
Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

GPU based contouring method on grid DEM data

Liheng Tan⁎, Gang Wan, Feng Li, Xiaohui Chen, Wenlong Du

Institute for Geographic Spatial Information, The PLA Information Engineering University, Zhengzhou, Henan 450000, China

A R T I C L E I N F O

Keywords:
Contour
Grid DEM
GPGPU
Geometry shader
Spatial interpolation

A B S T R A C T

This paper presents a novel method to generate contour lines from grid DEM data based on the programmable
GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the
raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting
strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-
consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed.
Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary
user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline
function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and
translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a
“Grid Sorting” algorithm to achieve the continuous contour lines by travelling the segments only once. Our
method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour
lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented
with OpenGL 3.3 API or higher on consumer-level PCs.

1. Introduction

Contours, grid DEM and TIN DEM are the three most important
forms of terrain expression (Wang andWu, 2006), each of which has its
own characteristics and usages. The conversion between them is one of
the frequent studies in the research field of GIS. Among the three,
contours are measurable, and can be perceived directly. Therefore they
play an important role in cartography, map reading and terrain
analysis.

In recent years, the production of DEM data has enhanced greatly
in quantity, quality, range and other aspects (Jaara and Lecordix,
2011). The majority of them are released as grid DEM, such as SRTM,
GDEM, DLR, etc. As a result, the demand of generating contours from
DEMs is increasingly urgent, as an important function in computer-
aided cartography (Li and Zhu, 2003). Particularly, extracting contours
from grid DEM has become a focus of study.

Contour is a kind of isoline, the study about which began since the
1960s (Barcha and Reese, 1964). After decades of research and
development, various ideas and methods have been put forward, which
can be analyzed and summarized from different aspects.

The contouring algorithms can be classified into three categories
according to the final results: ①Vector contour. These methods usually
use the finite element mesh (FEM) to represent the terrain surface. The
attribute values (e.g., elevation) are acquired for all vertexes. Then

contour line segments are extracted from the elements according to
linear interpolation. This is the typical process used by most of the
contouring algorithms. ②Raster contour image. The results of these
approaches are raster images with specific resolutions, on which the
contours are rendered. For each pixel of the image, its color is
calculated according to the attribute value in its actual spatial position
(Wang et al., 2001; Paul, 1988; Gul and Khan, 2010; Schlei, 2009).
Chen et al. (2010) implement this method on GPU: Render the
triangular mesh of terrain through the graphics pipeline, and compare
the elevation values of the contours and each pixel in the pixel shader
to calculate the pixel's color and opacity value, which could achieve a
better blending effect. Although GPU can accelerate the calculation by
its pixel-wise parallel mechanism, however, the principle it follows is
still linear interpolation of the three vertices of a triangle. Therefore it
can’t obtain a fine smooth result if the mesh is not dense enough. On
the other hand, the final results of these methods are raster images,
rather than vector contours, which can’t totally meet the requirements
of GIS applications. ③Contour functions. Zhao (2003) also uses regular
grid data. He employs a ternary cubic equation to fit each grid cell. So
for a certain height value, the smooth contour line in the cell can be
solved as a binary cubic equation, which can be fully presented and
stored with only 8 coefficients. But obtaining these coefficients requires
to resolve a set of 10-elements linear equations, which is computa-
tionally expensive. Besides, the form of parameter equation can’t

http://dx.doi.org/10.1016/j.cageo.2017.05.007
Received 11 October 2016; Received in revised form 15 May 2017; Accepted 16 May 2017

⁎ Corresponding author.
E-mail address: star-force@qq.com (L. Tan).

Computers & Geosciences 105 (2017) 129–138

Available online 18 May 2017
0098-3004/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.05.007
http://dx.doi.org/10.1016/j.cageo.2017.05.007
http://dx.doi.org/10.1016/j.cageo.2017.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.05.007&domain=pdf

describe the geometry directly, so its usage is restricted. Similarly,
Bryan et al. (2005) employ the radial basis function (RBF) to fit all the
data sampling points for each cell, and define the contour lines by
implicit functions. But this way can neither get a global differentiable
function, nor can it make the usage of the result more extensive.

The first kind of method - vector contour – is most commonly used,
and can be further subdivided into two categories by the basic elements
of the FEM: grids or triangles. ① Carsten (2003) describes the contour
generation algorithm based on a grid FEM, namely Marching Squares
(MS). This algorithm summarizes all 16 possible spatial relationships
between a single contour segment and a grid cell. The certain type of
relationship can be quickly determined by comparing the height values
of the four vertexes and the contour. Then the segment can be directly
computed. Similar works are presented respectively with their own
data structures and processes (You, 1989; Xie and Tian, 1995; Wang
et al., 2007a, 2007b; Sun et al., 2000; Li, 2010; Chester et al., 1968;
Hiremath and Kodge, 2010). ② Triangular mesh based methods are
also proposed (Cheng et al., 1998; Miao, 2004; Rui et al., 2011; Shao
et al., 2014; Goldin and Gao, 2006; Rognant et al., 2001; Watson,
1982), which can reduce the quantity of types of spatial relationships to
8. Thus segment extraction can be simplified. However, the tracing or
sorting processes may become more complicated.

The vector-contour methods can also be subdivided into two major
classes by their workflows, including contour sorting and contour
tracing (Watson, 1993). ① The sorting methods first try to find contour
segments from all of the FEM cells respectively, and will obtain a set of
contour segments with random order. Then these segments are sorted
and organized into strings or loops to obtain the full contour lines
(Nickerson et al., 1999). The advantage of these methods is that the
segments extracting stage is quite simple and highly parallel, so it is
easy to be accelerated (Xie, 2012). The sorting stage is the focus of
researches. Norman et al. (2000) sort the segments from different
directions successively, and in some cases it can be more efficient than
the tracing method. ② The tracing methods generate one complete
contour line each time, segment by segment. They usually begin by
finding a useful FEM cell. After obtaining a starting contour segment in
the cell, they try to find the continuous segments from the neighbor
cells (Buys et al., 1991; Yates, 1987; Lodwick and Whittle, 1970; Kok
and Begin, 1981). This process continues until the contour line reaches
the boundary or gets closure. Theoretically, the tracing methods can
find all contours by traversing the cells in just one pass, so they can be
more efficient. Also there is a vast literature which aims to find the
starting cell more efficiently (Van and Marc, 1996, 2006; , 2007a,
2007b; Zhao et al., 2014), with techniques such as interval tree, binary
tree, quick sorting, bucket index, etc. However, these preprocessing
steps need additional traversals of the cells, thus the overall computa-
tional cost may be even more expensive.

The contour generation algorithms also need to meet the problem
of smoothness (Schmieder and Huber, 2000). This problem comes up
when the original data is sparsely distributed, so will the FEM be sparse
too. For each cell of the FEM, the possible segment is a straight line
according to linear interpolation. So the whole contour line will be
quite jagged, which is neither beautiful nor realistic. For fitting the raw
contour polylines into smoothed results, cubic Bezier curve, cubic B-
spline, parabola, oblique axis parabola and other methods are widely
discussed (Sun et al., 2000; Miao, 2004; Wang, 2006). However, these
curve-based smoothing approaches ignore the planar topological
relations between lines, so the results may be self-intersected (Fig. 1)
(Riegler et al., 2006). Some others employ the analytic function
methods (Zhang et al., 2001; Rui et al., 2011), and treat each FEM
element (grid or triangle) as a function surface, such as bivariate
quadratic function, bivariate cubic function etc. Then the original
elements are subdivided to achieve a denser FEM, from which the
smoother contour lines could be obtained. Zhang (1991) uses the
similar idea, except that he solves the contour's function expression
directly from the bivariate cubic cell surface, then discretizes it to

obtain the smooth contour's points list. However, these methods can
only ensure the final contours remain smooth in each FEM cell. The
lines are still not globally differentiable. So Zhang and Liang (1997)
first subdivide FEM cells to achieve local smoothness, then use the
cubic spline for global smoothness. But still, self-intersection may
occur in some strict conditions. Besides, Peters et al. (2014),
Kolingerová et al. (2009) concentrate on altering the height values or
triangulation of the original FEM to eliminate the aliasing and rough-
ness. However, these approaches have little effect for the sparse
condition.

In this paper, we present a novel contour sorting method on Grid
DEM data, which can be easily integrated into 3D GIS system. The
segments extracting stage is significantly accelerated through the
programmable GPU pipeline, by using vertex shader, geometry shader
and transform feedback. Based on the GPU's internal feedback order, a
highly efficient “Grid Sorting” algorithm is also proposed to sort the
segments and generate the final complete contours. Moreover, we
employ a third-order Cardinal spline to achieve a C3continuous
description of the entire terrain by GPU, and also use a user-defined
arbitrarily dense triangular FEM as the foundation of contouring. Thus
the problem of global smoothness can be solved exactly. Our method
makes use of multiple stages of modern GPU pipeline, and gets
improvements on both effect and efficiency over the previous ap-
proaches.

2. GPU spatial interpolation

2.1. Use the DEM data properly

Digital Elevation Model (DEM) is a 3D digital representation of
terrain surface. However, the DEM data is usually a set of discrete
sampling points, meanwhile most of the actual terrain surface is
continuous. Therefore we need to define the continuous function of
the terrain surface, as h f x y= (,), which can not only fit all of the
sampling points, but also can determine the height value for arbitrary
position in the domain. Contour generation must be concerned with
function h. The contouring results may vary a lot when different
functions are used, even though the sampling points are the same
(Grain, 1970).

For grid DEM data, traditional contour generation algorithms
usually focus on the discrete sampling points only (Fig. 2.a). They
often directly connect the sampling points to construct a FEM for
contour generation, which means, they think the terrain surface
appears as shown in Fig. 2.c. Because the raw data based triangular
network interpolates the elevation values on its inner spatial locations
by linear interpolation (barycentric interpolation) potentially.

This description cannot be globally smooth, and finally appears as a
2D piecewise function. In each triangle, the function is C1continuous as
a linear plane. However it could not be differentiable when comes to
the edges of the triangles. As a result, this description can’t fit the real
terrain surface well if the sampling points are relatively sparse
(Fig. 2.a), nor can it lead to the generation of smooth contours.
Similar descriptions include the Voronoi polygon partition (Fig. 2.b),
namely nearest interpolation, which is neither continuous nor differ-
entiable; and bilinear interpolation (Fig. 2.d), which can achieve C1

Fig. 1. Self-intersection of the smoothed contour lines.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

130

continuity within a square area, but is still not differentiable through
the edges. These methods could not get a global continuous and
differentiable description about the ground surface either.

2.2. GPU cardinal spline interpolation for terrain description

As previously mentioned, to generate high quality, smooth contour
lines, it is necessary to obtain a global, at least C2continuous descrip-
tion from the raw sampling points. In the field of spatial interpolation,
many relevant researches have been proposed. The commonly used
interpolation methods can be classified from lots of aspects. According
to the operation strategies, there are global interpolation, piecewise
interpolation, statistics based interpolation and inverse distance
weighting (Franke, 1982; Nielson, 1993). From the perspective of
interpolating function, there are polynomial interpolation, Lagrange
interpolation, Newton interpolation, spline interpolation and the radial
basis function interpolation, etc (Schoenberg, 1969, Schoenberg and
Sharma, 1973). From the number of variables used each time, there are
multivariate interpolation (Akima, 1978) and multi-dimensional uni-
variate interpolation (Lee et al., 1997).

When the amount of DEM data is very large, the global interpola-
tion methods generally employ the high order polynomial function to
fit all of the sampling points. However, this function is hard to solve,
and a serious Runge's phenomenon may occur. So in this paper, we
prefer to use the piecewise interpolation strategy, which is paralleliz-
able, and is suitable to implement on GPU. In terms of selecting the
interpolation function, we notice that the spline functions only need a
small amount of sampling points, and can ensure that the whole terrain
has C3 continuity. The most commonly used spline functions are Thin-
Plate spline, B-spline, Hermite spline, Bezier-Bernstein spline,
Cardinal spline, Cone spline, Box spline, etc. Wherein the Cone spline
and Box spline are multivariate functions, which can be used to
interpolate the 2D surface directly (Chui, 1988); the others are
univariate splines, which can also describe 2D continuous surface if
we use it twice and for one dimension each time.

Spline interpolation is more often used in computer graphics and
computer-aided design; e.g. high order texture filters are proposed to
achieve a better rendering quality (Bjorke, 2004; Christian and Markus,
2005). In this paper, we argue that the Cardinal spline is very suitable
for describing terrain. On the one hand, it employs cubic polynomial
functions as its basis functions, thus it can keep C3 continuity with
simple calculation; on the other, a Cardinal spline can change its
tightness easily by adjusting the tension parameter. So it has better

adaptability for different kinds of terrains. In conclusion, we use the 2D
piecewise Cardinal spline interpolation to fit the raw data with a
smooth surface.

The general form of the cubic Cardinal spline is as follows (Lalescu,
2009):

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥f u u u u τ

τ τ
τ τ

τ

p
p

p
p

() = [1]∙ ∙

−1 2/ −1 −2/ +1 1
2 −3/ +1 3/ −2 −1

−1 0 1 0
0 1/ 0 0

∙i

i

i

i

i

3 2

−1

+1

+2 (1)

where pi−1, pi, pi+1, pi+2 are four control points. f u()i is the piecewise
Cardinal spline function which is used to interpolate from pi to pi+1.
Here u∈[0,1], and f p(0) =i i and f p(1) =i i+1. The curve would extend
and still keep global C3 continuity along with the increase of i. τ is the
tension parameter, which should range from 0 to 1 for DEM inter-
polation. The smaller τ is, the tighter the spline will be, and vice versa
(Fig. 3). So theoretically when it comes to different kinds of terrains,
whether rugged or flat, we can choose the appropriate τ value for
spatial interpolation. However, there are few researches on DEM
interpolation with Cardinal spline in the present. The quantitative
criterion for choosing the appropriate τ values for different types of
terrains is still uncertain. This is a little beyond the scope of this paper
and may take a lot of discussion, so we intend to fulfill this work in our
following study.

This function is univariate, so we use it twice for 2D DEM
interpolation, first vertically (along with the longitude line), then
horizontally (along with the latitude line). Then we can get a smooth
terrain description. As shown in Fig. 4, for any point p x y(,) in the data
field, we can calculate its height value according to the 16 neighbor
sampling points. In addition, we implement our method on program-
mable GPU in vertex shader stage with the feature of vertex texture
fetch, which is useful for the FEM generation later. Owing to the highly
parallel architecture of GPU, the interpolation process can be extremely
fast.

Our approach is as follows:

① Store the grid DEM data (height map) as a rectangle texture, with
32-bits float precision, nearest filter, and alpha channel only. Use it
as an input into the graphics pipeline.

② The horizontal line that pass p x y(,) must intersect the raw data grid
with 4 points, 2 for each side. Denote them as p x y i(,), ∈ {1,2,3,4}i i i .
Then solve the 2D plane coordinates for them.

③ For each point p x y(,)i i i , use the 4 raw DEM data points around it in
the vertical direction as sampling points, also 2 for each side.

Fig. 2. Different mathematical descriptions on the same sampling points.

Fig. 3. The shapes of Cardinal spline with different τ values.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

131

Fetch the DEM texture, and get their 3D coordinates as
p x y z j(, ,), ∈ {1,2,3,4}ij ij ij ij . Normalize the vertical coordinate yi to ui
with the following equation:

u y y y y= (−)/(−)i i i i i2 3 2 (2)

Then substitute ui and p j(∈ {1,2,3,4})ij into Eq. (1), so we can get
the elevation value on point pi, in form of its 3D coordinate
p x y z(, ,)i i i i .

④ Similarly, using p (i ∈ {1,2,3,4})i as sampling points, and here:

u x x x x= (−)/(−)2 3 2 (3)

Again substitute them into Eq. (1), then we can get the elevation
value on point p.

Here are the GLSL codes for the interpolation in vertex shader:

//Cardinal Spline coefficient matrix
uniform mat4 SplineMatrix
// DEM height map texture
uniform sampler2DRect _tex
// the texture coordinates of any point p(x,y)
vec2 uv
float caculateSpline(float u,vec4 _heightvalues)
{

vec4 l_vU = vec4(u*u*u,u*u,u,1.0);
return dot(l_vU,SplineMatrix*_heightvalues);

}
float TextureSampleAlphaSpline(sampler2DRect _tex,vec2 uv)
{

vec2 frac_xy = uv – floor(uv);
vec2 xy = floor(uv);
vec4 l_values;
l_values=vec4(texture(_tex,xy+vec2(−1.0,−1.0)),texture(_tex,xy
+vec2(−1.0,0.0)),/

texture(_tex,xy+vec2(−1.0,1.0)),texture(_tex,xy
+vec2(−1.0,2.0)));

float col0 = caculateSpline(frac_xy.y,l_values);
l_values = vec4(texture(_tex,xy+vec2(0.0,−1.0)),texture(_tex,xy
+vec2(0.0,0.0)),/

texture(_tex,xy+vec2(0.0,1.0)),texture(_tex,xy+vec2(0.0,2.0)));
float col1 = caculateSpline(frac_xy.y,l_values);
l_values = vec4(texture(_tex, xy
+vec2(1.0,−1.0)),texture(_tex,xy+vec2(1.0,0.0)),/

texture(_tex,xy+vec2(1.0,1.0)),texture(_tex,xy+vec2(1.0,2.0)));
float col2 = caculateSpline(frac_xy.y,l_values);
l_values = vec4(texture(_tex,xy+vec2(2.0,−1.0)),texture(_tex,xy
+vec2(2.0,0.0)),/

texture(_tex,xy+vec2(2.0,1.0)),texture(_tex,xy+vec2(2.0,2.0)));
float col3 = caculateSpline(frac_xy.y,l_values);
return caculateSpline(frac_xy.x,vec4(col0,col1,col2,col3));

}

The results are shown in Fig. 5. Obviously our method can get a
global high-order continuous terrain description, which goes from
rough to flat along with the increase of τ .

To implement this method in GPU, the key point is to map the real
geographic coordinates to the texture coordinates correctly, then we
can access the corresponding texel from the raw DEM data for any
position. The matrix from Eq. (1) can be calculated in CPU-side with a
certain τ value, and then transmit into GPU pipeline as a 16-floats
uniform parameter. The whole calculation process is quite simple, only
needs 16 times of texture fetching, and several times of matrix-vector
multiplications. For modern GPU devices, the time cost for interpolat-
ing millions of points is sub-millisecond, which is negligible for most
cases. It can be directly incorporated into the contouring process.

2.3. FEM construction

The contour sorting algorithm still needs a FEM to perform on.
However, benefiting from the previous C3 continuous surface we
achieved, the resolution of the FEM doesn’t need to be restricted to
the raw DEM data, as the previous approaches (Fig. 6.a). Instead, we
use a user-defined triangulated FEM with arbitrary mesh density for
contouring (Fig. 6.b). For each vertex of the mesh, the method
introduced in 2.2 is used to obtain the elevation value.

In fact, a spline function is a numeric function that is piecewise
defined by polynomial functions, which possesses a high degree of
smoothness at any position in its domain. In step 2.2, we use cubic
Cardinal spline twice to form the interpolation surface, first vertically,
then horizontally. So finally this surface is a piecewise-defined bivariate
cubic polynomial function, which is C3 continuous in its domain.
Assuming the surface function is z = f(x, y), then the functions of
contours are f(x, y) = h (i = 1, 2, 3…i), where hi are the height values of
contours. Now the gradient function of the contour line can be solved
as ∇f = f i + f jx y . Since f(x, y) is a three order polynomial function, then
fx, fy and ∇f will be C2 continuous, which means the contour functions
will be smooth.

Meanwhile, the FEM surface is a continuous piecewise bivariate
linear function, assuming it is z F x y= (,). For any position p x y(,)p p in
the domain, it will be in one triangle, marked as p p p0 1 2. Assume the
density of FEM is ρ, and the length of the longest edge of the triangle is
φ. Clearly, if ρ→∞, then φ→0, so p p p p, , →0 1 2 . And z F x y= (,) and
z f x y= (,) are both continuous functions, so
F x y F x y f x y f x y(,) = (,) = (,) = (,)p p p p0 0 0 0 , which means:

F x y f x ylim (,) = (,)
ρ→∞

So when the FEM is dense enough and the coordinates of its
vertexes have been calculated, its surface will tend to be similar with
the piecewise spline function. Thus, the contours extracted will be
smooth at visual scale. And the smoothness of contour lines is due to
the smooth surface, so it will not get self-intersection at all.

In our opinion, the reasonable resolution of the FEM (RFEM) is
related to both the resolution of the raw DEM data (Rdem) and the
resolution of the view (Rview). RFEM should be greater than Rdem,
otherwise the FEM can’t cover the fundamental information of the
raw data. Meanwhile RFEM should be greater than Rview too, because it is
also important to obtain a fine visual effect. So we can conclude:

R max R R≥ (,)FEM dem view (4)

Rview is correlated with the view size. Here an empirical value can be
recommended as:

R ViewWidth cm ViewHeight cm≈(/0. 2) × (/0. 2)view (5)

For example, for the DEM data shown in Fig. 6.a, its Rdem is 10×10.
When it is rendered on screen with the size of cm cm20 × 20 , the Rview

will be about 100×100 according to Eq. (5), which is greater than Rdem.
So here RFEM should be greater than Rview. With the FEM of this

Fig. 4. 2D Cardinal spline interpolation.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

132

resolution, we can achieve very smooth results with full of details.

3. GPU contouring

3.1. Overview

GPU is originally designed for acceleration of rendering 3D
graphics. In recent years, with the rapid development of its data
processing ability and programmable pipeline architecture, GPGPU
(general-purpose computing on graphics processing units) has been
proposed and widely discussed (Qian et al., 2014). Some very popular
GPU-based parallel computing platforms also appeared, such as CUDA
and OpenCL. Still, when it is needed to combine with the existing
graphic system, like a 3D GIS platform, we can directly use the
standard graphics pipeline to perform parallel computing. Through
this way, the flow of the system can be simpler. Especially for contour
generation, we just need to modify some shader stages of the graphics
pipeline, and the contours can be generated and visualized in one single
rendering pass. Besides, it does not need to grow dependent on third-
party libraries, runtimes or drivers.

As shown in Fig. 7, the modern graphics pipeline consists of
multiple stages, including vertex shader, fragment shader, etc.
Especially the geometry shader, which is introduced with OpenGL
3.2 in 2009, has the ability to flexibly increase, decrease or change the
geometry primitives. This is the key feature for contour segments
extraction. Meanwhile another vertex post-processing mode – trans-
form feedback – is provided, by which the altered primitives could be
transferred back to the CPU-side for further usage.

Benefiting from these new functions and the inherent parallel
computing mechanism, efficient GPU based contouring method could

finally be realized.
The basic steps of our approach are as follows:

① Generate a 2D triangular FEM in CPU-side, using the method from
Section 2.3.

② Pass the 2D FEM and the DEM texture into the vertex shader. In
this stage, obtain the elevation value and get the 3D coordinate for
each vertex, as shown in Section 2.2.

③ Then in geometry shader, change the triangles which have contours
across them into contour line segments, then transmit them back to
CPU using the transform feedback feature. Also transmit some
auxiliary information back for efficient sorting.

④ Back in CPU-side, adopt the “Grid Sorting” method to make the
segments into sorted strings or loops. So we can finally complete the
generation of contours.

A flow chart of the algorithm is shown in Fig. 8. The first two steps
have been explained in the chapter 2. We will now present the rest of
them in details.

3.2. Segments extraction and feedback

Many papers have been written on the extraction of a possible
segment from a triangle (Zhang and Liang, 1997; Cheng et al., 1998;
Miao, 2004; Zhao et al., 2014; Hou et al., 2008). As shown in Fig. 9,
the three vertexes of the triangle could be denoted by
p x y z(, ,)i i i i ,i ∈ {0,1,2}, and zi is the elevation value. If the height of
the contour is h, then a necessary and sufficient condition for the
existence of a contour point in the edge p pm n m n m n(, ∈ {0,1,2}, ≠) is:

z h z h(−)∙(−)<0m n (6)

When the point exists, let's set it p, the formula for calculating its
coordinate is:

p p p p h z z z= +(−)∙(−)/(−)m n m m n m (7)

So for each triangle, the previous CPU methods need to use formula
(6) for at least two edges. When data set is large, the efficiency will be
greatly affected. Besides, for sorting methods, this process is indepen-
dent and parallel for all triangles. But CPU has only few threads to run
simultaneously. It is far more appropriate to use GPU to accomplish
this work than CPU. GPU is very powerful for floating point computa-
tion and data parallel processing, which is good at dealing with
numbers, matrixes and vectors. However, its efficiency may reduce
when there are lots of logic operations, such as judgments and choices
of branches. To optimize the algorithm for GPU, we design an edge
table as follows:

Fig. 5. Cardinal spline interpolation results with different τ values.

Fig. 6. FEMs of different resolutions. (a) raw data resolution (b)user-defined resolution.

Fig. 7. Pipeline of modern GPUs.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

133

For OpenGL API 3.3 or higher, we can bind, interpret, and utilize
any attribute for each vertex as needed. So in vertex shader, besides
obtaining the 3D coordinates for FEM vertexes, we also bind an extra
integer attribute b for each vertex, which will be 1 if the elevation value
of the vertex is greater than the height of contour, otherwise 0. When it
comes to geometry shader, for each triangle primitive, its three vertexes
p p p(, ,)0 1 2 can construct a three-digit binary number b b b()0 1 2 2.
Obviously this number ranges from 0 to 7. So Table 1 contains every
possible situation for segment extraction from a triangle, by which the
existence of the possible segment and which edges are the segment
generated from can be quickly determined.

Take Fig. 9 for example, if b0 and b2 are 0, b1 is 1, then b b b()0 1 2 2 is 2.
Look up in Table 1, and the corresponding array is (1,0, 1, 2), which
means the edge p p1 0 and p p1 2 must contain contour points. So we can
calculate their coordinates with formula (7). The other situations can be
verified in the same way.

By using the edge table, we transform conditionals into array
queries. So the efficiency on GPU can be increased. At the same time,
by controlling the order of the array in table column, we can also
ensure that the resulting segments have the same direction. For
instance, the contour segments generated according to our edge table
will be lower to the left and higher to the right. So it will be easier for
further sorting.

The edge table can be stored as an 8 × 1 2D rectangular texture in
GPU memory, with the format of 4 channels (RGBA), 8-bits unsigned
integer. We can access it in the geometry shader through the texture

coordinate b b b()0 1 2 2.
Also in geometry shader, we can define what to transmit back to the

CPU-side with the transform feedback feature. For each primitive
(triangle for this article), we can decide how many vertexes, and what
attributes for these vertexes to transmit back. In our case, a segment
from the triangle has 2 vertexes. Getting the 3D coordinates of them is
the first thing we need.

Moreover, we also need to know the relationship between the
segment and the FEM for efficient sorting. The FEM comes into the
graphics pipeline with an internal sequence, primitive by primitive. The
sequence we adopt is shown in Fig. 10, which is counted from left to
right, bottom to top.

The geometry shader processes all of the primitives in parallel. But
when processing each one of them, its sequence number of all the
primitives can be queried by a built-in variable – gl_PrimitiveIDIn, for
OpenGL 3.3 or highter. We send back this number too, as a 32-bits
unsigned integer, if the primitive has a segment in it. As shown in
Fig. 10, the position of the segment can be calculated directly according
to this sequence number.

The GLSL codes for geometry shader are as follows:

//the texture of edge table
uniform sampler2DRect EdgeTex;
//the elevation of the contour
uniform float IsoValue;
//coordinates for 3 vertexes of the primitive(triangle), from the

vertex shader
in vec3 pos[];
// extra attribute b for 3vertexes, b = 1 if pos.z > IsoValue,

otherwise 0, from the vertex shader
in unsigned int b[];
//coordinate and sequence number to feedback, if there is a

segment in this primitive
out vec3 feedback_position;
out unsigned int feedback_index;
vec3 CalcIntersection(vec3 Pos0,vec3 Pos1)
{

float t = (IsoValue- Pos0.z)/(Pos1.z- Pos0.z);
return mix(Pos0,Pos1,t);

}
void main()
{

int l_nIndex = (b[0]«2)|(b[1]«1)|b[2];
if(l_nIndex > 0 & & l_nIndex < 7)
{

vec2 l_TexCoord = vec2(l_nIndex+0.5, 0.5);
ivec4 l_edge = ivec4(texture(EdgeTex, l_TexCoord));
feedback_position = CalcIntersection(pos[l_edge.x], pos
[l_edge.y]);

feedback_index = gl_PrimitiveIDIn;
//end feedback for one vertex

Fig. 8. Flow chart of our contouring method.

Fig. 9. Segment from a triangle.

Table 1
Edge table for segments extraction.

0 1 2 3 4 5 6 7

0 1 1 0 0 1 0 0
0 2 0 1 2 2 2 0
0 0 1 0 0 1 1 0
0 2 2 2 1 0 2 0

Fig. 10. The sequence of our FEM.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

134

EmitVertex();
feedback_position = CalcIntersection(pos[l_edge.z], pos
[l_edge.w]);

feedback_index = gl_PrimitiveIDIn;
//end feedback for another vertex
EmitVertex();
//end feedback for one primitive
EndPrimitive();

}
}

After the geometry shader executes, its outputs can be received in
CPU-side with certain OpenGL APIs – i.e. the coordinates and
sequence numbers of the segments. The outputs also follow the input
order of the FEM, but just for the primitives that contain segments.
Render the FEM through this pipeline once, then we can get all the
contour segments of a certain elevation. For contours of different
elevations, the FEM needs to be rendered multiple times with different
IsoValues in the shader.

3.3. Grid sorting

Just the segments are enough for rendering. But for more uses of
GIS, we also propose a novel and efficient sorting algorithm based on
the particular data structure generated by GPU. The basic idea of the
algorithm is to associate the segments with their corresponding
triangles in the FEM, then use the triangles for marking and sorting.
The segments will be sorted and all of the contours will be composed by
travelling the segments for just one pass.

The steps of our sorting algorithm are as follows:

① For each triangle, the necessary information is the potential segment
in it, and a mark that records whether this triangle or segment has
been travelled during the sorting process. So we construct a 2D
array P according to the arrangement of triangles (Fig. 11), and each
item Pi is a segment pointer. Set them to NULL as default. Also
construct a 2D array of Boolean values, namely M . Set them to false
as default.

② The result of transform feedback is a continuous region of memory,
in which the coordinates and sequence numbers are stored sepa-
rately, vertex by vertex (Section 3.2). Obviously two vertexes
represent a segment. So by fetching the sequence number of each
segment, we can assign the address of the segment coordinates to
the corresponding pointer in P directly.

③ Then travel the segments. For each segment, find its corresponding
triangle in step ①, namely i. If Mi is true, just skip it and travel to
next segment. Otherwise, set Mi true, and go to step ④.

④ Now we can use this segment as the beginning of a contour. As
shown in Fig. 11, the first found segment will be in triangle 2. Put
the pointer Pi in an empty list, and record the first and last segments
of the contour with the sequence numbers as Sf and Sl (both are 2 in
the first place).

⑤ Assume the width of the FEM is n (n is 10 in Fig. 11). Then for
triangle i, if i is odd, the indexes of its neighbors are i − 1, i + 1,
i n− − 1; otherwise, they are i − 1, i + 1, i n+ + 1.

So for the first and last segments of current contour, find their

neighbor triangles. See if they have been travelled with M array. Skip
the travelled triangles. For the rest of them, find out whether there are
segments in them with P array.

For the neighbor triangles that don’t have any, set their marks (M
values) true.
When there are some segments found, check if any of them can be

used to extend the contour. Since all of the segments have the same
direction, according to Section 3.2, we only need to compare the
coordinates of two points to find out whether the two segments are
connected.

If there are any useful segments, push them in the front or back of
the list according to the direction. Update Sf and Sl, and set MSf , MSl
true as well. Otherwise, just skip them.

⑥ Repeat step ⑤, until this contour reaches the boundary of the FEM,
or gets closure. The final resulting list is one complete contour line.

⑦ Go back to step ③, until all of the segments have been travelled. Then
we can get all of the contours.

This process is much faster than the previous tracing method too.
First, it doesn’t need to travel all of the triangles. Just travelling the
segments for one pass will be enough, which is a lot more efficient in
most cases. So the complexity of our algorithm is O m(), where m is the
number of the segments. Second, in our only traversing pass, it doesn’t
need to solve whether there is a segment in the triangle, or to calculate
the coordinates of the potential contour points anymore. Just some
operations of comparison and assignment will be enough. Besides, the
whole sorting process can be easily parallelized by different contour
elevations, with just a line or two of OpenMP codes. So theoretically,
this might be the most efficient routine.

4. Results

This method has been executed on a personal computer with an
Intel E3 CPU (3.7 GHz, 8 threads) and a GTX 980Ti graphics card, on
different DEM datasets (SRTM, ASTER, DLR, etc). The results are
presented and analyzed as follows, from both aspects of appearance
and efficiency.

The comparison of appearance between the previous CPU ap-
proaches and our method is shown in Fig. 12. When it comes to low-
resolution DEM, the previous methods based on a FEM of the raw data
can’t achieve desirable results (Fig. 12.a). With the GPU C3 continuous
spatial interpolation and user-defined dense FEM presented in Section
2, we can illustrate every detail of the DEM data, and generate globally
smooth contour lines (Fig. 12.b). Unlike the previous line-based
smoothing algorithms, the method from this article is based on smooth
interpolation of the terrain surface. So it will not cause any self-
intersection at all.

For rendering only, there is no need for feedback to CPU and
sorting. The segments can be extracted with only one rendering pass
and then stored in VBO (Vertex Buffer Object, an OpenGL feature that
allows vertex data to be stored in high-performance graphics memory
without extra transfer to CPU-side) for visualization. This procedure
can be very fast, within few milliseconds. Actually we can visualize
dynamically changing contours in real time, according to the variation
of the DEM data or the affecting parameters, such as the τ value in
Section 2.1, the interval value of the contours, etc.

When it comes to tests of efficiency, the full sorting process should
be performed. For the convenient comparison with the CPU ap-
proaches, here we construct a FEM with the same resolution of the
raw DEM data, so the total amount of computations would be same.
Some representative commercial software and open source projects are
used for comparison, including ArcGIS, Global Mapper, GDAL and
Surfer. Those four programs are most commonly available, and are
widely used in industry and academia. Here ArcGIS and Global Mapper
adopt the sorting strategy, the other two employ the tracing way.Fig. 11. Segments and triangles.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

135

To gauge the performance more comprehensively, we run all of the
applications with different DEM datasets, the resolutions of which vary
from 512×512 to 4096 × 4096. For a given height interval -−100 m, the
results of time consumptions are shown in Table 2. We can see that our
approach can be at least 2.6 times faster than the CPU based methods.
For some implements, it may be tens of times faster.

The complexity of contour generation algorithm can be uncertain
for different datasets. Assume the number of sampling points in the
DEM is n, and the number of potential segments is m. For a typical
tracing algorithm, its complexity can’t be less than O n(); and for a
sorting algorithm, its complexity can’t be less than O n m(+). Our

approach consists of three major phases: segments extraction by
geometry shader, data feedback to CPU-side, and the Grid Sorting.
The first part belongs to a single frame, which only takes few
milliseconds to perform. Then in the second part, time cost for
segments transform feedback is considerable, which is proportion to
the amount of extracted segments and is mainly concerned with the
bandwidth of the graphic card. For the third part, Grid Sorting is an
O m() algorithm (Section 3.3) and only needs to travel all of the
segments once, whose time consumption is also proportion to the
amount of segments. Table 3 shows the number of segments extracted
from different datasets, and the detailed time consumptions for both
GPU and CPU parts.

Considered as a whole, the time saved by geometry shader based
segments extraction is far more than the cost caused by transform
feedback, and the resulting segments can greatly reduce the time
complexity of the sorting algorithm in CPU-side. Thus we can achieve
high efficiency, as the results confirm.

Fig. 13 shows the resulting contours from different GIS programs
and our method, based on the same DEM data with 4096 × 4096
resolution. The shapes of different results look quite similar in general.
However, GDAL and Surfer find much less segments than the others,
which means some details must have been lost. This may also help to
explain why they are much faster than ArcGIS and Global Mapper to a

Fig. 12. Comparison of smoothness.

Table 2
Comparison of efficiency.

Resolution of DEM Data 512 512× 1024 1024× 2048 2048× 4096 4096×

Time(ms) ArcGIS 3117 5205 9522 40623
Global
Mapper

3131 6493 15031 33672

GDAL 503 1273 3704 12948
Surfer 452 1261 3482 12062
Our
Method

108 361 1293 4390

Table 3
Details of time consumption for our approach.

Dataset Index 1 2 3 4 5

Resolution 2048 ×2048 2048×2048 4096×4096 4096×4096 4096×4096
Number of Segments 122641 133052 690670 638683 516003
GPU Time (ms) 38 38 176 158 107
CPU Time (ms) 69 77 728 707 457

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

136

certain degree. We can see that our method can generate contours that
retain full details of the raw DEM data. In the meantime, it achieves the
highest time efficiency.

The binary executable examples of our algorithm and the datasets

for the tests above can be downloaded from https://github.com/
starforce08/GPUContouring. The other programs are quite widely
used, which can be easily found in internet. However, to fulfill the
tests, several commercial licenses may need to be purchased.

Fig. 13. Contouring results of 4096 4096× DEM data from different methods.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

137

https://github.com/starforce08/GPUContouring
https://github.com/starforce08/GPUContouring

5. Conclusions

We have surveyed the previous contouring methods, and intro-
duced the GPGPU technology to solve the problems of appearance and
efficiency innovatively. The method presented in this paper makes use
of multiple stages of modern GPU pipeline, which interpolates the raw
Grid DEM data with C3 continuity by vertex shader, and can generate
globally smooth contour lines. The contour segments are extracted by
geometry shader, then transferred as a feedback to CPU-side, and
sorted into lines without any extra pre-processing calculation. Besides,
the resulting contours are vectors, which can be easily used in various
applications. The algorithm has very high efficiency, and is easy to
implement on most of the current graphic hardware, which can support
the OpenGL 3.3 API or higher. Moreover, GPU pipeline can do more
than parallel computation. The tessellation shader and compute shader
(Fig. 7) also have unique functions, which may play important roles in
contour refinement. We intend to research on this field in the following
study.

Our work might also raise and inspire some future thinking about
other topics around geographic analysis and geo-visualization, with the
new possibilities provided by the enormous, highly parallel computa-
tion power of the modern GPU architecture.

References

Akima, H., 1978. A method of bivariate interpolation and smooth surface fitting for
irregularly distributed data points. ACM Trans. Math. Softw. 4 (20), 148–159.

Barcha, J.P., Reese, J.R., 1964. Surface determination and automatic contouring for
mineral exploration, extraction and processing. Colo. Sch. Mines Q. 14 (4), 187–194.

Buys, J., Messerschmidt, H.J., Botha, J.F., 1991. Including known discontinuities
directly into a triangular irregular mesh for automatic contouring purposes. Comput.
Geosci. 17 (7), 875–881.

Bjorke, K., 2004. High-Quality Filtering. In GPU Gems, Randima Fernando Ed. Addison-
Wesley, pp. 391–415.

Bryan, S.M., Liu, W.M., Terry, S.Y., Kalpathi, S., 2005. Active contours using a
constraint- based implicit representation. In: Courses of ACM SIGGRAPH 2005, Los
Angeles, California, 252-259.

Chester, R.P., Thomas, A.E., Boyd, H.A., 1968. Automatic contouring of irregularly
spaced data. Geophysics 33 (3), 424–430.

Chui, C.K., 1988. Multivariate Splines. Capital City Press, Montpelier, Vermont, 198.
Cheng, J.M., Chen, C.X., Sun, H.L., 1998. Automatic generation of contour in triangular

mesh and its programming. J. Hydraul. Eng. 16, 23–26.
Carsten M., 2003. Geometric designing and space planning using the marching squares

and marching cube algorithms. In: International Conference on Geometric Modeling
and Graphics, Proceedings, 90-95.

Christian, S., Markus, H., 2005. Fast third-order texture filtering. In: Pharr, M. (Ed.), In
GPU Gems 2. Addison-Wesley, Boston, Massachusetts,USA, 313–329.

Chen, Z., Shen, L., Zhao, Y.Q., Yang, C.J., 2010. Parallel algorithm for real-time
contouring from grid DEM on modern GPUs. Sci. China Technol. Sci. 53 (1), 33–37.

Franke, R., 1982. Scattered data interpolation: tests of some method. Math. Comput. 38
(157), 181–200.

Grain, I.K., 1970. Computer interpolation and contouring of two-dimensional data: a
review. Geoexploration 8 (2), 71–86.

Goldin, D., Gao, H.Y., 2006. Dynamic isoline extraction for visualization of streaming
data. Lect. Notes Comput. Sci. 3967, 415–426.

Gul, S., Khan, M.F., 2010. Automatic Extraction of Contour Lines from Topographic
Maps. In: International Conference on Digital Image Computing: Techniques and
Applications (DICTA), Sydney, NSW, pp. 593–598.

Hou, F.Z., Zhuang, J.J., Ning, X.B., 2008. Iso line drawing algorithm and programming
implementation based on case table. J. Nanjing Univ. (Nat. Sci.). 44 (4), 371–378.

Hiremath, P.S., Kodge, B.G., 2010. Generating contour lines using different elevation
data file formats. Int. J. Comput. Sci. Appl. (IJCSA). 3 (1), 19–25.

Jaara, K., Lecordix, F., 2011. Extraction of cartographic contour lines using digital
terrain model (DTM). Cartogr. J. 48 (2), 131–137.

Kok, R., Begin, J., 1981. Evaluation of automatic contouring methods for drainage
design. Trans. ASAE 24 (1), 87–96, (102).

Kolingerová, I., Dolák, M., Strych, V., 2009. Eliminating contour line artefacts by using
constrained edges. Comput. Geosci. 35 (10), 1975–1987.

Lodwick, G.D., Whittle, J., 1970. A technique for automatic contouring field survey data.
Aust. Comput. J. 2 (3), 104–109.

Lee, S.Y., Wolberg, G., Sung, Y.S., 1997. Scattered data interpolation with multilevel B-
splines. IEEE Trans. Vis. Comput. Graph. 3 (3), 228–244.

Li, Z.L., Zhu, Q., 2003. Digital Elevation Model 2nd edn. Wuhan University Press,
Wuhan, 203.

Lalescu, C.C., 2009. Two hierarchies of spline interpolations: practical algorithms for
multivariate higher order spline. Comput. Sci. Prepr. arXiv 0905, 3564.

Li, W., Li, S.Y., 2010. Generation methodology of isolines of earthquake ground motion.
Earthq. Eng. Eng. Vib. 9, 473–480.

Miao, R.Z., 2004. A new smoothed contour lines generating algorithm for quadrilateral
meshes. J. Chang. Univ. Sci. Technol. 27 (1), 17–18.

Nielson, G.M., 1993. Scattered data modeling. IEEE Comput. Graph. Appl. 13, 60–70.
Nickerson, B.G., Judd, P.A., Mayer, L.A., 1999. Data structures for fast searching of SEG-

Y seismic data. Comput. Geosci. 25 (2), 179–190.
Norman, L.J., Michael, J.K., Alan, K.Z., 2000. Fast algorithm for generating sorted

contour strings. Comput. Geosci. 26 (7), 831–837.
Paul, K., 1988. A thinning algorithm by contour generation. Commun. Acm. 31 (11),

1314–1324.
Peters, R., Ledoux, H., Meijers, M., 2014. A Voronoi-based approach to generating

depth-contours for hydrographic charts. Mar. Geodesy. 37 (2), 145–166.
Qian, C., Du, Z.H., Cao, R.Z., Zhang, F., Liu, R.Y., 2014. Research of parallel global sea

surface temperature contours extraction algorithm on CUDA platform. J. Zhejiang
Univ. (Sci. Ed.). 41 (1), 82–89.

Rognant, L., Planès, J.G., Memier, M., Chassery, J.M., 2001. Contour lines and DEM:
generation and extraction. Lect. Notes Comput. Sci. 2181, 87–97.

Riegler, G., Hoeppner, E., Li, X., 2006. Automatic contour line generation using
intermap’s digital terrain model. In: Proceedings of ASPRS Annual Conference,
Reno, NV, May, pp. 1–5.

Rui, X.P., Song, X.F., Yang, Y.G., Ju, Y.W., 2011. An improved method of rendering oil
extraction contour under constrained conditions. Min. Sci. Technol. 21 (3),
337–342.

Schoenberg, I.J., 1969. Cardinal interpolation and spline functions. J. Approx. Theory 2
(2), 167–206.

Schoenberg, I.J., Sharma, A., 1973. Cardinal interpolation and spline fucntions V. The B-
splines for cardinal Hermite interpolation. Linear Algebra Appl. 7 (1), 1–42.

Schmieder, A., Huber, R., 2000. Automatic Generation of Contour Lines for Topographic
Maps by Means of Airborne High-Resolution Interferometric Radar Data. In:
Proceedings of ASPRS Annual Conference, Washington, DC, pp. 5420–5422.

Sun, G.R., Ma, L., Lu, D.P., Zhao, G.R., Hao, J.L., 2000. Investigation on the algorithm of
making and filling isoline. J. Tianjin Univ. 33 (6), 816–818.

Schlei, B.R., 2009. A new computational framework for 2D shape-enclosing contours.
Image Vis. Comput. 27 (6), 637–647.

Shao, L., Dong, G.L., Liu, J., Mu, Y., Guo, P., 2014. Grid Sequence Algorithm Generating
Contour Based on Delaunay Triangulation. In: Proceedings of the 11th IEEE
International Conference on Mechatronics and Automation, Tianjin, China, pp.
2011–2016.

Van, K., , 1996. Efficient methods for isoline extraction from a TIN. Int. J. Geogr. Inf.
Syst. 10 (5), 523–540.

Watson, D.F., 1982. ACORD: automatic contouring of raw data. Comput. Geosci. 8 (1),
97–101.

Watson, D.F., 1993. Contouring: A Guide to the Analysis and Display of Spatial Data.
Elsevier, Pergamon, Oxford, 321.

Wang, Z., Liu, H.W., Chai, H.J., 2001. Automatic generation of contours in raster
graphics. J. Hydraul. Eng. 4, 53–56.

Wang, X.L., 2006. The research of automatic establishing contour and contour
smoothing. China University of Petroleum, Qingdao, Shandong, China, 105.

Wang, T., Liu, J.P., Wu, H.H., 2006. The extraction of contour lines from grid DEM based
on sorting. Acta Geod. Cartogr. Sin. 35 (4), 52–56.

Wang, T., Wu, H.H., 2006. An algorithm for generating contour from gridded DEM. Sci.
Surv. Mapp. 31 (2), 108–110.

Wang, J.C., Qian, C.H., Rui, Y.K., 2007a. A practical method for contour generation
based on raster data. Sci. Surv. Mapp. 32 (6), 88–90.

Wang, T., Wu, H.H., Liu, J.P., 2007b. An algorithm for extracting contour lines based on
interval tree from grid DEM. Geomat. Inf. Sci. Wuhan. Univ. 32 (2), 131–134.

Xie, S.P., Tian, D.S., 1995. To improve tracing isopleth by route grid method. Acta Geod.
Cartogr. Sin. 24 (1), 52–56.

Xie, J.B., 2012. Implementation and performance optimization of a parallel contour line
generation algorithm. Comput. Geosci. 49, 21–28.

Yates, S.R., 1987. CONTUR: a FORTRAN algorithm for two-dimensional high-quality
contouring. Comput. Geosci. 13 (1), 61–76.

You, G.Z., 1989. The method for plotting contours on rectangular grid. J. East China Inst.
Technol. 49 (1), 45–51.

Zhang, C.M., 1991. Automatic generation of contours in raster graphics. Chin. J. Comput.
03, 229–232.

Zhang, M.H., Liang, W.K., 1997. An improved method for contouring on network of
triangles. J. CAD CG 9 (3), 213–217.

Zhang, Q., Li, P., Miao, J., 2001. A contour line generation method and its parallel
realization. J. Huazhong Univ. 29 (9), 4–6.

Zhao, J.S., 2003. An adaptive algorithm of contour interpolation based on grid DEM. J.
Cent. South Univ. (Sci. Technol.). 34 (3), 315–319.

Zhao, J.C., Bai, R.C., Liu, G.W., Liu, W., 2014. Fast isolines generation algorithm based
on TIN. Comput. Eng. Appl. 50 (24), 10–15.

L. Tan et al. Computers & Geosciences 105 (2017) 129–138

138

http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref1
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref1
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref2
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref2
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref9
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref9
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref15
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref15
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref16
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref16
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref17
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref17
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref20
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref20
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref21
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref21
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref22
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref22
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref23
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref24
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref24
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref26
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref26
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref27
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref27
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref28
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref28
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref28
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref29
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref29
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref31
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref31
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref32
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref32
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref33
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref33
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref34
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref34
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref35
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref35
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref36
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref36
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref37
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref37
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref38
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref38
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref39
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref39
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref40
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref40
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref41
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref41
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref42
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref42
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref43
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref43
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref44
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref44
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref45
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref45
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref46
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref46
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref47
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref47
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref48
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref48
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref49
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref49
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref50
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref50
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref51
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref51
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref52
http://refhub.elsevier.com/S0098-3004(16)30464-2/sbref52

	GPU based contouring method on grid DEM data
	Introduction
	GPU spatial interpolation
	Use the DEM data properly
	GPU cardinal spline interpolation for terrain description
	FEM construction

	GPU contouring
	Overview
	Segments extraction and feedback
	Grid sorting

	Results
	Conclusions
	References

