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A B S T R A C T

The aim of well-to-well correlation is to detect similar geological boundaries in two or more wells across a
formation, which is usually done manually. The construction of such a correlation by hand for a field with
several wells is quite complex and also time-consuming as well. The aim of this study is to speed up the well-to-
well correlation process by providing an automated approach. The input data for our algorithm is the depths of
all geological boundaries in a reference well. The algorithm automatically searches for similar depths associated
with those geological boundaries in other wells (i.e., observation wells). The fractal parameters of well-logs, such
as wavelet exponent (Hw), wavelet standard deviation exponent (Hws), and Hausdorff dimension (Ha), which
are calculated by wavelet transform, are considered as pattern recognition dimensions during the well-to-well
correlation. Finding the proper fractal dimensions in the automatic well-to-well correlation approach that
provide the closest geological depth estimation to the results of the manual interpretation is one of the prime
aims of this research. To validate the proposed technique, it is implemented on the well-log data from one of the
Iranian onshore oil fields. Moreover, the capability of gamma ray, density, and sonic log in automatic detection
of geological boundaries by this novel approach is also analyzed in detail. The outcome of this approach shows
promising results.

1. Introduction

Correlation or stratigraphic correlation is a geological term refer-
ring to a process by which two or more geological intervals are equated
even though they are spatially separated (Luthi, 2001). Recognition of
geological boundaries to provide a three-dimensional geological model
of a formation is so essential. This geological model, that contains
important information (e.g., the location of geological layers), is
required to be accurate for reservoir simulation purposes. Therefore,
well-to-well correlation plays an important role in the characterization
of hydrocarbon formations.

The common sets of data that are used to build a geological model
include well-logs, cores, and seismic data. In particular, these sources
of data play an important role in the identification and correlation of
stratigraphic units. Available cored wells are usually limited and the
entire area of a field is not surveyed geophysically; nevertheless,
logging operations are widely performed in most wells. Therefore,
well-logs due to their availability are a desirable source for stratigraphic
correlation (Perez-Muñoz et al., 2013; Hernandez-Martinez et al.,
2013a; Limited, 1991). The well-to-well correlation approach is usually
implemented on different wire-line logs as input data. These logs reveal

different properties of rock and/or fluid, which make them an essential
tool for formation evaluation. There are excellent examples in the
literature implementing different wire-line logs for well-to-well corre-
lation purposes for example, correlation based on gamma ray (e.g., Pan
et al., 2008, Lapkovsky et al., 2015), density (e.g., Le Nir et al., 1998,
López and Aldana, 2007), and sonic log (e.g., Hernandez-Martinez
et al., 2013b, López and Aldana, 2007). Well-to-well correlation is
usually performed manually. This manual approach usually involves a
large amount of visual and qualitative analysis on a big data set,
including well log data, drilling data, petrography analyses, etc. (Rivera
Vega, 2004; Perez-Muñoz et al., 2013). The experience of an interpreter
can accelerate this time consuming manual approach; therefore, the
results of this method depend on the experience of the interpreter.
Moreover, it may result in multiple identification of stratigraphic
boundaries by different interpreters (Chang et al., 2000; Rivera Vega,
2004; Perez-Muñoz et al., 2013). Thus, there is a need to introduce
automatic approaches that can assist interpreters during well-to-well
correlations. The advantage of introducing such an automated ap-
proach, in addition to cost and time saving, is reducing human errors
during interpretations (Zahraa and Ghosh, 2017).

Over the last three decades, several approaches have been proposed
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to detect geological boundaries from well-log data. For example,
dynamic programming as an optimization method has been used for
well-to-well correlation purposes (Zoraster et al., 2004; Lineman et al.,
1987; Smith and Waterman, 1980; Le Nir et al., 1998). Unfortunately,
the results of this method are highly affected by the thickness changes
of geological layers. Moreover, the principal component analysis (PCA)
method, based on multivariable statistics, is another method that has
been proposed for well-to-well correlation (Sakurai and Melvin, 1988;
Avseth et al., 2001; Tang et al., 2004). The limitation of this method is
elimination of data in the domain of interest (Yuela et al., 1998).
Furthermore, artificial intelligence (AI) has been implemented by many
researchers for the well-logs characterization of geological layers
(Derek et al., 1990; Wong et al., 1995; Siripitayananon et al., 2001;
Bhatt and Helle, 2002; Chang et al., 2002, 2000; Alizadeh et al., 2012).
Despite the significant role of artificial intelligence in development of
automated well-to-well correlation, this approach cannot be considered
systematic and requires a large amount of data as an input for training
purposes that are not usually available (Hernandez-Martinez et al.,
2013b). Geological boundary detection from well-log data based on the
concept of Bayesian neural network (BNN) is another new approach
(Ojha and Maiti, 2016; Maiti and Tiwari, 2010b, 2010a, 2005). Maiti
and Tiwari (2010b) applied this approach on the German Continental
Deep Drilling Program (KTB). The results shows the proposed BNN
method is preferable to the conventional artificial neural network
approaches. They also developed hybrid Monte Carlo (HMC) based
neural network for classifying geological boundaries. Their results on
the KTB data in addition to agreeing with earlier findings suggest the
presence of finer bed boundaries that were missed in the previous
studies (Maiti and Tiwari, 2010a). In addition to the mentioned
methods for well-to-well correlation, there are other signal processing
techniques that have been implemented to analyze well-logs, including
(Tang et al., 2002, Tao et al., 2000, Baldoni et al., 1998) Fourier
transform (Weedon, 2003), Walsh transform (Maiti and Tiwari, 2005;
Lanning and Johnson, 1983), and wavelet transform (Pan et al., 2008;
Yuan et al., 2013; Perez-Muñoz et al., 2013; Prokoph and Veizer,
1999). Recently, Singh et al. (2016) filtered well-log data by using a
combined wavelet transform and Fourier transform method. In the
introduced algorithm, they used wavelet transform to identify the finer
scale boundary (i.e., thin layers) embedded within larger geological
units.

Fractal behavior is an important characteristic of non-stationary
well-log signals (Subhakar and Chandrasekhar, 2016). Prokoph (1999)
applied multi-fractal analysis on well-log data to detect sedimentary
discontinuities and fractal clustering of geological layers (Prokoph,
1999). Khue et al. (2002) used a generalized multi-fractal analysis of
dipmeter and microresistivity logs to characterize geological forma-
tions. López and Aldana (2007) used a wavelet-based fractal analysis
and waveform classifier approach to determine the fractal parameters
of different well-logs (López and Aldana, 2007). They related the fractal
dimension to lithological patterns (e.g., sands and shales). Subhakar
and Chandrasekhar (2016) carried out fractal and multifractal studies
using detrended fluctuation analysis (DFA) and multifractal DFA
respectively. They identified geological boundaries through the multi-
fractal behavior of well-logs and also compared the results of their
approach with wavelet analysis.

The aim of this paper is to introduce an automated well-to-well
correlation approach to accelerate this process. In order to investigate
available geological patterns in the well-log data around target
boundaries of the reference well several features are implemented.
These features include fractal parameters such as wavelet exponent
(Hw), wavelet standard deviation exponent (Hws), and Hausdorff
dimension (Ha). These fractal dimensions are calculated by the wavelet
transform algorithm. In addition to the fractal parameters, the average
value of the log signal, as a statistical parameter, is considered as a
complementary feature. Our methodology is based on an automatic
search for a specific depth in the observation wells that is identical (i.e.,

both fractally and statistically) to the targeted boundary in the
reference well. In this study, different well-logs (i.e., gamma ray,
density, and sonic) are implemented for automatic well-to-well corre-
lation and the most successful log type is determined. To validate the
approach, this algorithm is applied on the data from one of the Iranian
onshore formations. In addition, an efficient fractal parameter through
the proposed automatic well-to-well correlation method, which can
better represent the fractal characteristics of well-logs, is determined.

The structure of this paper is organized as follows. We start with a
short introduction to fractals and their applications in formation
evaluation. Successively, wavelet transform and the approach to find
different fractal properties by this method is investigated. Afterward,
we describe our methodology in detail. It is followed by finding the
proper fractal parameter. For the validation of the proposed algorithm,
wire-line log data from one of the Iranian onshore formations is
implemented. This is followed by our conclusions.

2. Fractals

A fractal is a natural phenomenon or a mathematical set that
exhibits a repeating pattern that displays at different scales (Boeing,
2016). If the replication is exactly the same at every scale, it is called a
self-similar pattern (Gouyet and Mandelbrot, 1996). The fractal word is
adopted from a Latin word “Frāctus” meaning "broken" or "fractured"
(Albers and Alexanderson, 2008; Mandelbrot, 1983). Unlike Euclidean
geometry, fractal geometry is a compatible way to explain natural
phenomena.

Fractals have two significant characteristics; i.e., fractal dimension
and self-similarity. Fractal dimension describes smoothness, jagged-
ness and complexity of the fractal shapes and declares how a fractal
shape occupies the area. Another important characteristic of fractals is
self-similarity that detail how fractal shapes are similar to the main
shape (Pancham, 1994).

Fractal dimension of a self-similar shape which was formed by N
copies of itself obtained from the following definition (Mandelbrot,
1983).

D Log N
Log r

= ( )
( ) (1)

where D stands for the fractal dimension and r for the scaling factor.
The Fractal dimension is the most important key factor of any type

of fractal phenomena since it contains information about the geometry
of self-similar shapes. Unfortunately, fractal dimension is meaningful
only for a small class of strictly self-similar sets. Nevertheless, there are
other definitions of dimension that are much more widely applicable.
For example, Hausdorff dimension, Hurst parameter, etc. (Falconer,
2004).

It has been determined that petrophysical logs represent multi-
fractal behavior (Khue et al., 2002). A multi-fractal system is a
generalization of a mono-fractal system; wherein, a single exponent
(i.e., fractal dimension) is not sufficient to describe throughout the
entire signal (Harte, 2001) in other word, a multi-fractal system is
composed of several mono-fractal systems.

Each geological layer has its own properties and its well-log shows a
fluctuating behavior with a specific fractal dimension. For example, the
layers at both sides (i.e., upper and lower) of a geological boundary has
their own fractal properties. It is hoped to detect the geological
boundary by implementing the fractal properties changes on both
sides of the boundary through a pattern recognition-based concept.

3. Wavelet-based fractal analysis

There are several methods for calculating fractal parameters. One of
the most popular methods is to implement wavelet transform, which
has been more applicable over the last decade. Wavelet transform
permits detection of the well-log signals in the frequency spectrum and
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in depth (Prokoph and Barthelmes, 1996). If a signal indicates self-
similar behavior, then it can be revealed by applying wavelet transform
(Jacquet and Harba, 2004, Cavanaugh et al., 2003). In this study, we
implemented three fractal parameters, including, wavelet exponent
(Hw), wavelet standard deviation exponent (Hws), and Hausdorff
dimension (Ha) to characterize well-log patterns. In the subsequent
chapters first of all we generally explain wavelet transform and then we
describe the method of calculating the selected fractal parameters (i.e.,
Hw, Hws, and Ha).

3.1. Wavelet analysis

Wavelet analysis is capable of revealing aspects of the data that
other signal analysis techniques could miss. These aspects include
trends, breakdown points, discontinuities in higher derivatives, and
self-similarity (Michel et al., 2010).

Wavelet transform is a rather new technique of the conventional
Fourier method. this method is broadly divided into three classes:
continuous, discrete, and multi-resolution-based approach (Siesler,
2012).

Wavelet transform breaks down a signal to a set of basis function
that are called basis wavelet. The wavelet basis functions are obtained
by dilating and translating a mother wavelet function. The result of
wavelet transform is some wavelet coefficients, which are functions of
position and scale. Multiplying each coefficient by the appropriately
scaled and shifted wavelet yields the constituent wavelets of the
original signal. The wavelet transform, WT f x( ( )) of a signal like f x( )
(i.e., well-log in this study) is defined as

∫WT f x f x ψ x dx( ( )) = ( ) * ( )a b−∞

+∞

, (2)

where the (*) represents complex conjugate.ψ x( )a b, is an analyzing
wavelet, which is obtained from a single function ψ x( ) by translations
and dilations:

ψ x
a

ψ x b
a

( ) = 1 ( − )a b, (3)

where the parameters of translation, b R∈ and dilations, a R∈ and
a > 0 (R denotes real number) (Nie et al., 2001).

In the wavelet transform process of this study, the Mallat pyramidal
algorithm (Mallat, 1989) was used. In this method, an original signal
passed through two complementary filters and then emerges as two
sets of components: the approximation and detail. The approximations
are the high-scale, low-frequency components of the signal; whereas,
the details are the low-scale, high-frequency components of it (Michel
et al., 2010). Fig. 1 shows the process of wavelet decomposition at
different levels. The number of levels in each wavelet transform is
depended on the length of input signal, as during each transformation,
the size of the signals is divided by a factor of two.

3.2. Fractal dimension of wavelet exponent (Hw)

Well-logs were decomposed using discrete wavelet transform, the
details obtained at each level were used to calculate Hw. The variance
of the details at each level is calculated by (Liu et al., 2006),

∑Var
N

d d= 1
/2 − 1

( − )j j
n

N

j k j
=1

/2

,
2

j

(4)

where N is the total number of well-log data. j is the level of
decomposition, j Z∈ . dj k, is the wavelet coefficient at the scale of 2 j

and location of k2 j, and dj is the mean value of dj k, at the scale of 2 j. The
well-log data as a fractal series obeys a power law distribution
(Malamud and Turcotte, 1999). Therefore, the variance function can
be expressed as a power law relation with the form of,

Var (2 ) ≈ (2 )j
j j Hw

(5)

where Hw is known as the wavelet exponent. Hw is the slope obtained
with least-squares regression from log Var log( ) − (2 )j

j
2 2 (Liu et al.,

2006).

3.3. Fractal dimension of wavelet STD exponent (Hws)

The standard deviation of wavelet coefficients (STD) at different
scales is calculated by (Liu et al., 2006),

STD
d d N

N

d d

N
=

∑ ( − ∑ /( /2 ) )

/2 − 1
=

∑ ( − )

/2 − 1j
k
N

j k k
N

j k
j

j
k
N

j k j
j

=1
/2

, =1
/2

,
2

=1
/2

,
2j j j

(6)

The power law distribution of Standard deviation of wavelet
exponent can be expressed as,

STD Var= (2 ) ≈ (2 )j j
j j Hw1/2 1

2 (7)

Hws Hw= 0.5 (8)

Hws is the STD exponent of wavelet and can be calculated from the
slope obtained with least-squares regression of log STD log( ) − (2 )j

j
2 2 (Liu

et al., 2006).

3.4. Hausdorff dimension (Ha)

Among fractal dimensions, Ha is the oldest and one of the most
important parameters (Falconer, 2004). This dimension is usually used
for non-stationary time series. Ha normally ranges in Ha0 < < 1. The
energy of details is used to calculate this exponent. The power spectrum
P ω( ) of a fractal signal is represented by (Liu et al., 2006),

P ω αω αω( ) = =β Ha− −2 −1 (9)

where α denotes a constant and ω is the angular frequency of the well-
log signal. The power spectrum of a fractal signal, P ω( )2 j , which is
filtered by the high-pass filter ψ ωˆ ( )2 j , can be expressed as (Liu et al.,
2006),

P ω P ω ψ ω( ) = ( ) ˆ (2 )j
2

− 2
j (10)

where ψ ω ψ ωˆ ( ) = ˆ (2 )j
2

−
j is the wavelet function with the scale 2 j. The

power spectrum of a discrete signal P ω( )d
2 j is calculated as follows (Liu

et al., 2006),

∑P ω P ω mπ( ) = 2 ( + 2 2 )d j

m

j
2

=−∞

+∞

2j j

(11)

Let E2 j be the energy of details D f( )2 j , which is a high-frequency
signal, and is defined as,

∫E
π

P ω dω= 2
2

( )
j

π

π
d

2

−

−2

+2

2
j

j

j

j (12)

By combining Eqs. (10) and (11) into (12), the following relation-

Fig. 1. Block diagram of wavelet transform up to n levels, the signal is split into an
approximation and a detail. The approximation is then itself split into a second-level
approximation and detail, and the process is repeated.
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ship is obtained,

E E= 2 Ha
2

2
2j j+1 (13)

Finally, the Hausdorff dimension (Ha) is calculated by

Ha
E
E

= 1
2

log2
2

2

j

j

+1

(14)

Thus, Ha is half of the slope obtained with the least-squares
regression from log Energy log( ) − (2 )j2 2 (Liu et al., 2006).

4. Well-logs importance during well-to-well correlation

Wire-line logs, by allowing a continuous record of a formation's
rock properties, have become an essential tool for formation's evalua-
tion (Rider, 2002). A geological facies can be defined in terms of its
geometry, lithology, paleontology, and sedimentary structure. Any
sources which permits the recognition of these properties can form a
basic for facies identification (Limited, 1991). Well-logs that are more
relevant to reservoir lithology are expected to show more accurate
results during well-to-well correlation. For example, the gamma ray log
(GR) is a record of formation radioactivity emanating from naturally-
occurring uranium, thorium and potassium. The simple GR gives the
combined radioactivity of the three elements, while the spectral gamma
ray (GRS) log shows the amount of each individual element contribut-
ing to this radioactivity. GRS are widely used in subsurface stratigraphy
to identify facies (Catuneanu, 2006; Rider, 2002). Uranium salts can be
associated with moved water that is not related to lithology. Using a
uranium free gamma ray log (CGR) the effects of uranium can be
removed. Natural gamma measurements are the most efficient logs for
detecting shale beds (Silversides et al., 2015). This log has been one of

the most usable logs in electro-facies identification (e.g., Pan et al.,
2008, Lapkovsky et al., 2015, Subhakar and Chandrasekhar, 2016,
Hernandez-Martinez et al., 2013b, Hernandez-Martinez et al., 2013a,
Hsieh et al., 2005).

Density log (ROHB) is a continuous record of a formation's bulk
density. This is the overall density of rock including solid matrix and
fluid enclosed in pores (Rider, 2002). The density log also has been
used as a part of input data for well-to-well correlation in many
examples (e.g., López and Aldana, 2007, Le Nir et al., 1998).

Also Sonic logs (DT) provides formation's interval transit time. The
principal use of this log is evaluating porosity, but it also can provide
formation lithology (Rider, 2002). There are different studies that used
this log during their approaches for well-to-well correlation (e.g., López
and Aldana, 2007, Perez-Muñoz et al., 2013, Hernandez-Martinez
et al., 2013b).

One of the aims of this study is to find the best well log type as an
input data for our automatic well-to-well correlation method. The
different aspects of well-logs (i.e., information that they provide to us)
is the key factor for their application in any well-to-well correlation
method and will be discussed in detail.

5. Description of the implemented approach

The wire-line log data are the only input data required for our
approach. Moreover, the depths of geological boundaries in one well
(i.e., reference well) must be at least available to enable the approach to
detect the similar geological boundaries in other wells.

Fig. 2 depicts the flowchart of the analysis. To do the analysis, a
window with a constant length is placed on the well-log data of the
reference well. The center of the window is placed on the geological

Fig. 2. Flowchart of automatic well-to-well correlation approach using statistical and fractal parameters.
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boundary between two different layers (Fig. 3 left). This window
divides each sides of the geological layer into two signals (i.e., signals,
belongs to the upper and lower layer around the boundary). The fractal
parameters as well as the signal average are calculated on both signals.
To find the identical boundaries in other observation wells, a similar
window is moved along the depth of those observation wells (Fig. 3
right). The aim is to find a window depth in the observation wells that
has similar properties (i.e., fractal and statistical properties) in the
upper and lower section of the window to the reference well. Fig. 3
illustrates the applied methodology.

To discover the most probable depth in the observation well that is
identical to the selected boundary in the reference well, a probability
function approach is implemented. To do the analysis first a condi-
tional probability distribution is calculated for each feature in the
upper and lower part of the window. The vector size of this probability
function is equal to the number of data points in the observation well.
In other word, by sliding the window from the top to the bottom of the
observation well (Fig. 3 right), at each depth a probability value is
calculated,

P O R
πσ

E
σ

( | ) = 1

2
exp

−
2i m i

i

i m

i
, 2

,
2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (15)

P O R( | )i m i, is the conditional probability for feature i(e.g., fractal dimen-
sion or average value of the signal) at depth m in the observation well.
Oi m, is the value of feature i in the observation well at the depth point m.
Ri is the value of feature i at the selected boundary in the reference well.
σi is the standard deviation of feature i along the observation well. Ei m,
is the difference between the features value at the selected boundary in
the reference well, R, and that in the observation well, O, at the depth m
(i.e., E O R= −i m i m i, , ). As the features (e.g., fractal dimension or average
of the signal) have values with different scales; therefore, in order to
compare the probabilities together we should normalize them,

P O R
P O R

P O R
′( | ) =

( | )
( | )i m i

i m i

i i
,

,

max (16)

where P O R′( | )i m i, is the normalized probability for feature i at the depth
of m(i.e., P0 ≤ ′ ≤ 1). In the above equation, P O R( | )i i max is the maximum
probability value obtained along the observation well for a specific
feature, i. As the features (i.e., average of a signal and its fractal
parameter) are independent from each other, the normalized prob-
ability of both of them can be computed by multiplying the normalized
probabilities of each feature together.

∏P O R P O R′( | ) = ′( | )m
i

N

i m i
=1

,

F

(17)

where P O R′( | )m is the probability at the depth of m and NF is number of
features (i.e., N = 2F , fractal dimension and average signal value). The
conditional probability for the top and bottom part of the window at
each depth in observation well (Fig. 3 right) is calculated separately by
Eq. (17). The total probability of the window showing the similarity of a
specific observation depth to the selected geological boundary in the
reference well is calculated by multiplying the probability of the upper
and lower part of the window,

P O R P O R P O R( | ) = ( | ) × ( | )total m lower window m upper window m (18)

The algorithm calculates the probability from Eq. (18) along all
depth intervals of observation wells. The output is a probability curve
as function of depth. The algorithm automatically searches for the
highest probable depth (i.e., the highest value of P W R( | )m total) in the
observation well. This depth of the observation well is the most similar
depth to the selected boundary in the reference well.

6. Validation case study

The present method was validated on the well-log data of one of the

Fig. 3. Feature extraction in reference and observation wells using a moving window
along the well depth. Appropriate fractal parameter and average of the signal is
calculated in the upper and lower part of the window.

Fig. 4. Map of the studied field and the distance between the wells.

Fig. 5. GR and lithological column of well#3. The formation is mostly composed of
limestone. The depth of the boundaries found by core and well-log data are shown on the
GR log.
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Iranian oil fields. The oil field is located in the west of Ahwaz city, Iran.
The relative position of the studied wells is showed in Fig. 4.

The formations of this field are mostly composed of limestone,
shelly limestone, and dolomitic limestone. There are also some rather
thin layers of shale and sandstone which have been deposited between
limestone layers. As an example Fig. 5 depicts the lithological column
as well as the GR log of well#3 from the study area. For this field,
manual well-to-well correlation data, based on cores and well-log data,
is available, which are also shown in the figure. The results of our
proposed approach will be compared with these depths.

GR, CGR, RHOB, and DT of three wells (i.e., well#1, well#2,
well#3) were used to validate the methodology. Wire-line logs in
Well#1 and Well#3 are comprised of 6 different layers with the
geological boundary of B1–B5. However, well#2 is limited to only 2

layers (i.e., B4). First, Well#1 was selected as the reference well and the
accuracy of the introduced automated well-to-well correlation was
investigated in Well#2 and Well#3. Then Well#3 was substituted as the
reference well and the accuracy of the introduced automated well-to-
well correlation was investigated in other wells. Fig. 6 shows the CGR,
GR, RHOB, and DT signal of well#1.

7. Results and discussion

7.1. Fractal parameters estimation using wavelet transform

The available well-logs were decomposed by discrete wavelet
transform. GR, CGR, RHOB, and DT log were decomposed up to three
levels by Daubechies wavelet with one vanishing moment (Haar
wavelet) which is depicted in Fig. 7. By reflecting layer thickness
distribution, this wavelet is the simplest mother wavelet that may give
the most efficient decomposition. Moreover, due to its simple shape
(Fig. 7) it reduces computation time. Other mother wavelet families can
be implemented too; however, detecting the most suitable mother
wavelet needs special analyses (e.g., energy to Shannon entropy (Katul
and Vidakovic, 1996; Bedekar et al., 2005), correlation coefficient
(Singh and Tiwari, 2006; Yang et al., 2004; Ma et al., 2002b, 2002a))
that are out scope of this study. (More details about wavelet families
are available in Michel et al., 2010).

As an example, the three level wavelet decomposition of GR of the

Fig. 6. From left to right this figure contains uranium free gamma ray, gamma ray, density, and sonic Well-logs of well#1, geological boundaries are illustrated by red lines. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. A schematic of Haar wavelet.

Fig. 8. Wavelet decomposition of GR log of well#1using a Haar wavelet. This signal is decomposed up to three levels. Detail coefficients in every level is used for fractal parameter
estimation.
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reference well is depicted in Fig. 8. The maximum level of decomposi-
tion is directly related to the length of the input signal as during each
decomposition level, the length of the signals reduced to the half-length
of the previous level.

The fractal parameters (i.e., Hw, Hws, and Ha) can be computed
from the wavelet decomposition results by implementing Eqs. (5), (8),
and (14), respectively. Fig. 9 represents the GR log and the fractal
parameters extracted from GR log of well#1. The boundaries of
geological layers B1 to B5 is depicted in the figure.

As it is clear from Fig. 9, GR log has multi-fractal behavior and one
can see the changes in the fractal parameter value along the well depth.
In addition, the amount of changes in the value of fractal parameters
above and below of each geological boundary (i.e., B1–B5) is similar to
the GR behavior. This behavior can be implemented in the proposed
automatic approach to characterize the fractal parameters (as a pattern
recognition tool).

7.2. Analyzing fractal parameters for well-log characterization

The performance of fractal parameters in evaluation of the char-
acteristics of a time series depends on the strength and range of
persistence of that time series; therefore, it is essential to find the
parameter that can better represent the fractal characteristics of well-
logs. To do so, the approach of Liu et al. (2006) was implemented. They
introduced a new method to find a proper fractal dimension definition
for their problem. They also determined the suitable fractal parameter,
which has smaller deviation and is able to characterize their problem in
wide ranges. Here, their approach is implemented to evaluate the
efficiency of the fractal parameters during the characterization of well-
logs. For this purpose, GR log of the reference well is decomposed using
a Haar wavelet. Fig. 10 is the wavelet scalogram that displays the detail
coefficients of the GR log of the reference well.

The detail coefficients obtained by the wavelet decomposition are
used to calculate the fractal parameters. Hw and Hws can be computed

Fig. 9. Fluctuation of GR and fractal parameters extracted from GR log of well#1. From left to right shows: GR, Ha, Hw, and Hws of the reference well (Well#1).

Fig. 10. Detail coefficients obtained by discrete wavelet decomposition of GR log of well#1.

Fig. 11. Hw, Hws, and Ha are calculated around the boundary B1 of the GR log in well#3. Each data point is related to one level of decomposition. If the deviation of data points from
the least squares regression line is less, the parameter calculated more accurately.
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by measuring the slope of the best least-squares fit to
log Var log( ) − (2 )j

j
2 2 and log STD log( ) − (2 )j

j
2 2 , respectively. In addition,

Ha is the half of the slope of least-squares regression line from
log Energy log( ) − (2 )j2 2 as was discussed in Section 3. The fractal
parameters were calculated at all depths of the reference well. Fig. 11
shows the fractal calculation process around B1 for the GR log of the
reference well. It is worth mentioning that in order to avoid the
influence of adjacent layers during parameter estimations in thin
layers; we should analyze the well log data within a window whose
size is not larger than the thickness of the geological layers. This can
restrict the wavelet decomposition levels (i.e., number of data points in
Fig. 11) as the number of well-log data points are divided by a factor of

two during each decomposition level. Considering the layer thicknesses
of the formation under study, we can decompose the well-log data by
wavelet transform only for four levels.

The residuals that are the vertical difference between data points
and the least-squares regression lines were calculated for all available
well-logs. The mean value of the residual of Hw, Hws, and Ha were
computed as 0.99, 0.56, and 0.61, respectively. Based on Liu et al.
(2006), less residual indicates better fitness of data. Hws and Ha were
fitted better than Hw so they can be more accurate than Hw to
represent fractal characteristics of the well-logs.

In addition, it is evident from Fig. 9 that the computed values for
Ha parameter in some depth intervals has negative values. These
negative values are out of the definition of a fractal dimension.
Therefore, Ha is clearly unsuitable to describe the fractal character-
istics of well-log data. As a result, among the three fractal parameters,
Hws is selected as a proper parameter for well-to-well correlation
through the proposed approach.

7.3. Well-to-well correlation using the introduced algorithm

Subsequent to the determination of proper fractal parameter, Hws
along with the average of the signal were calculated at upper and lower
part of the window around a selected geological boundary in the
reference well. As discussed before, to find the same boundary in the
other wells, a similar window is moved along the observation well
depth and the associated features are extracted. As an example, Fig. 12
represents the distribution of the features along well#3 and around B2
and the total probability, P O R( | )m total, was calculated based on Eqs.
(15)–(18). The depth with the maximum probability,

Fig. 12. Total probability distribution and geological boundary detection in well#3, from left to right this figure shows: GR log, Hws distribution, Average parameter distribution, and
P O R( | )m total in well#3.

Table 1
Results of automated well-to-well correlation for all well-log data of the field under study.
Well#1 was selected as the reference well and boundary depths in well#2 and well#3 are
investigated. All the depths and their differences are in meter.

Boundary Well#2 Well#3

Dm Da D D−m a Dm Da D D−m a

GR B1 – – – 2787.8 2786.2 1.6
B2 – – – 2790.6 2789.9 0.7
B3 – – – 2795.2 2794.5 0.7
B4 2749.9 2751.2 −1.3 2819.5 2821.2 −1.7
B5 – – – 2873.5 2878.9 −5.4

CGR B1 – – – 2787.8 2785.9 1.9
B2 – – – 2790.6 2789.8 0.8
B3 – – – 2795.2 2794.3 0.9
B4 2749.9 2749.5 0.4 2819.5 FAILEDa FAILED
B5 – – – 2873.5 2867.9 5.6

RHOB B1 – – – 2787.8 2795.4 −7.4
B2 – – – 2790.6 2793.7 −3.1
B3 – – – 2795.2 2789.6 5.6
B4 2749.9 2750.3 −0.4 2819.5 FAILED FAILED
B5 – – – 2873.5 2867.1 6.4

DT B1 – – – 2787.8 FAILED FAILED
B2 – – – 2790.6 2790.0 0.6
B3 – – – 2795.2 2793 2.2
B4 2749.9 2748.3 1.6 2819.5 FAILED FAILED
B5 – – – 2873.5 2864.8 8.7

a The FAILED phrase is used when the approach is not able to successfully detect the
boundary and the deviation between the automated approach and manual approach was
more than 10 m.

Table 2
Results of the automated well-to-well correlation for GR log. Well#3 was selected as the
reference well and depths of the boundaries in well#1 and well#2 are investigated. All the
depths and their difference are in meter.

Boundary Well#1 Well#2

Dm Da D D−m a Dm Da D D−m a

GR B1 2698.9 2700.2 −1.3 – – –

B2 2702.4 2703.6 −1.2 – – –

B3 2707.8 2706.7 1.1 – – –

B4 2736.0 2734.2 1.8 2749.9 2752.1 −2.2
B5 2789.4 2786.3 3.1 – – –
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m P O R@ max{ ( | ) }m total , is the most possible location which is similar to
the selected boundary (i.e., B2) of the reference well. The calculated
depth at the most possible location is located at 2789.9 m, which is
very close to the depth of boundary B2 in well#3 obtained by the
manual well-to-well correlation approach (i.e., at 2790.6 m).

Table 1 summarizes the results of automated well-to-well correla-
tion for all available well-logs of the field under study. In this table,
well#1 was selected as the reference well and boundary depths in the
other wells were investigated. The difference between the depths
obtained by the automatic approach, D( )a , and the manual approach,
D( )m , is shown in this table as a third column (D D−m a) reflects the
accuracy of the automated well-to-well correlation.

The average deviation of the automatic approach applied to the GR
log is about 1.9 m; whereas, the automated approach failed in detecting
boundaries in other log types at least at one boundary. The relative
error along the well#1 is about 0.009, which is really acceptable.

Unfortunately, the field under study is in its early development
phase and no more wells have been drilled in it yet. To strengthen our
conclusion about the applicability of this approach to further wells, we
also substituted observation and reference wells. Table 2 summarizes
the results of automated well-to-well correlation on GR data in the case
of well#3 as a reference well and well#1 and well#2 as the observation
wells. By substituting the wells again the results showed promising
outputs in estimation of the geological layer depths with the average
deviation of about 1.8 m for GR log.

Fig. 13 compares the boundary depths found by the automatic
approach with the manual ones. Considering the advantages of the
automated approach over the manual one reveals that this method can
be an acceptable approach for the estimation of depth of geological
boundaries during well-to-well correlation.

Fig. 14 summarizes the average deviation of the boundary depth
from the automatic approach (mentioned in Table 1) comparing with
that in manual approach for different well-log types (i.e., GR, CGR,
RHOB, and DT). The results indicated that implementing GR, among
all studied well-logs, result in a better prediction of the boundary depth
in the observation wells. In other word, this log is the most appropriate
one and can provide the geological boundaries with less deviation in
our automatic approach.

As discussed in Section 4, the response of each log depends on
many aspects such as rock properties, type of formation fluid, and
diagenesis processes. Relationship between facies and the amount of
emitted gamma radiation makes gamma ray an efficient log for
stratigraphy interpretation. However, low contrast between some facies
can limit geological boundary identification. In addition, loose attach-
ment of uranium cause heterogeneous distribution in sediments and
some irregular peaks corresponding to its uneven distribution (Rider,
2002). Nevertheless, uranium contained within some heavy minerals
and sometimes associated with organic materials and phosphatic rocks
can be indicative of specific lithology and help well-to-well correlation
process.

According to the results, GR detects all boundaries and its deviation
from manual method is rather acceptable. The shallow depth of
investigation of density log makes it dependent on well hole condition.
In addition, density log is itself a poor indicator of lithology due to the
formation fluid influences. Moreover, the formation response of sonic
log is not indicator of lithology too. Variation of the sonic velocity
within each lithology type and overlapping between various lithology
makes this log unreliable for detecting lithology, which is in agreement
by our results.

8. Conclusions

In this study, an automated approach of well-to-well correlation on
well-logs was presented. Several fractal parameters including Hw,

Fig. 13. Comparing results of automatic well-to-well correlation with manual approach. The associated depths from manual approach are shown in black and the predicted depths from
the automatic approach are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Average deviation of automatic approach from manual approach for all
available well-logs. The figure shows GR log was the best input for well-to-well
correlation.
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Hws, and Ha were used to describe the well-log patterns. To compute
the fractal parameters of well-logs, wavelet transform decomposition
were implemented.

By comparing the results of these fractal parameters during well-log
characterization, Hws was chosen as the most suitable parameter
which can evaluate multi-fractal characteristics of well-logs.

Various well-log types, including GR, CGR, RHOB, and DT, were
used in our automated technique. According to the results, among all
implemented well-log data, GR showed promising results and could
detect all boundaries in the field under study.

The results obtained from using this technique on a real case study
from one of the Iranian oil fields demonstrated the capability of this
automated well-to-well correlation approach. This automated approach
can save time and money, and can prevent multiple interpretations. As
the detection of the geological boundaries in this approach is based on
the pattern recognition of well-logs; therefore, it is not affected by
thickness changes across the formation.
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