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A B S T R A C T

We explore the use of Gaussian process emulators (GPE) in the numerical simulation of CO2 injection into a
deep heterogeneous aquifer. The model domain is a two-dimensional, log-normally distributed stochastic
permeability field. We first estimate the cumulative distribution functions (CDFs) of the CO2 breakthrough time
and the total CO2 mass using a computationally expensive Monte Carlo (MC) simulation. We then show that we
can accurately reproduce these CDF estimates with a GPE, using only a small fraction of the computational cost
required by traditional MC simulation. In order to build a GPE that can predict the simulator output from a
permeability field consisting of 1000s of values, we use a truncated Karhunen-Loève (K-L) expansion of the
permeability field, which enables the application of the Bayesian functional regression approach. We perform a
cross-validation exercise to give an insight of the optimization of the experiment design for selected scenarios:
we find that it is sufficient to use 100s values for the size of training set and that it is adequate to use as few as 15
K-L components. Our work demonstrates that GPE with truncated K-L expansion can be effectively applied to
uncertainty analysis associated with modelling of multiphase flow and transport processes in heterogeneous
media.

1. Introduction

Planning and operation of a carbon dioxide capture and storage
(CCS) project requires reliable model predictions concerning the fate of
the stored CO2. Carefully conducted numerical simulations are critical
for the understanding of the associated coupled physical and chemical
processes (Pruess and García, 2002; Juanes et al., 2006; Doughty,
2007; Dai et al., 2016; Bacon et al., 2016; Xiao et al., 2016). An
important additional complication arises from the geological hetero-
geneity of the target formation, such as stratigraphic architecture and
facies distribution, which is difficult to estimate from the limited
number of observations available (i.e., from the sparse networks of
primarily vertical investigation wells) in a deterministic manner
(Ambrose et al., 2007; Tsang et al., 2008; Gershenzon et al., 2015;
Yang et al., 2015; Ritzi et al., 2016; Tian et al., 2016b; Ampomah et al.,
2016). Therefore, robust and computationally effective methods for
dealing with the uncertainty arising from the geological heterogeneity
are in great need. In general, two components contribute to the
modelling uncertainty for CO2 geological storage: (1) input uncertainty,
including the aforementioned parameter uncertainties (unknown geol-

ogy), and (2) model uncertainty, or “structural uncertainty” according
to the conventional hydrological modelling terminology (Renard et al.,
2010), as modelling approaches are developed under different con-
ceptual and methodological frameworks, involving various approxima-
tions and simplifications. An example on the latter is the work reported
by Nordbotten et al. (2012), where a benchmark simulation case was
run with various numerical codes and effort was made to evaluate the
significance of deviated solutions from various modelling strategies and
assumptions. In the present work, we focus on the input uncertainty.

Standard geostatistical techniques are used to resolve the input
uncertainty when evaluating reservoir CO2 storage performance. For
example, the Umbrella Point power plant model (based on the Frio
formation) was created using TProGs program by Doughty and Pruess
(2004) where multiple two-dimensional stochastic representations of
fluvial depositional settings were picked deliberately to reproduce
realistic three-dimensional geologic structures. A sequential indicator
simulation approach was used by Flett et al. (2007) to create realistic
shale facies distribution for 3-D notional marine sand system models
with varying net-sand-to-gross-shale ratios. A sequential Bayesian
simulation technology was used by Claprood et al. (2014) in construct-
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ing a porosity distribution for a 3-D model of Beauharnois Formation
to understand its CO2 storage potential. In terms of the characteriza-
tion of the spatial permeability distribution, Han et al. (2010) created
multiple two-dimensional permeability fields with inclusion of low
permeability lenses using a sequential Gaussian simulation approach.
Discussions on effects of the permeability heterogeneity include the
contributions from Jahangiri and Zhang (2011) with a focus on the
plume distribution, and from Lengler et al. (2010) with a focus on
small-scale heterogeneity (<100 m). Using a macroscopic invasion
percolation model, Yang et al. (2013) performed a detailed parametric
sensitivity study on upscaled capillary pressure-saturation-relative
permeability relationships for CO2 migration in multimodal hetero-
geneous media. A more recent sensitivity study was reported by Tian
et al. (2016a) where the parameters controlling the spatial correlation
structures of the permeability fields were systematically analysed so as
to understand their effects on CO2 storage performance.

A Monte Carlo simulation method is normally used when a
deterministic description of the model input cannot be used (James,
1980). In this approach, multiple, mutually different but equiprobable
realizations of the parameter field are generated, the model problem
simulated for all of them, and the output analysed in terms of the
statistics of the outputs. The method has been proved viable for the
simulation of geological storage of CO2 (Jahangiri and Zhang, 2011;
Deng et al., 2012; Dai et al., 2014; Tian et al., 2016a). However, an
obvious limitation for the method is the high computational cost, which
limits the number of possible runs for large-scale, long-term simula-
tions of CO2 migration in 3-D heterogeneous medium. This in turn
violates the underlying criteria of the Monte Carlo approach, which
require the model to be run at many input configurations in order to
accurately infer the uncertainty in the model predictions. Therefore,
new reduced-order models that can capture the essential behaviour of
the fully physically based models, yet avoiding the prohibitive compu-
tational cost of them are of great interest. A general overview on
surrogate modelling in water resources was given by Razavi et al.
(2012). More recently, Liu et al. (2013) developed geostatistical
reduced order models (GROMs) in the parameter domain to solve
under-determined inverse problems addressing subsurface multiphase
transport.

In this paper, we propose a Bayesian approach for uncertainty
analysis (UA), that is, the forward propagation of uncertainty through a
model. We focus on simulators such as TOUGH2/ECO2N (Pruess et al.,
1999; Pruess and Spycher, 2007), which are used for the numerical
simulation of CO2 injection into deep heterogeneous aquifers. These
numerical models (called the simulator) are deterministic, meaning
they will always produce the same output if the input is known exactly,
and thus can be regarded as mathematical functions f (·). As we are
uncertain about the input Z (i.e., the true permeability is unknown),
this uncertainty is transferred to f(Z), so that we are uncertain about
the best prediction. The objective of uncertainty analysis is therefore to
estimate the distribution of f(Z), given a distribution for inputs Z.

2. Methodology

We present the modelling problem and describe the quantities of
interest in Section 2.1. In Section 2.2, we present the method to
simulate the random permeability field. In Section 2.3, we describe the
Gaussian process emulation (GPE) methodology and it application to
our problem. A complete procedure to our implementation of GPE is
given in Section 2.4. In Section 2.5 we describe the use of GPE for
uncertainty analysis.

2.1. Modelling of CO2 migration in a heterogeneous aquifer
We consider supercritical CO2 injection from a vertical borehole,

and we simulate CO2 migration until the CO2 plume front reaches the
monitoring well at the far end of the domain (Fig. 1). The simulations
are performed using the TOUGH2/ECO2N code (Pruess et al., 1999;

Pruess and Spycher, 2007). The quantities of interest are the break-
through time (BT) and the total mass (TM) of the injected CO2. For the
numerical experiments where we want to address the uncertainty
caused by heterogeneity, we vary the correlation length of the randomly
generated permeability fields, but use a fixed standard deviation (see
Section 2.2). A more detailed description is given in the Supporting
Information(SI).

In this work, we use the notation Z to denote the permeability
spatial field and want to find the distribution of f(Z) given the
distribution of Z, where f (·) represents the simulator output (e.g.,
either the total mass or the breakthrough time of the CO2). In other
words, our objective is to estimate the cumulative distribution func-
tions (CDFs)

F y f Z y( ) = ( ( ) ≤ ). (1)

The CDFs can be estimated using a Monte Carlo (MC) approach if
sufficient computer power is available. If Z Z, …, n1 is a large sample
from log-Gaussian random field (log-GRF) we are using to model the
heterogeneous permeability field, then the empirical CDF (ECDF),

∑F y
n

( ) = 1 ,
i

n

f Z y
=1

( )≤i


(2)

is an unbiased estimator of the CDF. Here, A is an indicator function
taking value 1 if event A occurred and 0 otherwise.

2.2. Modelling the heterogeneous permeability field

We consider a representation of Z on a two-dimensional mesh grid
with a finite resolution 100×20. The x in the notation Z(x) is the
location coordinate vector, emphasizing that Z is location dependent.
Our prior model for Z is

Z N μ Σlog ∼ ( , ), (3)

where we specify Σ through a covariance function that describes the
permeability covariance between any two locations in the domain, i.e.,
Σ c x x= ( , )ij i j for some covariance function c, and spatial locations xi
and xj. Several techniques exist to simulate realizations from this
distribution, including circulant embeddings, Karhunen-Loève expan-
sions and stochastic collocation (Graham et al., 2011). The method of
Karhunen-Loève (K-L) decomposition is used in our work. The
Karhunen-Loève theorem says that Z(x) admits a representation of
the form

∑Z x ξ λ ϕ x( ) = ( )
i

i i i
=1

∞

(4)

where the λi and ϕ x( )i are the ordered eigenvalues and eigenfunctions of
the covariance function respectively, and the ξi are independent N(0, 1)
random variables. Note that if interest lies solely in the value of Z on a
finite grid of n values (as in our case), then this reduces to a finite sum
of n terms, and the K-L decomposition provides an exact decomposi-
tion of the correlation function on the discrete grid (Crevillén-García
et al., 2017). To reconstruct Z(x), only the ξ{ }i i

n
=1 need to be saved, since

λi and ϕi are determined by the covariance function and thus remain
the same throughout the uncertainty analysis. The simulator is then
considered as a function of ξ ξ ξ= ( , …, )n1

⊤ instead of Z, i.e., ξf Z f( ) ≡ ( ).
In order to calculate the CDFs of the target quantities and evaluate

the performance of the GP emulator, two datasets are generated for

Fig. 1. Conceptual model of the simulation domain (Tian et al., 2016a).
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each of three selected scenarios where we vary the correlation-length of
the unknown permeability fields (Table 1, first three rows). The first
dataset consists of 104 input-output pairs and is used to produce a MC
estimate of the CDF; the second dataset consists of a smaller number of
numerical simulations and is used for training the emulator. The
overall procedure is illustrated in Fig. 2 and is further explained in the
following section.

2.3. Gaussian process emulation

An emulator (Kennedy and O'Hagan, 2000) is a statistical model
that closely mirrors a simulator. It is built using an ensemble of input-
output pairs X y{ , }i i i

N
=1 and can be used to predict the simulator output

for any new input. The most popular approach to building emulators is
to use a Gaussian process (GP) (Rasmussen and Williams, 2006),
which are equivalent to the kriging models used in geostatistics (Stein,
1999). Gaussian processes describe an infinite collection of random
variables, and can be thought of as distributions over functions
(Rasmussen and Williams, 2006; Crevillén-García et al., 2017). A GP
is fully specified by its mean and covariance functions (Rasmussen and
Williams, 2006).

In our case, direct application of GP would be computationally
costly for that a 2000 dimensional input space would require thousands
of training samples (as the hyperparameters associated with each
input component are estimated from the simulator data by solving an
optimization problem, e.g., Crevillén-García et al., 2017). Instead, we
can construct a GP emulator by exploiting the spatial structure in Z
provided by the exact decomposition of Z on a discrete grid. If we order
the eigenvalues in Eq. (4) so that λ λ λ≥ ≥ … ≥ n1 2 , then we can achieve
a form of data compression by truncating the expansion to the first d
terms

∑Z x ξ λ ϕ x( ) = ( ),∼

i

d

i i i
=1 (5)

and thus representing the permeability in a lower dimensional space.
This truncation explains the most variance and achieves the minimum
mean square error amongst all such approximations. We exploit this
truncation in order to build a reduced order emulator from Z∼ rather
than Z, which is equivalent to building an emulator with input
ξ ξ ξ= ( , … )d1

⊤.
The emulator requires the simulator to be run a small number of

times (ntrain) at carefully selected inputs (design points) to create a set
of training inputs (See Fig. 2). Because the simulation of Z is based on
a truncated K-L expansion, the training ensemble is a set ξ y{ , }i i i

n
=1
train

where each ξ ∈i
d . Space-filling designs (McKay et al., 1979; Morris

and Mitchell, 1995) are recommended for GP models, as GP predic-
tions essentially interpolate based on the distance to a few of the
nearest training points. We use the maximin Latin hypercube designs
which maximise the minimum distance between any two points in the
training set. We will examine the optimal value of d and ntrain using
predictive performance measures in Section 4.

The implementation of GPs require that we specify prior mean and
covariance functions. We use a constant mean function and choose
between the squared exponential and Matérn covariance functions. The
hyperparameters involved in these two terms are estimated through
training using type II maximum likelihood (Rasmussen and Williams,
2006). We use the GPstuff implementation of Gaussian processes
(Vanhatalo et al., 2012), which are a set of MATLAB codes integrating
Gaussian process models for Bayesian analysis. Notice that the GP
covariance function (also called the kernel) should be distinguished
from the one mentioned earlier in describing the spatial correlation of
the permeability field.

2.4. GP emulation with K-L truncation

We summarize the procedure as follows:

1. Choose design ξi
n
=1 using a maximin Latin hypercube design where

ξ R∈ N .
2. Run simulator to obtain training set ξ y{ , }i i i

n
=1. We then truncate each

ξ to the first d elements. The value of d will be optimized in Step 6.
3. Pick a prior mean function ξ ξm f( ) = [ ( )] and covariance function

ξ ξ ξ ξk f f( , ′) = ov( ( ), ( ′)) where f (·) is the emulator. For example,
the square exponential (SE) covariance function is

Table 1
Case specifications and results for model selection.

Case No. 1 2 3

Correlation length 0.075 0.15 0.30
size of MC set NMC 10,000 10,000 10,000
size of training set ntrain 800 400 400
dimension of the training set dtrain 30 20 20
CRPSBT ,Mateŕn 0.00640 0.00193 0.00153

CRPSBT, SE (d = 20train ) 0.00108 0.00187 0.00135

CRPSTM,Mateŕn 0.00490 0.00766 0.00975

CRPSTM, SE (d = 20train ) 0.02489 0.02508 0.02534

Fig. 2. Comparing procedures for estimating CDFs using Monte Carlo simulation (TOUGH2/ECO2N) and Gaussian process emulation. The thickness of the arrow illustrates the relative
computational cost.
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⎞
⎠⎟ξ ξ ξ ξk σ

λ
( , ′) = exp − 1

2
− ′2

2

where λ is a length scale hyper parameter, and σ2 a variance
parameter. We denote the GP prior by:

ξ ξ ξ ξf m k( ) ∼ ( ( ), ( , ′)).

4. Update the GP to find the posterior mean (m*) and covariance
functions (k*) using equations:

ξ ξ ξ
ξ ξ ξ ξ

m m t K
k ξ ξ k t K t

y m*( ) = ( ) + ( ) ( − ),
*( *, *) = ( , ) − ( ) ( )

⊤ −1

⊤ −1

where ξ ξK k= ( , )ij i j is the Gram matrix, ξ ξ ξ ξ ξt k k( ) = ( ( , ), …, ( , ))n
⊤

1 ,
and m and y are the vectors of simulator responses and their prior
mean for the emulator. Note that the posterior is a GP conditioned
on the training set.

5. Optimize the hyperparameters, such as λ σ, 2 in SE, by maximising
the type II maximum likelihood (see Rasmussen and Williams,
2006).

6. Optimize the choice of d, the covariance function, etc, using cross-
validation to estimate a measure of the predictive performance.

2.5. Using GP for UA

Once we have a GP emulator of the simulator, we can use it to
predict the simulator CDF and to quantify the uncertainty in our
estimate. To estimate the CDFs, we use the procedure suggested in
Oakley and O'Hagan (2002). This involves drawing sample functions
f{ }j j

L
=1 from the GP that are consistent with the training data by adding

in new design points ξ{ *}i i=1
1000, and simulating a value for the response

from the GP emulator. We then update the emulator to take into
account the fake simulated data. The placement and number of
additional design points is chosen so as to make the uncertainty in
the simulated functions fj essentially zero. We then estimate the CDF
for each simulated function using Monte Carlo in the usual manner,
giving us L realizations F F*, … *L1 . From this we use the median of the
CDFs as a point estimate, and can calculate uncertainty about our
estimates using the ensemble of CDFs.

3. Results

3.1. Estimating the CDF

Each quantity of interest (total mass (TM) or breakthrough-time
(BT)) from each of the three cases (three different models for the
unknown permeability field) is considered as a standalone problem. As
the training set is based on a Latin hypercube design, we use a fixed
number of training points (Table 1) to construct each of the three GP
structures. For each emulated ECDF curve, 1000 random sample
points are first generated using a pseudorandom number (vector)
generator in Matlab assuming a dimension corresponding to d = 30train
(Case 1) or d = 20train (Cases 2 and 3). Then, this set of random inputs,
together with the corresponding training pairs, were used to feed the
designated GP structure in order to produce/draw one sample from the
posterior distribution. For each quantity of interest, 100 posterior
samples (L=100) were used to calculate the median ECDF. Note that
this is computationally cheap as it does not involve running the
TOUGH2/ECO2N simulator.

Fig. 3 shows the breakthrough time for Case 1. The GP curve is the
median CDF calculated from the 100 posterior samples. The confidence
intervals of the MC CDF are omitted for visual clarity. The dashed lines
(posterior credible intervals) indicate that the MC CDF is enveloped
within the emulator confidence intervals. Excellent matches are
observed: for all cases examined, the median GP curves replicate the

MC ones almost exactly. The mean CRPS (Continuous Rank Probability
Score, see the SI) for the three correlation length cases are 0.00640,
0.00193 and 0.00153, respectively. A similar procedure was used for
the total CO2 mass (TM) at the breakthrough time. The TM ECDF
curves from the MC are also well predicted by the median GP results.
The TM result exhibits a slightly less good match in comparison to the
observation from the BT, especially for the lower and upper tail of the
ECDF. However, the 5th to the 95th percentiles of the GP prediction
agree closely with the MC results. The CRPSs for three tested cases are,
respectively, 0.00490, 0.00766 and 0.00975.

Note that for TM smaller CRPSs are observed for Case 1 in
comparison to the other cases (Table 1) due to a larger number of
training points (n = 800train case, 1 ) and the higher dimension of the
training inputs (d = 30case1 KL components). Note also that the CRPSs
for BT are noticeably smaller in comparison to the TM ones (one order
of magnitude). Excellent agreement is observed for BT results (Fig. 3).
For Case 2 and Case 3, the results are visually similar to Case 1 and are
therefore not included for space considerations.

3.2. Cross validation

At the initial stage of the experimental design, two key factors are
very difficult to determine beforehand, namely the size of the training
set (ntrain) and its dimension (dtrain, the number of K-L components
retained for the prediction). Using leave-one-out cross validation
(LOO-CV, see also SI) can guide us in tackling these issues. For each
GP, LOO-CV has been performed to estimate the predictive accuracy of
the emulator in two steps: Step 1, a training set with fixed size is
selected and the predictive performance measured using the Dawid
score (DS), which can be thought of as being similar to the log-
likelihood (see Wilkinson et al. (2011), and the SI). This score is then
plotted as a function of the number of K-L components; Step 2, the
number of K-L components is now fixed and the predictive perfor-
mance is plotted as a function of the size of the training set.

Fig. 3. Comparison of GP emulation vs. Monte Carlo simulations. Top: breakthrough
time (BT) recorded in seconds; bottom: the total mass of CO2 (TM).

L. Tian et al. Computers & Geosciences 105 (2017) 113–119

116



The DS estimated using LOO-CV are plotted as a function of the
number of K-L components in Fig. 4. It is found that by using a fixed
size of the training set for all cases, the DS score becomes stabilized
when using more than 15 K-L components (d ≥ 15train ). When using
exactly 15 K-L components for each case to fit the GPs, the DS score
appears to become stabilized when using a training set with more than
100 design points (n ≥ 100train , see Fig. 5).

4. Discussion

The investigated two dimensional model domain has 2000 elements
representing a spatially correlated heterogeneous permeability field.
Uncertainty analysis using the classical MC method requires that the
already computational demanding simulator to be run for as many as
104 times.

For the GP emulator approach to UA, the main part of computa-
tional cost comes from the simulator runs needed for the training
inputs. GP posterior sampling has in comparison virtually no computa-
tional cost. In this section we discuss the design and the construction of
the GP emulator.

4.1. Model configuration

One very important aspect of using GP emulation is the choice of
the covariance function that defines the nearness or similarity in the
input space (Rasmussen and Williams, 2006). In other words, how
similar xf ( ) is likely to be to xf ( ′) when x is close to x′. The covariance
function can be any positive definite function, so that it generates a
valid covariance matrix for any set of inputs. Some of the commonly
used functions are the squared exponential covariance function (SE)
and the Matérn class of covariance functions. The SE covariance
function generates samples that are infinitely differentiable, whereas

the Matérn covariance function (with ν = 3
2

degrees of freedom)

generates samples that are only once differentiable. It can be hard to
judge in advance what the more appropriate model might be, but we
can use CV scores to guide the choice. We constructed alternative GPs
using both for each of the cases examined in Section 3 (see Table 1).

The ECDFs calculated using the Matérn covariance function (ν = 3
2
)

exhibit smaller CRPS values in comparison to the ones calculated using
SE. For the emulation of BT, there is no noticeable difference between
using the SE or Matérn covariance functions. However, for TM the
Matérn exhibits much better predictive performance. Notice that the
choice of dtrain (the dimension of training points, in our case equivalent
to the number of K-L components) will affect the performance of the
GP emulator, depending on the number of training points (ntrain). We
note that the choice of covariance function can affect the performance
of the GPE, and that more complex covariance functions can be
obtained by combining covariance functions (see Rasmussen and
Williams (2006), for example). A detailed discussion is beyond the
scope of the current work, but can be found in Crevillén-García (2016).

4.2. Cross-validation and optimization

We would like to use the smallest number of the training inputs
possible to create an emulator that meets our accuracy requirements.
To investigate this, we use the method of cross-validation (CV). The
idea is to split the training set into two disjoint sets, one of which is
used for the training and the other is used for the validation of the
emulator. Notice that such splits can be done repeatedly in multiple
ways (k-fold CV), one extreme case is when k=n, also known as leave-
one-out cross-validation (LOO-CV). We can use CV scores to choose
the optimum input dimensionality (the number of K-L coefficients,
dtrain) and the number of design training points (ntrain) to be used in
the GP. The evaluation is done by looking at the variance of the
predicted value in LOO-CV as well as the Dawid score for the overall
prediction error.

In our calculations, the size of the training ensemble is 800 for Case
Fig. 4. Dawid scores indicating prediction accuracy (estimated using LOO-CV) vs.
number of K-L components retained (dtrain).

Fig. 5. LOO-CV Scores vs. é the size of the training set (ntrain).
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1 but 400 for Case 2 and Case 3. The reason for using more training
sets in Case 1 is that the correlation length for the log-Gaussian
permeability field model is smaller in Case 1 than in Cases 2 and 3.
Thus, the permeability is autocorrelated over shorter distances, and so
we need more K-L components to describe the variation well, and
consequently we need a larger training ensemble to build an adequate
emulator. For predicting the BT ECDF (Fig. 4), using 15 K-L
components provides good results, whereas for predicting the TM
ECDF, around 20 K-L components is preferred. The indication is that
the calculations of breakthrough time and total mass for the injection
simulation of CO2 are two very different processes.

A priori, it is difficult to provide a precise value for an adequate or
appropriate number of training points required for a GP, as, to the best
of our knowledge, a priori estimation of the error is not possible for
GPs. Optimization of the design would mean changing the space filling
design, which would mean drawing new samples ξi from

d=2000 . To
understand whether this design improved the GP performance, the
simulator (TOUGH2/ECO2N) would need to be rerun so as to generate
the corresponding new training ensemble. In other words, one would
need to build new GPs based on additional simulator runs in order to
understand the potential gain from optimization. This would be
extremely computationally costly, and so a different approach has been
used here.

Considering Case 1, for example, where we have generated 800
training pairs (n = 800train ), we start by building an emulator, GP j0, =20,
using a random draw (whilst trying to retain some of the space filling
properties of the design) of j=20 training points from initial set of 800.
A first DS score can then be calculated for GP j0, =20 using LOO-CV. By
randomly adding one training point at a time from the remaining
training pairs, we can iteratively create new emulators, GPi j i, =20+ . The
resulting Dawid scores then reflect how the predictive performance
improves as the sample size increases. It should be noted that Latin-
hypercube sampling has been used to create the initial 800 points. The
re-sample of the existing Latin-hypercube set should be path-indepen-
dent. Fig. 5 shows the decreasing trend of DS score reflecting that more
information is provided by the training set as the sample size increases.
It can been seen that 100 training pairs would be needed for Case 1
when building a GP for BT ECDF using only 15 K-L components. Note
that the pattern of TM LOO-CV result for Case 1 (Fig. 5, lower panel) is
different from the other cases. We further extended the LOO-CV test
for Case 1 and the decreasing trend in the DS score was confirmed
(Fig. 6). This indicates that for heterogeneous domain with a smaller
correlation length, a larger training set may be needed for constructing
the GP so as to achieve a similar predictive performance.

4.3. Using GP for uncertainty analysis

The output from each GP constructed in Section 3 is a collection of
random variables indexed by ξ. An assumption has been made that the
spatial distribution of the heterogeneous field can be adequately
described by ξ. In a geostatistics perspective, the conventional percep-
tion of correlation length (λ), standard deviation (σ) and the descriptive
covariance function (see SI) of the permeability field can all be
interpreted as possible projections of ξ.

We use standalone GPs in predicting the ECDF for each uncertain
output of interest. It is worth noting that the two outputs, the
breakthrough time and the total mass, are fundamentally different
processes. Fig. 3 shows that the breakthrough time is log-normally
distributed, while the total mass follows a normal distribution. The GP
emulator prediction is noticeably better for BTlog ( )10 than for TM. This
difference in reproducing the MC results may indicate that the
dependence of TM on the underlying permeability field is more
complex than that of BT. Additional metrics apart from the K-L
expansion parameter (or alternative methods) describing the perme-
ability fields may be needed to improve the uncertainty analysis of the
total CO2 mass.

We have shown that the use of GP for UA, in our case exploring the
ECDFs of BT and TM, results in considerably lower computational cost
compared to classical MC analyses. By improving the experimental
design, it is possible to further improve the model performance.

5. Concluding remarks

We have carried out uncertainty analysis of the simulations of CO2
injection and migration into a deep heterogeneous saline aquifer using
both MC simulation and GP emulation. We have shown how GPEs can
successfully be used to predict ECDFs of the breakthrough time and
total CO2 mass, replicating the ECDF estimates obtained using Monte
Carlo simulation, at only a small fraction of the computational cost. The
GPs automatically provide confidence intervals for the estimates of the
CDF, which compare well to those calculated from classical MC. Our
work demonstrates that GP emulators with truncated Karhunen-Loève
expansion can be effectively applied to uncertainty analysis associated
with modelling of multiphase flow and transport processes in hetero-
geneous media.

We have also examined the issues surrounding experimental de-
sign, including the possibilities to further optimize the GP. An optimum
design may need to re-sample the input space, and therefore need
additional simulator runs. To address this, an alternative approach has
been taken by down-sampling the training set. The results from the
cross-validation exercise indicate significant performance gain from
potential optimization. This information provides a good starting point
for further applications.

We have treated the two outputs, namely the CO2 breakthrough
time and the total CO2 mass as two independent processes, and built
standalone GPs for each one. It is possible to construct a single GP with
multiple outputs (Alvarez et al., 2011), and this may provide one future
perspective for exploring the internal physical mechanism for a
complex system. Another future aspect would be to use simulations
of varying fidelity and then to use multilevel emulation to further
increase the accuracy of the GPE (cf. multi-level Monte Carlo in Giles
et al. (2015)).

We have also explored the indication from modelling of hetero-
geneous media and identified that the conventional perception on
correlation length is, from a geostatistic perspective, a matter of
parameter bounds and dimensions. Finally, we note that future work
is needed to address the limitation associated with the use of truncated
Karhunen-Loève expansion, which is a smooth representation of the
random field, for application to real reservoirs which often exhibit
multi-scale permeability heterogeneity.Fig. 6. LOO-CV Scores vs. the size of the training set (ntrain), Case 1.
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