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A B S T R A C T

In digital cartography, the automatic generation of random planar patterns and symbols is still an ongoing
challenge. Those patterns and symbols of randomness have randomly variated configurations and boundaries,
and their generating algorithms are constrained by the shape features, cartographic standards and many other
conditions. The fractal geometry offers favorable solutions to simulate random boundaries and patterns. In the
work presented in this paper, we used both fractal theory and random Iterated Function Systems (IFS) to
develop a method for the automatic generation of random planar patterns and symbols. The marshland and the
trough cross-bedding patterns were used as two case studies for the implementation of the method. We first
analyzed the morphological characteristics of those two planar patterns. Then we designed algorithms and
implementation schemes addressing the features of each pattern. Finally, we ran the algorithms to generate the
patterns and symbols, and compared them with the requirements of a few digital cartographic standards. The
method presented in this paper has already been deployed in a digital mapping system for practical uses. The
flexibility of the method also allows it to be reused and/or adapted in various software platforms for digital
mapping.

1. Introduction

The fractal geometry (Mandelbrot, 1967) is originated from the
simulation of complex natural phenomena. It aims to explore the
nondeterministic, nonlinear and self-similar phenomenon and process,
and discover the inherent law or order. In the past 50 years, the fractal
geometry theory and its derivative methods have been widely applied in
various fields of geoscience (Carlson, 1991; Chen et al., 2016; Cheng
et al., 2001; Cheng and Agterberg, 2009; Lovejoy and Schertzer, 2007;
Subhakar and Chandrasekhar, 2016; Turcotte, 2005). The application
of the fractal geometry has solved the relationship between whole and
parts in a unique way, and has created many beautiful and novel
images by using symmetry and self-similarity of spatial structure as
well as the simulation models of various images, which the Euclidean
geometry is hard to describe.

Maps are a primary form for representing fractal features of
phenomena and processes in the natural world (Mandelbrot, 2004;
Moriyama et al., 1997). The method of fractal geometry, since its
origin, has achieved many breakthroughs and a wide range of applica-
tions in digital mapping and spatial data analysis (Batty, 1995; García-

Morales, 2016; Kappraff, 1986; Longley and Mesev, 2002). Especially,
using the fractal geometry to describe and analyze geographic bound-
aries, river systems, landforms, and other complicated mapping
phenomena is a topic of broad interest (Gentil and Neveu, 2013;
Jiang, 2015; Tarboton, 1996).

The Iterated Function Systems (IFS) is one of the important
branches in fractal theory. Theoretically, it is believed that in the sense
of affine transformation, the whole and parts of a geometric object have
similar structures, and several affine transformations can be chosen to
map the shape of the whole to the parts. Then, the shape of the whole
can be simulated through the iteration combined by uncertainty and
randomness (Chen et al., 2009; Martyn, 2003; Wang et al., 2015). The
construction of Koch curve is a good example of IFS, which can
produce a curve that has complex morphological characteristic through
simple iterated processes (Fig. 1). In real world applications, IFS is
commonly used to express coastlines, outlines of mountain, tree
models and others (Darmanto et al., 2013; Siddiqi et al., 2014).
Natural scenes tend to have random behaviors but without strict self-
similarity. The IFS codes obtained by introducing random variables can
be treated with random disturbances in a certain way to generate
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different natural scenes, which is a widely used method at present
(Barnsley et al., 2005; Kya and Yang, 2001; Zhou et al., 2016).

2. Related works

Color covering and symbol filling are two major approaches to
express different map elements in digital mapping using a GIS software
(Kraak and Ormeling, 2010; Taylor, 2005). Symbols can offer abundant
information, so they are more favored by cartographers and have been
widely used in geological and geographical mappings. Many scholars
have made in-depth study on the automatic drawing and filling of
regular map patterns (Gustavsson et al., 2006; Hoelzel, 2004;
Mihalynuk et al., 2006; Nass et al., 2011), and have set up controlled
vocabularies and symbol libraries to meet the requirements of various
domains of study (Głażewski et al., 2010; Li et al., 2009; Ma et al.,
2010, 2012; Nayef and Breuel, 2013; Qiu et al., 2013). Hoelzel (2004)
developed a simple but functional application, which automatically
creates lithostratigraphic columns from field data used CorelDRAW
graphic package. Mihalynuk et al. (2006) proposed a prototype set of
geological symbols and the symbol set permitted easy and accurate
production of standard geological maps in a GIS environment.
Gustavsson et al. (2006) presented a comprehensive and flexible
geomorphological combination legend that expands the possibilities
of geomorphological mapping concepts. The symbol-based information
could be digitally stored as a powerful database with thematic layers
and attribute tables. Nass et al. (2011) focused on the simplification of
mapping processes, and implemented the cartographic symbols draw-
ing of planetary mapping data using GIS-based environments. Qiu
et al. (2013) implemented the automation of geological drafting in
CorelDRAW, which can visualize a large amount of data in a short
period of time. To facilitate digital mapping, many professional soft-
ware programs have been developed, such as AutoCAD, ArcGIS,
MapInfo, CorelDRAW, and more. Those software programs are able
to solve the drawing and filling problems of a large number of regular
map patterns. However, the technologies for automatic generation and
filling of random planar patterns and symbols are still not mature yet,
and remain as a challenge for workers in the field of digital mapping. In
order to further demonstrate the shortcomings of existing technologies,
Fig. 2 is adopted and the corresponding explanations are as follow.

Fig. 2 shows several geological pattern symbols created in
CorelDRAW and a geological section filled with those symbols. In
Fig. 2, ➀ to ➅ are simple regular pattern symbols, for which the

technologies of automatic drawing and filling are well established by
repetitive tiling of the same symbol unit. The strict regularity and
symmetry of those symbols allow natural jointing of the titling units at
the outboard edges, without irregular phenomena such as cracks,
intersections and overlaps. ➆ and ➇ are simple random planar pattern
symbols, which are constituted by mixed discrete symbols of sub-
patterns. Though the patterns in ➆ and ➇ have some characteristics of
randomness, by the arrangement of sub-patterns, the method of tiling
is also applicable to fill those patterns in a map, such as the geological
section in Fig. 2.

In contrast, ➈ and ➉ in Fig. 2 show two hand-painted random
planar patterns and areas filled with them. The automatic drawing of
those random patterns (such as the marshland in ➈ and the cross-
bedding in ➉) are a more complicated task comparing with those in ➀
to ➇. Moreover, the algorithms for generating those patterns are
constrained by the shape features, cartographic standards and other
conditions. Due to the limitation of automated methods, manual
drawing is still widely used for this kind of patterns and symbols. In
addition, to fill those patterns into a map, the repetitive tiling of the
same symbol unit also cannot achieve satisfied result. As demonstrated
in the area marked by red dashed line in the filling result of ➈, the
pattern is repetitively filled in the area, but the effect is too monotonous
and does not meet the requirements for randomness. Similarly, there
are obvious cracks in the area marked by red dashed line in the filling
result of symbol ➉, because the tiled symbol units cannot fit with each
other on the edge due to its own asymmetry.

To address this challenge, the random characteristics of symbols ➈
and ➉ should be studied and reflected in the algorithms for the
automatic drawing of them. This will also make it easy to obtain
cartographic symbols that are ready for use in software programs.
Furthermore, to achieve satisfied mapping result there should be
separate approaches for the automatic filling of symbols ➈ and ➉ due
to their own random characteristics. The method of unit symbol tiling
can be used for the random symbol➈ that consists of discrete units, but
it should be guaranteed that there are enough symbols of randomness
to choose and the adjacent tiling units are not filled with the same
symbol, thus ensuring the randomness of the overall filling effect to a
large extent. For symbol ➉, because it is continuous and asymmetric,
the whole area to be filled should be taken as a single unit and an
overall filling method should be adopted.

In this paper, the authors used both fractal theory and random IFS
to propose a method for the automatic drawing of random planar
patterns and symbols. In this method, a few random disturbance
factors were added during the iterative process of IFS. The output
images of IFS had a certain degree of randomness while also showed
the characteristic of self-similarity. The marshland and trough cross-
bedding patterns were taken as typical case studies in the implementa-
tion of the developed method.

3. Methodology

3.1. Self-affinity mapping and IFS

Assume that T R R: →n n is a linear transformation of Rn (which can
be expressed as a n n× matrix); t is a vector of Rn, then a self-affinity
mapping on Rn can be defined as follow:

S x T x t( ) = ( ) + (1)

Given a limited compression mapping set S S S{ , , ..., }m1 2 , let m ≥ 2,
then it is called an IFS. If an IFS is constituted by a contractive affine
transformation S S S{ , , ..., }m1 2 of Rn, then the attractor F is called a self-
affine set. The construction process of self-affine curve F is shown in
Fig. 3. Affine function and IFS based on the self-affine set are of great
help to the fractal interpolation, and have been effectively used to
describe the outlines of mountains, coastlines and natural scenes
(Gentil and Neveu, 2013; Zhou and Li, 2008).

Fig. 1. Koch curve and its generator.
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In the IFS X S S S{ : , , ... , }1 2 m , linear contractive affine transformation
is usually used to express compressed mapping, and the affine
transformation S R R: →i

2 2 on a 2D plane has the following form:
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where a b c d e f R, , , , , ∈i i i i i i
2, x y( , ) is a point on a 2D plane; the linear

transformation matrix Ai represents rotation, proportion and reflection
transformation; the vector ti represents translation transformation. A
complex 2D fractal image that has self-similar structure can be
generated by choosing a proper compressed mapping for repeated
iterative calculations.

3.2. Fractal generator

The objects to be drawn in this paper are random planar patterns
and symbols in geological and geographical mapping, which have no
strict self-similarity. In order to realize characteristics of randomness
in the output pattern, the paper introduces random disturbances
control in the iterative process of IFS. Random noise interference is

added in each iteration parameter to allow both the self-similar
characteristic of affine transformation and randomness in the overall
output pattern, thus increasing the feature of randomness in the result.
However, the randomness must be controlled within a certain numer-
ical range in order to let the fractal morphology of IFS evolve randomly
in a reasonable range.

For the IFS with random disturbances, RIFS X S S S r r r{ : , , ... , | , , ... , }m m1 2 1 2 ,
each compressed mapping is accompanied with a random disturbance
ri. As to the affine transformation of a 2D plane S R R: →i

2 2 in the RIFS,
the parameters a b c d e f, , , , ,i i i i i i in formula (2) must be obtained
through a certain calculation with ri, but the specific calculation form
is decided by pattern features.

Hence, the fractal generator must include two parts: an IFS-based
iterated function and a random number generator. The iterated
function is abstracted from analyzing the features of random patterns
and is used to express the self-similar characteristics of patterns. The
affine transformation expressed by the iterated function can be one of
the rotation, proportion, reflection and translation transformation or a
combination of multiple transformations. A random number generator
random () can generate random sequences that have a certain statistical
characteristic. random () is applied to each iteration process of the IFS.
It makes the iterative process random through the specific operation
between the random numbers and the affine transformation para-
meters in the iterated function. Ultimately, the generated patterns are
made to meet the requirements of both the self-similarity and the
characteristics of randomness.

The construction of IFS, the selection of random number generator
as well as the operation mode between various parameters and the
random numbers during the iterative process are varied for different
patterns of randomness, which will be decided by the features of the
corresponding patterns.

We designed algorithms for the automatic drawing of two typical
patterns of randomness, the marshland and the trough cross-bedding
patterns in geological and geographical mappings, according to the
thoughts and methods of the abovementioned fractal generator. In
addition, the feasibility and effectiveness of the abovementioned
method were tested through two case studies.

Fig. 2. Comparison of mapping results of different symbol types in CorelDRAW.

Fig. 3. Construction process of an affine curve.
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3.3. Algorithms for generating marshland patterns

3.3.1. Pattern characteristics
Fig. 4 shows the typical morphologies of marshland patterns in

geological mapping, and the characteristic of which lies in that the
boundary and internal filling are randomly varied, and these
morphologies are the expression of the morphological distribution
of marshland in reality. Though there are numerous morphological
changes, their forms of expression are some random complex zones
that are filled with horizontal lines, and the boundaries are not
shown. Therefore, the key of drawing this pattern is how to get a
series of lines that the coordinates X Y( , ) of starting points and the
length of lines are randomly varied as well as are distributed at
regular intervals in the longitudinal direction. Finally, these
horizontal lines interlace around and generate a zone, which
constitute a component for the overall marshland planar pattern.
From Fig. 4, it can also be seen that the random varied range of the

coordinates X Y( , ) of the starting points and the length of lines in
each zone closely conforms to the Gaussian distribution.

3.3.2. Design of algorithms
It is known from the above analysis that the drawing of the

marshland patterns can be resolved into the drawing of several random
zones filled by horizontal lines. Each zone consists of a number of
horizontal lines which have the random coordinates X Y( , ) of starting
points and randomly varied lengths. Multiple zones that consist of
horizontal lines interlace around and then form the marshland
patterns. Therefore, for the marshland patterns, a primary step is the
automatic drawing of one zone that has this characteristic.

Fig. 5 offers the original state and the first three iterative processes
of a zonal pattern. The original state is the starting coordinates A x y( , )1 1
and B x y( , )2 2 of the two horizontal lines with given lengths. One
horizontal line will be inserted between two adjacent lines for every
iterative step. Until the nth iteration process is finished, a zonal pattern
is composed of the 2n horizontal lines that have random lengths and
randomly varied X-coordinates of the starting points.

It can be seen from the above processes that each newly generated
line can be uniquely determined by its coordinate X Y( , ) of starting
point and length L of line. In which, the parameters with random
characteristic are the X-coordinate of the starting point and length L.
Assuming that low and high are the upper and lower indexes for an
iteration, the iterated function of the fractal generator in drawing the
marshland patterns can be defined as:

⎧
⎨⎪
⎩⎪

x mid x low x high Δp
y mid y low y high
l mid random l l

[ ] = ( [ ] + [ ])/2 +
[ ] = ( [ ] + [ ])/2
[ ] = ( , )

,
μ σ (3)

where, Δp random x x= ( , )μ σ refers to the random offset of the X-
coordinate; lμ and lσ respectively express the mean and variance of
length L; xμ and xσ correspondingly show the mean and variance of X-
coordinate of the line's starting point. Δp and l mid[ ] are both obtained
by the random number generator random μ σ( , ). random μ σ( , ) can
produce the random sequence that has the mean μ and variance σ as
well as conform to the Gaussian distribution.

Through the analysis above, the generating process of the random
marshland pattern can be described as: the number N of zones in
horizontal direction, the number n of lines in each zone, initial value Xμ

(mean) of X-coordinate, degree of randomness Xσ (variance) of X-
coordinate, basic length lμ (mean) of a line, degree of randomness lσ
(variance) of length, fundamental distance X gap between two adjacent
zones, and the initial points p x y( , )low low low and p x y( , )high high high are

Fig. 4. Marshland patterns (According to GB/T, 14538-93, 1993).

Fig. 5. Random iterative process of a zonal pattern.
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given; starting from plow and phigh, a pattern of randomness with N
zones interlaced around is generated through controlling the random
number generator random μ σ( , ); each zone is composed by n horizontal
lines that have randomly variated X-coordinates of starting points and
lengths of lines. Consequently, the core content of this algorithm
includes two parts: (1) Fractal generator for one marshland zone
(Algorithm 1), (2) An overall marshland pattern generator (Algorithm
2).

1. Fractal generator for one marshland zone (Algorithm 1). It is mainly
composed by the recursive function low highFractalGeneratorMarsh( , ).
The recursive entrance parameters low and high are the upper and
lower indexes of the iteration, and are also the indexes of arrays. For
example, when the number of lines needs to be draw n = 17, the
initial low = 0，high n= − 1 = 16; after one iteration, mid = 8, x [8],
y [8], l [8] can then be obtained, which means the horizontal line for
the index =8 is determined (lines 3–7). After one iteration, mid is
taken as the lower index of the first half and the upper index of
the second half to carry out recursive calls, until low high≥
（lines 8–9). In which, the randomness of X-coordinate and
length l are adjusted by random μ σ( , ). Because it is a binary recursive
call, the number n of lines must meet n = 2 ,t and t is the iteration
times. The pattern on the right of Algorithm 1 is the dra-
wing demonstration of a zone that is determined by x n[ ], y n[ ]
and l n[ ] after completing the recursion of the function

low highFractalGeneratorMarsh( , ).
2. An overall marshland pattern generator (Algorithm 2). It can loop to

draw a random marshland pattern circularly that is composed by N
zones interlaced around. Lines 3–6 in Algorithm 2 are the initializa-
tion of x [0], y [0], l [0], x n[ − 1], y n[ − 1], l n[ − 1] as well as low and
high before the start of each loop. In which, the X-coordinates needs
to increase X gap after each loop in order to ensure the distribution
characteristics of the N zones in the X-direction; the Y-coordinates
of corresponding lines in the N zones are consistent, which can
ensure the lines interlaced are completed overlapped; length L is
obtained through the random number generator random l l( , )μ σ ,
which can increase the randomness of the generated patterns.
After all these, the recursive function low highFractalGeneratorMarsh( , )
is called to acquire the coordinate arrays x n[ ] and y n[ ] of starting
points of n horizontal lines as well as the length array l n[ ] of
corresponding lines in the ith zone (line 7). In the end, function

x n y n l nDrawGraphic( [ ], [ ], [ ]) is called to finish the visualization (line
8). Line 10 is a demonstration of a group of marshland patterns,
which is composed by 8 zones interlaced around.

Algorithm 1. Fractal generator for marshland patterns

Algorithm 2. The whole generating program of marshland patterns

Input: N : number of zones; n: number of lines in a zone; Xμ: mean

of X ; Xσ : variance of X ; lμ: mean of L (line's length); lσ : variance of

L; X gap: basic gap of 2 neighboring zones; p x y( , )low low low : lower

point; p x y( , )high high high : upper point

Output: marshland patterns: N zones and each zone consisted of n
lines with various lengths
1: x n[ ] ← ∅; y n[ ] ← ∅; l n[ ] ← ∅
2: for i N: =0 → such that i N< do
3: x x i X gap[0] ← + *low ; x n x i X gap[ − 1] ← + *high

4: y y[0] ← low; y n y[ − 1] ← high

5: l random l l[0] ← ( , )μ σ ; l n random l l[ − 1] ← ( , )μ σ

6: low ← 0; high n← − 1
7: low highFractalGeneratorMarsh( , )
8: x n y n l nDrawGraphic( [ ], [ ], [ ])
9: end for
10:

3.4. Algorithms for generating trough cross-bedding patterns

3.4.1. Pattern characteristics
Cross-bedding is also called inclined bedding. It is composed by a

series of laminas that are skew with each other at the boundaries of bed
series, and the inclined bed series can be combined by mutual overlap,
interlacement, and incision. The cross bedding can be divided into
planar cross-bedding, wedge shaped cross-bedding, trough cross-bed-
ding, etc. according to the forms and characters of the bed series and
the upper and lower divisional plane. The trough cross-bedding is the
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most complex type among all those types. Its features are: the thickness
of a single bed series changes quickly, and the lower boundaries of each
bed series are concave downward; therefore, it has a distinct trough
eroded base. The laminated beddings of the bed series can also both
parallel and intersect the undersurface of the bed series with change-
able inclined directions, and have obvious randomness.

Fig. 6(a) shows the typical trough cross-bedding pattern in geological
thematic map. It can be seen from the figure that its beddings is formed by
the interlacement of the middle, left-leaning and right-leaning bed series.
The laminated beddings within the three parts are roughly paralleled, but
have different inclined angles which are random. In addition to inclined
angles, the gaps between those laminated beddings are also distinguishing
and the change of gaps is also random. The characteristics of similarity and
randomness exactly conform to the features of problems that fractal
generator is able to solve, as described in the Section 3.2. After filling other
symbols inside the trough cross-bedding, different geological patterns that
are able to express more meanings can be achieved (Fig. 6(b)). However,
the key of the study lies in the automatic drawing of bedding's frameworks.

3.4.2. Design of algorithms
According to the above analysis of the trough cross-bedding patterns,

the similarity of this type of patterns is embodied in that each of the
laminated beddings within the middle, left-leaning and right-leaning bed
series is composed of approximately paralleled arcs. Its randomness is
reflected in that the inclined angle of each arc within the laminated
beddings differs, and the distance between two laminated beddings also
varies. For the bedding patterns of each bed series, the process of drawing
can be regarded as generating an arc AB⌢

by taking a point P as the center of
a circle with a radius R, and filling the drawing area F with the arc AB⌢

. The
coordinate of each center P should be disturbed randomly by random μ σ( , )
to realize random inclined angles among laminated beddings. The descend-
ing distance d of radius R each time should vary randomly within a certain
range to make random changes of the gaps between laminated beddings.
We choose three center points pM , pL, pR from the middle, left and right,
and loop drawing is carried out in order, and then we can acquire the
trough cross-bedding that covers the entire filling area F .

With those parameters, the automatic drawing algorithm of the
trough cross-bedding patterns mainly includes: initializing the center
points, fractal generator, and the topology updating of F .

1. Initializing the center points (Fig. 7). We first confirm the bounding
rectangle of the filling area F , and assume the line that has the same
direction as the bending direction of the bed series is the center axis.
Then we choose a point pM on the radial on the positive direction of the

center axis as a middle center point, and its coordinate is x y( , )M M . On
the line that go through the pM and is perpendicular to the center axis,
we choose the point pL on the left line of the center axis and the point pR
on the right as the left and right center points respectively, and their
coordinates are x y( , )L L and x y( , )R R correspondingly. Make circumcircles
of F with pM , pL, pR as the centers of the circle respectively, and we can
confirm the radiuses of the three circumcircles: RM , RL, RR which will
respectively correspond to the initial radiuses for drawing the beddings
with pM , pL, pR as the center points. It should be especially noted that the
distance between the initial points pM , pL, pR and the filling area F will
affect the bending angle of the bedding: the larger the distance, the
gentler the bedding, and vice versa. In addition, the distances between
pM and pL as well as pM and pR decide the inclined degree of the left and
right bed series: the larger the distance, the greater the inclined degree.

2. The fractal generator for trough cross-beddings (Algorithm 3).
When drawing each laminated bedding in relevant bed series
with pM , pL, and pR as the center points, the function

Fig. 6. Trough cross-bedding patterns: (a) shows the typical trough cross-bedding pattern; (b) shows the geological pattern of limestone trough cross-bedding following the geologic
map symbolization in Federal Geographic Data Committee (2006).

Fig. 7. Initialization of the central drawing points and their random iterative processing.
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p p R d dFractalGeneratorCross−bedding( , , , , )σ σ is used to determine
each central drawing point p x y′( ′, ′) and radius R′. On the basis of the
last central drawing point p x y( , ), new central drawing point p x y′( ′, ′)
will appear in the circular region with p as the center and pσ as the radius
(shown in Fig. 7), through the random disturbance of the random
number generator random p p( , )σ . pσ will decide the random variation
degree of new coordinates, lines 3–4 offer the solving process of
p x y′( ′, ′). In order to realize the random variation of the gaps between
laminated beddings, the decreasing distance of the drawing radius R
each time should be varied randomly within a certain range. Adding
random disturbance to the basic decreasing distance d , new drawing
radius R′ can be expressed in the formula shown in lines 5–6. Algorithm
3 realizes the random variations of inclination and gaps of laminated
beddings, thus allowing similarity and randomness among beddings.

Algorithm 3. Fractal generator for trough cross-beddings

Input: p x y( , ): last center point; pσ : variance of p; R: last radius; d :
basic decreasing step of R; dσ: variance of d

Output: p x y′( ′, ′): new center point; R′: new radius
1: Function: p p R d dFractalGeneratorCross−bedding( , , , , )σ σ

2: if continue drawing then
3: x Random x p′ ← ( , )σ

4: y Random y p′ ← ( , )σ

5: d Random d d′ ← ( , )σ

6: R R d′ ← − ′
7: end if
8: return p R( ′, ′)
9: end function

3. Topology updating of F (Algorithm 4). The drawing process of a
laminated bedding is the topology computing and upgrading process
between the arc AB⌢

and the filling area F , filled area list listF , current
filling area Fc. We make a circle with p x y′( ′, ′) as the center, R′ as the
radius, and get the intersecting arc AB⌢

with the filling area F .

Fig. 8(a) shows the initiative status before the t th drawing, and listF
stores the list of areas drawn during the previous t − 1 times; Fc is
the remaining part after splitting F in the previous t − 1 times. The
function F F AB listF FFillingUpdating ( , , , )⌢

c offers the specific process
of drawing laminated beddings. As shown in Fig. 8(b), we use AB⌢

to
separate F into two halves, and get the inside area Finside of the AB⌢

;
using the Finside to split the current filling area Fc, we can obtain the t th

filling area object listF t F F[ ] = −c inside (lines 2–5). Since that AB⌢

might still be intersected with the previous t − 1 area objects, and
then previous t − 1 area objects in the listF should be judged and
updated (Fig. 8(c)). Lines 6–11 describe the whole process of listF
updating. Ultimately, we update the current filling area to be
F F=c inside, and the drawing is finished (Fig. 8(d)).

Algorithm 4. F filling and topology updating

Input: F: area to be filled; AB⌢
: intersecting arc; listF : list of filled

area; Fc: current filling area
Input: updated listF and Fc

1: Function: F F AB listF FFillingUpdating ( , , , )⌢
c

2: F ←inside the inside polygon of AB⌢
in F

3: if there are intersecting points between Fc and AB⌢
then

4: F F F′ ← −c inside

5: listF add F. ( ′)
6: n← the count of listF
7: for t n: =0 → − 1 such that t n≠ − 1 do
8: if there are intersecting points between listF t[ ] and
AB⌢

then
9: listF t listF t F[ ] ← [ ] − inside

10: end if
11: end for
12: end if
13: F F←c inside

14: return listF F( , )c

15: end function

Fig. 8. Filling and upgrading process of the filling area F.
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Algorithm 5 describes the complete filling process of the filling area
F . We start drawing from the middle center point pM , and loop NM

times. NM is the number of the laminated beddings in one bed series.
And then we make the central drawing points variates randomly
each time through using the function FractalGenerator_Crossbedding
p p R d d( , , , , )M σ M σ , and also make the decreasing distance of the
drawing radius random. F p RObtainArcAB( , , )M M is used to obtain the

intersecting arc AB⌢
between the circle which is with pM as the cen-

ter and RM as the radius and the F . If the AB⌢
exists, the

F F AB listF FFillingUpdating ( , , , )⌢
c will be called for drawing; if AB⌢

does
not exist, the drawing will end at the middle center point, thus let the
flag variable flag = 0M and break out the loop of the pM(lines 6–14).
Same treatment will be carried out to the left and right center points
successively (line 15–32). Draw circularly based on the order from

Fig. 9. User interface and pattern symbolization. (a) shows parameters on the user interface: (1) five different types of marshland patterns given in a national standard (GB/T, 14538-
93, 1993); (2) whether change the line width or not; (3) basic gap between each zone in X direction; (4) gap between lengthways lines; (5) mean value of line's length; (6) variance of the
coordinates of lines; (7) variance of the changes of line's length. (b) and (c) show the different resulting outputs when the button (2) is switched on or off. (d) and (e) are the random
marshland patterns after being symbolized.
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middle, left and right until flag flag flag= = 0&& = = 0&& = = 0M L R ,
which means there is no intersecting points between F and the circles
with pM , pL, pR as the centers and RM , RL, RR as the radius respectively.
Then the condition of line 5 is not met, and the loop will be ended and
the drawing is finished. Ultimately, we carry out visualization of all area
objects in the listF , and then we can obtain the trough cross-bedding
patterns that is needed.

Algorithm 5. The whole generating program of trough cross-bedding
patterns

Input: F: area to be filled
Input: listF: list of filled areas
1: obtain the center axis of F
2: calculate the initial coordinates of 3 center points: p x y( , )M M M ,

p x y( , )L L L , p x y( , )R R R ; ascertain the corresponding radiuses: RM , RL,
RR

3: flag flag flag= = = 1M L R

4: F F=c , listF ← ∅
5: while flag flag flag= =1|| = =1|| = =1M L R do

6: for i N: =0 → M do
7: p R p p R d d( , ) ← FractalGenerator_Crossbedding( , , , , )M M M σ M σ

8: AB F p R← ObtainArcAB( , , )⌢
M M

9: if AB NULL≠⌢
then

10: ListF F F F AB listF F( , ) ← Filling_Updating ( , , , )⌢
c c

11: else
12: flag = 0M , break
13: end if
14: end for
15: for i N: =0 → L do
16: p R p p R d d( , ) ← FractalGenerator_Crossbedding( , , , , )L L L σ L σ

17: AB F p R← ObtainArcAB( , , )⌢
L L

18: if AB NULL≠⌢
then

19: ListF F F F AB listF F( , ) ← Filling_Updating ( , , , )⌢
c c

20: else
21: flag = 0L , break
22: end if
23: end for
24: for i N: =0 → R do
25: p R p p R d d( , ) ← FractalGenerator_Crossbedding( , , , , )R R R σ R σ

26: AB F p R← ObtainArcAB( , , )⌢
R R

27: if AB NULL≠⌢
then

28: ListF F F F AB listF F( , ) ← Filling_Updating ( , , , )⌢
c c

29: else
30: flag = 0R , break
31: end if
32: end for
33: end while

4. Implementation and application analysis

The workflows and algorithms for drawing the two abovementioned
patterns were realized in C++ language and implemented in
QuantyView, a software platform for editing geological thematic maps.

4.1. Marshland patterns

Fig. 9(a) shows the user interface for generating the marshland
patterns. A user can flexibly set up the input parameters by using the
slide bars, and offer these parameters to the random marshland pattern
generator described in Section 3.3. Following each change in the

parameters, the drawing function will be called to generate a new
morphology in the resulting pattern.

Fig. 9(b) and (c) show the changes in result when the button “(2)
Change the line width of patterns” is switched on and off respectively.
More varieties of marshland patterns can be obtained through combin-
ing this operation with the five types of marshlands in the dropdown
list in (1) (also see Fig. 10 for details of those types). Then the forms of
patterns generated will be further extended.

In order to make the generated patterns easy to use in the processes
of digital mapping, the patterns generated need to be symbolized, and
stored in a symbol library. We chose the generated patterns that meet
the cartographic standards by controlling the interface parameters, and
selected several forms can be for each type of patterns in order to meet
practical needs. Fig. 9(d) and (e) are the random marshland patterns
after being symbolized.

Fig. 10 shows a comparison between the marshland symbols of a
national standard (GB/T, 14538-93, 1993) and the pattern that is
generated by this method. We draw the random marshland patterns
according to the five types given in the dropdown list (1) in Fig. 9, and
for each type in that list the drawing results of three different patterns
are given in Fig. 10. The three patterns differ from one another, and
have the obvious characteristics of randomness. The comparison shows
that the marshland patterns generated in this work meet to the
requirements of the national standard, and have the flexibility to
address specific needs of digital mapping in practice. Filling marshland
symbols into a map layer is a different task compared to the generation
of those symbols. Fig. 11 shows a thematic map of marshland that is
filled with several forms of random marshland symbols.

4.2. Trough cross-bedding patterns

Fig. 12(a) shows the user interface of generating the trough cross-
bedding patterns. We can flexibly control the parameters through the
slide bars, and offer these parameters when drawing the random
trough cross-bedding patterns as mentioned in Section 3.4.
Operations on each slide bar will refresh the drawing function, and
the pattern will be re-drawn. Even with the same parameter setting, the
result obtained by the random number generator is different each time
due to the random function in the algorithm, and the resulting patterns
will be different each time as well.

Fig. 12(b) shows the drawing result of trough cross-bedding pattern
with arbitrary boundary corresponding to relevant input parameters in
the dialog. We can see that the bedding width is random and the
inclined directions of the laminated beddings within one bed series are
also random. However, the randomness is within a controllable range
through the parameters.

The trough cross-beddings patterns can be overlapped with addi-
tional rock type symbols on a geological section. Fig. 13 depicts filling
results with such overlapped patterns and symbols. Those results show
that the work is capable to meet the specific requirements for mapping
trough cross-beddings in cartographic standards, such as those listed in
the Appendix A of Federal Geographic Data Committee (2006).

4.3. Discussion

As mentioned above, the mapping results of the two case studies
meet the national and community cartographic standards well. In
terms of mapping methods, our method overcomes the shortcomings of
previous research on automatic drawing and filling of random map
patterns (as illustrated in Fig. 2).

The first challenge comes from the automatic production of random
planar patters and symbols in digital geological and geographical map-
pings. The basic idea is derived from fractal theory, and the fractal
generator for efficient production of random planar patterns and symbols
was designed by adding random disturbance factors in the IFS. More
complicated patterns were generated due to interlacing different patterns
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and cutting with boundaries. The friendly user interfaces were designed to
control the randomness and the other parameters. Random patterns are
encouraged in this work, but their randomness must be limited within a
certain range. The abundant symbols of randomness were efficiently
produced which conform to the national and community cartographic
standards (As shown in Figs. 10 and 12). These symbol sets laid a
foundation for the following maps drawing.

Filling these symbols of randomness into a map is the second
challenge. As demonstrated in the area marked by red dashed line in
the filling result of 9 and 10 in Fig. 2, both effects cannot meet the
requirements of cartographic standards. Comparing Fig. 11 with the
filling result of 9 in Fig. 2, our method overcome this challenge
satisfactorily due to the enough symbols of randomness produced from
the abovementioned method, thus ensuring the randomness of the overall

Fig. 10. Comparison between the marshland patterns generated in this work and the patterns in a national standard (GB/T, 14538-93, 1993).

Fig. 11. Practical applications - thematic map of marshlands.
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filling effect to a large extent. The method of unit symbol tiling was used
for the random symbol 9 since it consists of discrete units. However, the
tiled symbol units cannot fit the symbol 10 due to its continuity and
asymmetry. An overall filling method was adopted and the challenge from
symbol 10 illustrated in Fig. 2 was conquered (see Fig. 13).

The two typical case studies were developed to demonstrate the
effectiveness and practicability of the method presented in this paper
nicely. This method is also suitable for the other random planar
patterns and symbols with the similar characteristics. These patterns
focused on in this work are a part of the whole fractal patterns. A part

Fig. 12. User interface for generating trough cross-bedding patterns. (a) shows parameters on the user interface: (1)-(6) basic coordinates pM , pL , and pR of middle, left and right center

points; (7) randomness pσ of coordinates of the three center points; (8) randomness dσ of the decreasing distance of the drawing radius; (9) mean decreasing distance d of the drawing

radius; (10)-(12) numbers NM , NL , and NR of the laminated beddings of the middle, left and right bed series. (b) shows the drawing result of the trough cross-bedding pattern with

arbitrary boundary according to the relevant parameters inputted in the dialog.

Fig. 13. Trough cross-bedding patterns generated by this method and its extended application.
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rather than the whole fractal pattern is order to meet the shape features
of patterns, cartographic standards and other conditions better. The
automatic generation of whole fractal patterns and taking them into the
digital mapping based on geospatial data (Jiang, 2015) are our further
work in the future.

5. Conclusions

The paper presented a method for the automatic drawing of
random planar patterns and symbols based on a fractal generator,
which aims to address an ongoing challenge in the field of digital
mapping. In this method we developed workflows and algorithms to
embed the characteristics of random planar patterns into the deploy-
ment of the fractal theory and the Iterated Function Systems. The
simultaneous representation of the similarity and randomness of
random planar patterns was a key issue in this work, and was realized
in the fractal generator by adding random disturbance factors in the
Iterated Function Systems. We took two typical random planar
patterns, the marshland and the trough cross-bedding, as case studies
to test the developed method. The implementation of the method in a
software program allowed flexible control of parameters, and generated
various marshland and trough cross-bedding patterns that conform to
national and community cartographic standards. Results of the two
case studies prove the effectiveness of the method, and also show that
the presented method is ready to be reused or adapted in software
programs for digital mapping. Our work is a beneficial supplement to
the technologies in digital cartography.
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