the
study area is 4.0 km�5.0 km and the depth is less than 2.7 km.

The study area is tectonically located in the east of the Nannihu
Mo polymetallic metallogenic belt along the southern margin of
the North China Craton (Wang et al., 2011, 2012b). The main strata
hosting mineralization in the study area are the Middle Proter-
ozoic Guandaokou Group and the Upper Proterozoic Luanchuan
Group. The Guandaokou Group (�100 m thick) is composed of
fluvial-neritic facies clastic-carbonate rocks, or carbonate rocks
containing stromatolites. The Luanchuan Group (�3100 m thick)
consists of shallow marine carbonate-clastic rocks, of which
�2050 m (i.e., the Meiyaogou, Sanchuan and Nannihu Forma-
tions) is associated with mineralization (Wang et al., 2011, 2012c).
Regional faults and folds are well-developed in the study area.
There are small intrusive rocks formed at the intersections of
NWW-trending and NNE-trending faults, which control the for-
mation of Mo deposits. Late Proterozoic syenite, metamorphic
gabbro, and Jurassic granite porphyry are associated with mineral
resources in the study area. Porphyry-skarn Mo (W) deposits and
skarn-type polymetallic sulfide deposits are mainly distributed in
the center belt of the geochemical anomaly. According to Re–Os
isotopic dating, large-scale Mo mineralization occurred �140 Ma
ago (Mao et al., 2009).

3.2. Exploration criteria extraction and integration

Binary exploration criteria of the 3D Mo orebody model of
Nannihu (i.e., stratum, rock, buffer of fracture, Mo anomaly, gravity
continuation, gravity inversion, magnetism continuation, mag-
netism inversion) are applied to calculate the weights of each
exploration criterion and the conditional probability of Mo mineral
occurrence in the study area. The calculation was implemented
using GeoCube.

Table 1 reports the spatial correlations of the major exploration
criteria with the Mo deposits. The contrast C is a statistic to
measure the correlation between exploration criteria and mineral



Fig. 5. A: Exploration criteria filter in WofE modeling. B: Exploration criteria list for calculation, including 3D-grid cells number, weights, and other common parameters of
WofE modeling.
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deposits. A C40 implies positive correlation between an ex-
ploration criterion and the Mo deposit. Conversely, a Co0 implies
negative correlation between the exploration criteria and the Mo
deposit. The studentized C, the ratio of C to its standard deviation,
is a useful measure of statistical significance of the contrast be-
cause of the uncertainties of the weights and missing data, and it
becomes useful in determining cutoff levels to convert multiclass
or continuous data into binary exploration criterion. A value of the
studentized C equal to 1.96, corresponding to a confidence level of
97.5%, was considered in determining threshold or cutoff levels
(Bonham-Carter et al., 1988). Accordingly, there are nine explora-
tion criteria with statistically significant positive correlations with
the Mo deposit. Considering the conditional dependence, "Frac-
ture" is highly correlated with "Buffer of fracture" and "Gravity
continuation" is highly correlated with "Gravity inversion", and
two of these four exploration criteria must be excluded in the data
integration because their inclusion would over-estimate the pos-
terior probability. Considering studentized contrast (Table 1),
"Fracture" is excluded while "Buffer of fracture" is retained and
"Gravity inversion" is excluded while "Gravity continuation" is
retained.

The intersections of each of the seven remaining exploration
criteria with the mineral deposits are shown in Fig. 7. Based on
Table 1 and Fig. 7, the studentized contrast is directly related to the
number of spatial units of intersections between exploration cri-
teria and mineral deposits (N(D)) and it is inversely related to the
number of spatial units of exploration criteria (N(E)). The result of
integration of exploration is not the entire study area, but the



Fig. 6. A: Classification using fractal method; the pop-up window includes some specific parameter settings of fractals. B: Result of the classification.

Table 1
List of parameters for the weights of evidence model.

Exploration criteria ( )N E ( )N D +W ( )+s W −W ( )−s W C ( )s C ( )Studentized C

Gravity continuation 6608 2525 3.5889 0.0253 �0.1994 0.0095 3.7883 0.0271 140.0127
Pt3s2 17,457 2980 2.4889 0.0201 �0.2279 0.0097 2.7168 0.0224 121.5484
Pt3n1 48,339 2932 1.3295 0.0191 �0.1832 0.0097 1.5128 0.0214 70.7126
Pt3n2 137,703 5377 0.8664 0.0139 �0.3195 0.0111 1.1859 0.0178 66.7292
Mo Anomalies 84,175 2818 0.7067 0.0192 �0.1238 0.0097 0.8305 0.0215 38.6875
Buffer of fracture (500m) 453,640 9938 0.2707 0.0101 �0.4912 0.0165 0.7620 0.0194 39.3588
Gravity inversion 130,730 3260 0.4034 0.0177 �0.0990 0.0099 0.5024 0.0203 24.7435
Fracture 12,089 251 0.2159 0.0638 �0.0036 0.0087 0.2195 0.0644 3.4103
Buffer of granite (600 m) 368,568 6405 0.0345 0.0126 �0.0295 0.0118 0.0641 0.0173 3.7033
Magnetism continuation 172,766 1790 �0.4898 0.0238 0.1002 0.0093 �0.5900 0.0255 �23.1341
Granite 220,729 1651 �0.8185 0.0247 0.1915 0.0092 �1.0100 0.0264 �38.3046
Pt3s1 42,218 186 �1.3509 0.0735 0.0403 0.0087 �1.3912 0.0740 �18.8008
Magnetism inversion 72,769 184 �1.9080 0.0738 0.0817 0.0087 �1.9897 0.0743 �26.7703
Pt2xb3 85,223 61 �3.1719 0.1281 0.1082 0.0087 �3.2801 0.1284 �25.5510
Gabbro 34,024 2 �5.6721 0.7071 0.0434 0.0086 �5.7154 0.7072 �8.0820

( )N E refers to unit cells number of evidence factor. ( )N D refers to unit cells number of mineral deposits. +W and −W are positive and negative weights of evidence,
respectively. ( )+s W and ( )−s W are standard deviations of +W and −W , respectively. C is spatial contrast, estimated as −+ −W W . ( )s C is standard deviation of C , estimated as

( ) + ( )+ −W Ws s2 2 , of which ( )+Ws2 is variance of +W and ( )−Ws2 is variance of −W . ( )Studentized C is studentized contrast, estimated as ( )C s C/ . ( )Studentized C indicates
statistical significance of spatial association, and is a useful statistic to determine the most significant cutoff distance in situations with few known information.
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Fig. 7. Intersection of exploration criteria and the 3D orebody model of the Nannihu Mo deposit.
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intersections of all of the valid exploration criteria. Considering
that all of the exploration criteria are binary, if there are N number
of independent exploration criteria, then the posterior probability
is associated with at most 2N possible distinct intersections (or
unique conditions) of exploration criteria. As there are seven ex-
ploration criteria integrated in this case, there are at most 45
unique conditions. The prediction result is composed of 3D-grid
cells with values between 0 and 1, representing posterior prob-
ability. The range of posterior probability is from 0.0038 to 0.7881.
To separate the prospect areas from background, we use the C–V
fractal approach for classifying the results of WofE.

3.3. Classification using fractal modeling

Cheng et al. (1994) proposed a C–A fractal model for separating
geochemical background and anomalies, and demonstrated that
background always obeys either normal or lognormal distribution,
whereas anomalies may correspond to a fractal distribution. The
C–A approach was also extended to 3D space by means of repla-
cing area with volume because element distributions in horizontal
or vertical directions conform with fractal models. The identifica-
tion of mineralization zones is based on power-law relationships
between Mo concentrations and the volume of unit cells with
specified posterior probability. In this case study, Mo concentra-
tions are represented by the posterior probability of Mo miner-
alization and the volume is represented by the number of unit
cells.

The fractal model can be defined as:

( ) = ( )−N r Cr 7D

In Eq. (7), r is a characteristic exponent referring to posterior
probability in this case, N(r) is the number of unit cells for which
Fig. 8. Log–log C–V plots and line segments fitted using least-squares fitting
method.

Table 2
Coefficients of main exploration criteria depending on method.

Exploration criteria Information model Logistic regresssion
Information Coefficient

Gravity continuation 3.1244 4.3091
Pt3s2 2.3187 3.4953
Pt3n1 1.2840 3.4812
Pt3n2 0.8435 1.8993
Mo Anomaly 0.6896 1.0102
Buffer of fracture (500 m) 0.2655 0.6412
Buffer of granite (600 m) 0.0339 0.4915
posterior probability is equal to or less than r, C is a proportionality
coefficient, and D is the fractal dimension. The logarithm of Eq. (7)
is:

( ) = − ( )N r C D rln ln ln 8

According to Eq. (8), ln r is linearly associated with ln N(r). The
least squares method can be applied to the piecewise fitting of
straight lines to the log–log plots of N(r) versus r. The points de-
marcating adjacent straight lines are considered cutoff values se-
parating background and prospect areas of different levels of po-
tentiality (i.e., different ranges of posterior probability).

In this case study, the study area was divided into background
and three levels of prospect areas. As shown in Fig. 8, the fitted
line segment of background and the fitted line segments of pro-
spect areas have significant differences, and the prospect areas can
be further subdivided into three parts. The differences among the
classes defined in the log–log plots of N(r) versus r are reflected by
the different fractal dimensions: the spatial distribution of back-
ground has a fractal dimension of 0.3383, and the spatial dis-
tributions of prospect areas of different levels have fractal di-
mensions of 0.0066 (first classification), 0.0031 (second classifi-
cation) and 0.0238 (third classification) (Table 3). As shown in
Fig. 9, first level prospect areas are controlled mainly by the
Gravity interpretation using 3D probability inversion (Wang et al.,
2012a), and by the Pt3s2 and Pt3n1 strata of the Luanchuan Group.
Second level prospect areas are controlled mainly by the Pt3s2 and
Pt3n1 strata of the Luanchuan Group, whereas third level prospect
areas are controlled mainly by the Pt3n2 strata of the Luanchuan
Group.
4. Discussion

For the case study at the Nanihu Mo (W) camp of the Luan-
chuan district, the 3D deposit model was constructed using
1:2000 scale geological and topographic maps, 288 boreholes
(total core length of 158,700 m), and 32 1:2000 scale cross-sec-
tions using Micromine software (Qu, 2013). The 3D-grid cell size is
50 m�40 m�27 m, based on borehole distances in the explora-
tion net, and it can delineate clearly boundaries of geological ob-
jects and exploration criteria (Fig. 1). A total of 15 exploration
criteria were analyzed (Table 1) and finally seven exploration
Table 3
Details of classification of posterior probabilities obtained using ordinary WofE.

Class Interval Fractal dimension Goodness-Of-Fit

Classification I [0.2076, 0.7881] 0.0066 0.8877
Classification II [0.1056, 0.2076] 0.0031 0.6922
Classification III [0.0194, 0.1056] 0.0238 0.8937
Background [0.0038, 0.0194] 0.3383 1.0000

Ordinary WofE Weighted WofE Boost WofE
Studentized contrast Contrast Contrast

140.0127 4.3091 3.7788
121.5484 3.4953 2.5120
70.7126 3.4812 1.7411
66.7292 1.8993 1.3984
38.6875 1.0102 0.4579
39.3588 0.6412 0.1384
3.7033 0.4915 �0.8827



Fig. 9. A: 3D exploration target model. B: First level exploration targets. C: Second level exploration targets. D: Third level exploration targets. E: Background zones.

Fig. 10. Comparison of posterior probability – cumulative frequency plots obtained
by the different methods used.
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criteria were integrated by information entropy, logistic regres-
sion, boost WofE, weighted WofE, and ordinary WofE methods
(Table 2), and the results were classified by the C–V fractal method
for identification of exploration targets and background (Table 3;
Figs. 10 and 11).

According to contrast and studentized contrast (Table 1), nine
exploration criteria are suitable for 3D targeting. However, "Frac-
ture" and "Buffer of fracture (500 m)" exploration criteria are
strongly correlated (i.e., spatially dependent) and "Gravity con-
tinuation" and "Gravity inversion" are also strongly correlated. For
each pair of strongly correlated exploration criteria, the one with
weaker spatial correlation with the target deposit was excluded
for the data to avoid over-estimation of posterior probability.
Therefore, only seven exploration criteria (Table 2) were integrated
for exploration targeting.

The values of studentized contrast obtained in this case study
(Table 1) are far greater than those in the general cases of 2DWofE
calculations, due mainly to the spatial scale of 3D modeling, which
is much finer than in most cases of 2D regional-scale WofE cal-
culations, such that the number of grid cells of training deposits in
3D WofE is enormous compared with those in most cases of 2D
WofE. However, the estimates of studentized contrast are con-
sidered only in a relative sense rather than absolute sense in the
spatial association analyses. The magnitudes of studentized con-
trast depict relative importance of each exploration criterion only
at a particular spatial scale, but not across a range of spatial scales.
Therefore, the magnitudes of studentized contrast in finer scales
(e.g., 3D modeling at deposit scale) cannot be compared to the
magnitudes of studentized contrast in coarser scales (e.g., 2D
modeling at regional scale) for geological controls on mineraliza-
tion at finer scales are not same as geological controls on the same
mineralization at coarser scales.

Fig. 10 shows the contrast of different models in posterior
probability-cumulative frequency plots (standardized from 0 to 1):
(i) the curves of ordinary WofE, boost WofE and logistic regression
methods are smoother than the weighted WofE and information
entropy methods in this case study; (ii) the posterior probability
values of the weighted WofE and information entropy are dis-
continuous. These differences indicate the different contributions
of exploration criteria as well as the different ways by which ex-
ploration criteria values are integrated according to each method.
However, the vertical to sub-vertical parts of the different curves
commonly represent exploration target values and the horizontal
to sub-horizontal parts of the curves commonly represent back-
ground values, and the common cutoff value is in the vicinity of
0.04. The BoostWofE is related to the sequence of exploration
criteria summed. If exploration criteria are added in different se-
quences, the weights for these exploration criteria will be different
accordingly. In this case study, exploration criteria are applied
according to their weights in ordinary WofE with the order from
large to small.

Fig. 11 shows the C–V classification results per posterior prob-
ability output of each data integration algorithm. The results show
that the logistic regression, ordinary WofE, and boost WofE models
are better than the information entropy and weighted WofE
models for identification of background and exploration targets.
The main interpretations of the results are as follows:

(1) There are four C–V classification levels of posterior prob-
abilities of mineral occurrence in the case study area: (i) classification
I targets (red blocks of 3D-grid cells) have high posterior prob-
abilities; (ii) classification II targets (blue blocks of 3D-grid cells) have



Fig. 11. Five models of exploration targets. A: Information entropy model. B: Weighted WofE model. C: Logistic regression model. D: BoostWofE model. E: Ordinary WofE
model.
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moderate posterior probabilities; (iii) classification III targets (green
blocks of 3D-grid cells) have low posterior probabilities; (iv) the
background zones (gray blocks of 3D-grid cells) have non-significant
posterior probabilities. The classification targets I and II obtained by
the ordinary WofE method are smaller compared to those obtained
by the other methods, and the classification targets I and II obtained
by ordinary WofE, boost WofE and logistic regression have similar
smooth features. These results show that the ordinary WofE model of
exploration targets is the best among all models of exploration tar-
gets obtained by the five integration methods used in this case study,
and the boost WofE and logistic regression models of exploration
targets have less uncertainty compared to the weighted WofE and
information entropy models of exploration targets. In general, the
models of exploration targets obtained by using ordinary WofE, lo-
gistic regression, and boost WofE models are regarded as useful
guides for further exploration of the study area.

(2) Potential exploration targets should be associated with ex-
ploration criteria and metallogenesis in the study area. Potential
exploration targets of classifications I–III using weighted WofE and
information entropy are strictly constrained by the strata (Pt3n2 and
Pt3n1) exploration criteria. Potential exploration targets of classifi-
cations I–III using the other three methods show better multiple
exploration criteria constraints and are correlated with skarn spatial
features (Fig. 11, Table 3), which are associated with metallogenesis of
the study area. Based on the results of logistic regression, ordinary
WofE and boost WofE models (Figs. 7– 9, and 11; Table 2), 3D spatial
correlations of orebody with strata, faults and granite confirm that
the skarn-type (hydrothermal) mineralization is controlled by Yan-
shanian intrusive rocks and the Luanchuan Group in the study area.
Skarn is the ore-bearing geological body. The results show that zones
to the north, northwest and southeast of the known Nannihu ore
body are favorable targets for further exploration.
5. Conclusions

In this paper, the standalone GeoCube is used in combination with
commercial software Micromine for an exploration criteria analysis of
the Nannihu camp in the Luanchuan district. The results are as follows.



R. Li et al. / Computers & Geosciences 89 (2016) 161–173172
(1) The GeoCube software system facilitates the use of 3D geolo-
gical models to store, retrieve, process, display, analyze, and
integrate exploration criteria.

(2) The C–V fractal method is useful for classifying posterior
probabilities of mineral occurrence into different levels of
exploration targets.

(3) Exploration criteria play important roles in 3D exploration
targeting. In this case study, exploration criteria used are de-
rived mainly from geological and geophysical data. Explora-
tion criteria from geochemical data were not considered in
this case study because the available geochemical data are
sparse and unevenly distributed in 3D space.

(4) In this case study, the ordinary WofE, boost WofE and logistic
regression methods are proved to be superior integration tools
for exploration targeting because these methods can present
more details of integration result and the distribution of their
integration result is more steady and continuous. The ordinary
WofE and C–V fractal methods in the GeoCube software sys-
tem are effective for integrating exploration criteria in the
Luanchuan district. (measuring 25 km�20 km�2.5 km).
Further testing and application of this software to other mi-
neral districts is in order.
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Appendix A

GeoCube software system is available at http://www.mediafire.
com/download/7dn243zkv7d3oy6/GeoCube.rar.

The GeoCube.rar file contains all the codes of Information En-
tropy and Ordinary Weights of Evidence methods, and the *.txt
files from GOCAD/Micromnie, test dataset, software system for
Information Entropy (effective module).
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