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We present here an efficient first-order second moment method using Algorithmic Differentiation
(FOSM/AD) which can be applied to quantify uncertainty/sensitivities in morphodynamic models.
Changes with respect to variable flow and sediment input parameters are estimated with machine ac-
curacy using the technique of Algorithmic Differentiation (AD). This method is particularly attractive for
process-based morphodynamic models like the Telemac-2D/Sisyphe model considering the large num-
ber of input parameters and CPU time associated to each simulation.

The FOSM/AD method is applied to identify the relevant processes in a trench migration experiment
(van Rijn, 1987). A Tangent Linear Model (TLM) of the Telemac-2D/Sisyphe morphodynamic model (re-
lease 6.2) was generated using the AD-enabled NAG Fortran compiler. One single run of the TLM is
required per variable input parameter and results are then combined to calculate the total uncertainty.

The limits of the FOSM/AD method have been assessed by comparison with Monte Carlo (MC) si-
mulations. Similar results were obtained assuming small standard deviation of the variable input
parameters. Both settling velocity and grain size have been identified as the most sensitive input para-
meters and the uncertainty as measured by the standard deviation of the calculated bed evolution in-
creases with time.

& 2016 Published by Elsevier Ltd.
1. Introduction

Morphodynamic models of increasing complexity have been
developed in the past 30 years and are now widely applied by the
engineering community to predict the natural or anthropogenic
bed evolution in rivers, estuaries and seas.

In process-based models, the interactions between hydro-
dynamic forcing and sediment are described in detail, and sedi-
ment transport rates, generally decomposed into bed-load and
suspended load, are calculated as a function of the local wave and
current conditions. Thanks to recent progress in the use of parallel
processors and efficient numerical methods, models can now be
used as powerful engineering tools to represent the bed evolution
in estuarine, fluvial and coastal environments at medium to large
time and spatial scales.

Despite progress in the description of physical processes,
ce.
t).
morphodynamic modelling is still considered to be a difficult task.
Morphodynamic models are generally seen much less accurate
than hydrodynamic models due to the accumulation of errors
which are difficult to quantify (Stansby, 2013). The high number of
processes involved in the description of the flow-sediment inter-
actions requires a large amount of input data and empirical
parameters which are difficult to measure in-situ. Morphodynamic
models rely on the use of highly empirical sediment transport
predictors which are based on small scale experiments and their
up-scaling for application in the field is questionable (Haff, 1996).
The choice of empirical model parameters therefore requires a
large degree of expertise from end-users to properly adapt the
model to their application, leading to greater use of CPU resources
in order to calibrate the most sensitive model parameters and
improve the model predictability.

Uncertainty estimation is becoming common practice in many
environmental problems, for example in flood risk and hydro-
logical modelling. Despite its importance, the problem of un-
certainty in morphodynamic models has been little addressed due
to both practical as well as philosophical reasons. This reluctance
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may be attributed to unrealistic faith in the ability of physical-
based models to represent natural processes in a deterministic
way and may also be due to the fact that uncertainty is difficult to
quantify given the large number of input parameters with limited
time and CPU resources (see the discussion in Pappenberger and
Beven (2006)).

There are a number of studies on the uncertainty in the sedi-
ment transport predictions. The effect of variability in the input
conditions (sediment grain size and flow velocity) on various se-
diment transport predictors has been addressed for example by
Pinto et al. (2006) using Monte Carlo sampling. The sensitivity of
sediment transport predictors to the bed roughness parameter has
been highlighted in Davies and Villaret (2003). The uncertainty in
the sediment transport predictions is generally admitted to be a
factor 2–5 to account for variability in the sediment and flow
parameters (Davies et al., 2002).

Much less is known on the uncertainty of the calculated bed
evolution in morphodynamic models. Monte Carlo analysis
which has been previously applied in flood modelling and risk
assesment (Wyncoll and Gouldby, 2015; Apel et al., 2004), in-
volves a large number of simulations and becomes prohibitively
too expensive in most in-situ morphodynamic applications.
Among the few studies on uncertainty in morphodynamics, the
effect of initial conditions was addressed by van der Wegen et al.
(2011) who propose a method to generate the bed composition.
Ensemble averaged simulations have been presented in Fortunato
et al. (2009) and van der Wegen and Jaffe (2013) to investigate
the uncertainty in process-based coastal models. The uncertainty
as measured by the standard deviation in the model output, was
found to increase in time and to be also larger when the transport
rates are larger.

Our objective here is to present an efficient tool for uncertainty
analysis which can be applied to estimate the effect of uncertainty
in various model input parameters on the morphodynamic model
output. Our approach, FOSM/AD, utilizes Algorithmic Differentia-
tion (AD) to perform a first-order second-moment uncertainty
analysis (Melching, 1992). AD was previously applied by Vogel
et al. (2006) for a sensitivity analysis in environmental flow
models. More information about AD methods can be found
(Griewank and Walther, 2008; Naumann, 2012, www.autodiff.org).
The AD-enabled NAG Fortran compiler (Naumann and Riehme,
2005; dco/fortran/adnag, 2013) has been used to create a tangent-
linear model (TLM) of the Telemac-2D/Sisyphe morphodynamic
model for the 6.2 release of the code (see Riehme et al. (2010) and
Kopmann et al. (2012) for details).

The objective of this paper is (1) to gain confidence in the re-
sults of FOSM/AD by comparison with a classical Monte Carlo
analysis (MC), and (2) to achieve more insight in the relative
contributions of various input parameters to the global uncertainty
of the morphodynamic model results.

The two different methods for uncertainty analysis are pre-
sented in Section 2. We show in Section 3 a simple 1D application
of both methods, in order to estimate the uncertainty associated to
the prediction of a trench evolution. The results of MC and FOSM/
AD are compared in Section 4 for an uncertainty analysis and in
Section 5 for a local sensitivity analysis. In conclusion we give an
outlook of further applications of AD in field conditions and for
model calibration using an adjoint model of the Telemac model
also generated by the AD-enabled NAG Fortran compiler.
2. Different methods for uncertainty analysis

2.1. Objective and assumptions

The aim of an uncertainty analysis is to quantify the variability
in the model outputs due to prescribed uncertainty in the input
parameters.

For a set of input parameters represented by a vector of model
inputs X , a single model output may be represented by

= ( ) ( )Y F X 1

where the function ()F represents the deterministic model. In a
probabilistic framework, the inputs X are considered a random
variable with a chosen joint distribution which results in a random
distribution for the output Y . With an arbitrary non-linear model
function ()F , the exact distribution of Y is usually intractable so
methods such as Monte Carlo and FOSM/AD seek to estimate
properties of the unknown distribution such as the mean ( )YE , the
variance ( )Var Y and confidence intervals.

In our analysis, we consider the effect of various flow and se-
diment input parameters on the calculated bed evolution (Zb). The
method presented below can be generalized to multiple output
variables, but for simplicity we will consider below only one single
output variable.

The effect of other sources of uncertainty in the model, like the
variability in the initialization and boundary conditions (bathy-
metry, hydrodynamic forcing etc...) is out of scope of the present
work.

This analysis is restricted to the effect of the bed roughness
parameter ks and sediment grain size d50 which have been iden-
tified as the most sensitive parameters regarding sediment
transport predictions (Pinto et al., 2006; Davies and Villaret, 2003).
The effect of variability in the settling velocity Ws has also been
included when suspended load is the dominant mode (as in the
application below). The effect of the sediment transport predictor
itself has been included by varying the empirical factor (MPM fac-
tor) in the Meyer-Peter and Müller (1948) bed load formula.

2.2. Monte Carlo analysis

In a Monte Carlo analysis, a large number of potential input
parameters are randomly sampled according to their probability
distribution and the numerical model is run for each. This pro-
duces a Monte Carlo sample of potential model output values
which are used to approximate the distribution of Y . Summary
statistics such as the mean and variance can be estimated by the
corresponding sample moments, for example:

∑( ) ≃
−

( − ¯ )
( )=

( )Var Y
N

y y
1

1 2j

N
j

1

2

where ( )y j is the jth output sample of N and ȳ is the sample mean.
The accuracy of these approximations increases with the number
of samples. The samples can be used to approximate any other
property of the output without the need to make any assumptions
on its distribution.

Monte Carlo sampling avoids making any simplifying assump-
tions on the model function ()F or on the distributions of the in-
puts and outputs. However, its main disadvantage is that a large
number of model runs are required which, for complex models
such as Telemac-2D/Sisyphe, can consume significant CPU
resources.

Stratified sampling techniques such as Latin Hypercube Sam-
pling can reduce the error in the Monte Carlo approximation
(Stein, 1987). This means that fewer samples are required for the
same level of accuracy, thus saving computing time. Meta-models
such as Gaussian process emulators can also be used to further
reduce the number of model runs by using a small number of runs
to build an approximate model with which to conduct the un-
certainty analysis (Oakley and O'Hagan, 2002).

http://www.autodiff.org
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2.3. FOSM/AD: first-order uncertainty analysis using AD with a
tangent-linear model (TLM)

When the unknown inputs X are all real-valued variables, a
Taylor expansion of the model function about a best estimate such
as the mean ( )XE can be used to approximate moments of the
output variable Y . When applied to the mean, a first-order Taylor
expansion gives:

( )≃ ( ( )) ( )E Y E XF 3

which justifies approximating the output mean by a single run
evaluated at the input means. Applied to the variance, a first-order
expansion gives:

( )≃∇ ( ( )) ∙ ( )∙∇ ( ( )) ( )Var Y F E X Var X E XF 4T

where ∇ ()F is the vector of partial derivatives with respect to each
element of X . This is often known as the delta method. Under the
common assumption of independence between each of the inputs
in X , the variance matrix ( )Var X becomes diagonal which sim-
plifies the equation to:

∑( ) ≃ [ ∂
∂

( ( ))] ∙ ( )
( )=

Var Y
F
X

E X Var X
5i

n

i
i

1

2

where n is the number of variable inputs. Partial derivatives in Eq.
(5) can be estimated using finite differences approximations or
calculated exactly up to machine accuracy using Algorithmic Dif-
ferentiation (AD).

For a model function F given as a computer program, AD allows
to generate an annotated model ( )̇ = ̇( ̇ )Y Y F X X, , the so-called tan-
gent-linear model (TLM) of F . The TLM computes alongside with

= ( )Y F X a projection of the Jacobian (matrix of partial derivatives)
∇F in the direction ̇X :

̇ = ∇ ( ( ))⋅ ̇ ( )Y F E X X 6

see Naumann (2012) and Griewank and Walther (2008) for
more details about AD or visit the communities web portal www.
autodiff.org. The TLM of the model function ()F can be applied for
an uncertainty analysis by first computing and storing the partial
derivatives required in Eq. (5). The partial derivatives ( ( ))∂

∂
E XF

Xi
of ()F

with respect to the individual uncertain variables for 1r irn are
obtained by evaluating the TLM repeatedly as

( ( ( )) ∂
∂

( ( ))) = ( ( ) ^ ) ≤ ≤
( )

F E X
F
X

E X F E X e i n, , for 1
7i

i

with ^ =( … … )∈e R0, , 1, 0i
n being the i-th Cartesian basis vector.

Eq. (5) can then be evaluated easily from the stored partial
derivatives to obtain the variance ( )Var Y . With AD computing the
mean and standard deviation of the output, any further property
of the output variable such as confidence intervals can be esti-
mated by approximating the output by a Gaussian distribution
with these parameters. Compared with a Monte Carlo analysis,
Fig. 1. Mesh and comp
Algorithmic Differentiation has the advantage of requiring just a
single run of the TLM for each input parameter which will often be
significantly faster than a large number of runs of the standard
model. Being based on a first-order Taylor expansion, the method
is likely to work best for smooth models that are close to linear. By
relying only on means and variances, FOSM/AD is also likely to
work best when the inputs and outputs are both Gaussian.

2.4. Further applications

Further applications of AD include field applications and au-
tomatic model calibration. For example, different methods of
sensitivity analysis (MC, FOSM and Meta-modelling) have been
applied in a 10 km long Telemac-2D/Sisyphe morphodynamic
model of the Danube River (Kopmann and Schmidt, 2010; Clees
et al. 2012). The efficient calculation of the partial derivatives with
AD can also be used to analyse the dependencies between input
and output parameters in the context of structures optimization
(Merkel et al. 2013). More recently, an adjoint model of Telemac-
2D/Sisyphe has been developed using the AD-enabled NAG Fortran
compiler and successfully applied for an automatic calibration of
input model parameters in laboratory tests (Schäfer, 2014).
3. The trench evolution test case

3.1. Description of the test case

The numerical model set up is based on the laboratory ex-
periments, conducted by van Rijn (1987). Experiments were per-
formed in a straight channel at Delft Hydraulics, and the geometry
of the experimental facility was as follows: 30 m long and 0.50 m
wide with vertical side walls. The channel was filled with a 0.20 m
thick layer of sand with median grain size d50¼0.160 10�3 m. The
average velocity was 0.51 m/s and the water depth was approxi-
mately equal to 0.39 m at the channel inlet. The experiment (Test
3) considered in this work involved a trench with side slope 1:3.
Measurements of bed level after 15 h of experiment as well as
estimates of the bed-load and suspended load (Q b¼0.1 kg/m2/s
and Q s¼0.3 kg/m2/s) have been provided. Bed ripples dimensions
have been also measured in the range 0.015–0.035 m, with cor-
responding mean bed roughness coefficient (ks¼0.02570.01 m).

3.2. Numerical model set up

We use the Telemac-2D finite element flow model internally
coupled to the 2D sediment transport and morphodynamic model
Sisyphe: at each time step the flow model sends the flow field
(mean velocity, water depth and bed shear stress) to the sediment
transport model, which calculates the sediment transport de-
composed into bed load and suspended load and sends back the
updated bed level to the flow model (Villaret et al. 2011). For the
utational domain.

http://www.autodiff.org
http://www.autodiff.org


Fig. 2. Trench evolution after 6 h (dotted line) and 15 h (full line) – comparison
between the calibrated model results in red ( Ws¼0.0175 m/s, ks¼0.05 m,
d50¼0.160 10�3 m, MPM ¼8) and experimental data (blue circles). (For interpreta-
tion of the references to color in this figure, the reader is referred to the web
version of this article.)
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bed geometry we use a relatively coarse grid in order to lower CPU
time (Monte Carlo simulations being time consuming). The trian-
gular mesh elements of 0.20�0.05 m2 are shown on Fig. 1. The
length of the computational channel has been conveniently re-
duced down to an active length of 16 m and the mesh en-
compasses less than 1000 nodes. A more refined grid was also
used and shown to give similar results. To mimic the laboratory
conditions with the model, a constant water depth was imposed at
the downstream outlet, and a constant discharge was specified at
the upstream inlet. Flow was computed with a fixed bed until
steady flow conditions were reached in order to initialize the flow
velocity, and with a movable bed afterwards in which the trench
propagates in the direction of the flow. For the hydrodynamic
model, a Nikuradse friction law is applied. Preliminary testing of
the choice of numerical methods (characteristics, SUPG, dis-
tributive schemes…) shows little effects, and the flow model is run
here using the method of characteristics (Hervouet, 2007).

The time step is set to 1 s, and the 2D model takes only 2 min
for 15 h of bed evolution on a HP Zbook Linux Workstation (in
scalar version).

3.3. Bed-load transport

The bed shear stress is corrected for skin friction assuming
ksp¼3 d50. The bed-load transport rate is then calculated as a
function of the excess bed shear stress (corrected for skin friction)
above its critical value using an empirical formula (Meyer-Peter
and Müller, 1948).

The Meyer-Peter and Müller (MPM) formula which has been
used to calculate the bed-load transport rate is given below:

θ θ
( − )

= ( ′ − )
( )

Q

g s d
M

1 8

b
PM c

50
3

3/2

where g is the gravity (m2/s), s is the relative grain density, θ′ is the
adimensional skin friction and θc is the Shields parameter, which is
calculated in Sisyphe as a function of grain size. Only the empirical
factor in Eq. (8) (MPM ¼8 by default) will be considered uncertain.

The effect of a longitudinal bed slope on the magnitude of the
sand transport rate can be accounted for by the approach of Koch
and Flokstra (1981), which involves an additional empirical coef-
ficient for sloping bed effect with default setting ( β¼1.3).

3.4. Suspended load

In Sisyphe, the suspended sediment concentration is de-
termined by solving a depth-averaged transport/diffusion equa-
tion, where the source term represents the net erosion (E) minus
deposition ( D) flux in m/s. Different numerical methods are
available to solve the advection terms. Here we used the method
of characteristics.

The erosion flux is expressed in terms of an ‘equilibrium’ re-
ference concentration, and the deposition flux is calculated as the
product of settling velocity Ws and near bed concentration. In the
2D model, the advection term is corrected to account for the
vertical distribution of velocity and concentration, leading to a
global reduction in the convection velocity (Huybrechts et al.,
2010).

3.5. Bed evolution

The variation of bed elevation can be derived by solving the
Exner equation:

( − )
∂
∂

+ ( ⃗ ) + ( − )= ( )p
Z
t

Q D1 Div E 0 9
b

b

where p is the bed porosity ( =X Hlnit it3 0.4 for non-cohesive sedi-
ment), Zb (m) is the bottom elevation and Q b (m2/s) is the solid
volume transport rate (bed load) per unit width.

The Exner equation can be solved by using finite-element or
finite-volume techniques. The method we use is based on a flux
calculation per segment. The procedure fully ensures mass con-
tinuity as well as a positive sediment bed thickness, as explained
by Hervouet et al. (2011).
3.6. Model calibration

Preliminary runs were performed in order to test the sensitivity
of the morphodynamic model results to the choice of sediment
transport formula. The sediment and flow input parameters (e.g.
grain size and bed roughness) were imposed based on experi-
mental measurements ( =d50 0.160 10�3 m, ks¼0.025 m). The mean
settling velocity was first estimated from the mean grain size, and
then allowed to vary in order to account for sorting effects.

Best fit results were obtained using the MPM bed load and van
Rijn (2007) reference concentration. After calibration of the set-
tling velocity (Ws¼0.0175 m/s), the accuracy of the calculated bed
evolution after 15 h is about 2.10�3 m (2–3% of the bed evolution).

In Fig. 2, the black line shows the initial 0.15 m-deep and 3 m
wide trench longitudinal profile, with its centre originally located
at a distance x¼8 m from the channel entrance. The blue spots
represent the trench position measured after 15 h of bed evolution
to be compared with the results of the calibrated model (in red).
4. Uncertainty analysis – comparison of FOSM/AD and MC

In this section, we estimate the uncertainty associated with the
morphodynamic model predictions for the trench evolution test
case. We select a set of input variables and assume small devia-
tions around their mean reference values. The objective is to
compare the results obtained by both MC and FOSM/AD methods.

The TLM of Telemac-2D/Sisyphe required for FOSM/AD was
generated by the AD-enabled NAG Fortran compiler (Naumann
and Riehme, 2005; dco/fortran/adnag, 2013).



Table 1
Mean and standard deviation of the Gaussian distributions specified for the four
variable input parameters.

Variable input parameters Mean value E(Xi) Standard deviation σi

Bed roughness ks (m) 0.025 0.005

Grain size d50 (m) 0.160 10�3 0.015 10�3 (set 1)
0.030 10�3 (set 2)

Settling velocity Ws (m/s) 0.0175 0.0015

MPM factor 8 1

Fig. 3. Uncertainty analysis – comparison between MC (in blue thin) and FSOM/AD
(in red thick). Standard deviation of bed level σ( )Zb due to variable grain size for
σ( )d50 ¼0.015 10�3 m, settling velocity for σ( )Ws ¼1.5 10�3 m/s, bed roughness for
σ( )ks ¼5 10�3 m and MPM factor for σ( )MPM ¼1 after 6 and 15 h of bed evolution.

Fig. 4. Uncertainty analysis after 15 h of bed evolution. The 95% confidence interval
calculated based on percentile of the MC is shown in blue dotted line and the
envelope calculated based on the standard deviation for FOSM/AD in red thick
dotted line. The blue thin line (full) is the ensemble mean MC simulations, the red
full line shows the calibrated model results.
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4.1. Uncertain input parameters

The bed roughness and sediment grain size have been selected
as the most sensitive input parameters regarding sediment
transport predictions. The settling velocity has also a large influ-
ence on the results in this suspended load regime. In addition, the
empirical factor in the Meyer-Peter and Müller formula (Eq. (8)) is
also allowed to vary around its default value (MPM ¼8). The other
model parameters – skin friction ksp, Shields parameter, β factor
for sloping bed effect – are calculated by the model as a function of
grain size, using empirical expressions or default values ( =k d3sp 50

and β¼1.3).
Each of the four inputs described in Table 1 are assumed to be

mutually independent and each represented by a Gaussian dis-
tribution. The means and standard deviations of these distribu-
tions are tabulated in Table 1. Based on measurement error, we
assume for the bed roughness σks

¼0.005 m (20% of the mean
value) which corresponds to half the estimated confidence interval
of the measured bed roughness. For both grain diameter and
settling velocity, we assume the standard deviation to be roughly
10% of the mean value (σd50

¼0.015 10�3 m and σWs
¼0.0015 m/s).

In order to assess the limitation of the first-order approach, we
later assume σd50

¼0.030 10�3 m (20% of the mean value) in Sec-
tion 5.

4.2. Uncertainty analysis

The Tangent Linear Model (TLM) of the Telemac-2D/Sisyphe
model can be used to evaluate the first-order derivative associated
with each input variable at the input means, in a single run per
input parameter. Since all input variables are assumed to be in-
dependent, Eq. (5) can be applied to calculate the variance of the
calculated bed evolution using only four TLM runs.

For the Monte Carlo estimates, the statistical software R (Core
Team, 2014) was used with the lhs package (Carnell, 2012) to
randomly generate 100 samples of the input vector via optimal
Latin hypercube sampling. Each of these was run through the
standard model to produce MC samples of the output variables of
interest, e.g. the bed evolution. The number of samples of the MC
simulations was initially varied between 50 and 500. 100 stratified
samples were considered sufficient to represent accurately the
mean and standard deviation of the bed evolution.

The CPU time of each TLM run is approximately a factor
3 compared to the standard model. Therefore, the FOSM/AD un-
certainty analysis is approximately 8 times faster than a MC ana-
lysis of 100 samples when four random inputs are considered.

4.3. Comparison between MC and FOSM/AD

The results obtained by the FOSM/AD and MC uncertainty
analysis using the first d50 standard deviation are compared on
Fig. 3. FOSM/AD computes a higher uncertainty but gives overall
similar results to the MC approach. The deviation between FOSM/
AD and MC increases with time, most likely as the result of non-
linearity.
Based on this analysis, the uncertainty associated with input

parameters in morphodynamic model is large (as much 15–25% of
the bed evolution). As shown in Fig. 3, the uncertainty varies
spatially and the peak increases with time. The standard deviation
is maximum in the down-sloping part of the trench where the
flow is decelerating and the bathymetry changes more rapidly.
These results are in qualitative agreement with Fortunato et al.
(2009) uncertainty analysis in a tidal inlet.

The 95% confidence intervals estimated by both FOSM/AD and
MC are shown in Fig. 4. The skewness of the bed evolution dis-
tribution is captured by the MC analysis, as shown by the asym-
metry between the upper and lower confidence limit relative to
the mean simulation. An additional Gaussian assumption was
necessary to estimate the confidence intervals for FOSM/AD so
these will always be symmetrical about the mean. The deposit
obtained by FOSM/AD for the upper limit is overestimated in
comparison to MC. However, FOSM/AD is able to reproduce the
main features of interest for engineering purpose. According to
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both methods, the rate of in-fill of the trench can be overestimated
by 15% and the migration rate of the trench by about 30% as a
result of variability in the grain size, settling velocity, bed rough-
ness and empirical transport law parameters.
Fig. 5. Sensitivity analysis to the grain size for σ( )d50 ¼0.015 10�3 m. All input
variables are kept constant except the grain size ( Ws¼0.0175 m/s, ks¼0.05 m,
MPM ¼8). Results obtained for the 100 MC simulations (in black dotted line) after
15 h of bed evolution. The full line (in red thick) shows the calibrated model results.
The blue thin line shows the mean (ensemble averaged) of the 100 MC runs.
5. Sensitivity analysis – comparison of FOSM/AD and MC

5.1. Objective

Sensitivity analysis aims to quantify the degree by which each
of the uncertain inputs contributes towards uncertainties in the
outputs of interest. A sensitivity analysis provides valuable in-
formation for the calibration process to determine which input
parameters need to be informed more accurately.

Sensitivity analysis methods tend to be either global or local:
local analyses address the sensitivity relative to point estimates of
input values such as the mean; global analyses examine the sen-
sitivity with respect to the entire input distribution. Here we
perform a local sensitivity analysis by varying each input para-
meter One-At-a-Time (OAT). A global analysis such as a full Var-
iance Based Sensitivity Analysis (VBSA) would be required to look
at interactions between input variables but requires a larger
number of MC simulations and cannot be done with FOSM/AD
(Campolongo et al., 2007).

The OAT sensitivity analysis consists of varying each of the in-
put variables (d50, Ws, ks and MPM factor) one at a time keeping the
others fixed at their mean values. The output variances due to a
single input are each calculated as with the main uncertainty
analysis. These can be compared to each other or to the main
output variance when all inputs were uncertain. For FOSM/AD, Eq.
(5) can be applied to estimate these variances using the same
partial derivatives produced for the global uncertainty analysis.
However, for MC estimates a new set of 100 simulations are re-
quired for each of the input parameters to estimate the new
variances.
Fig. 6. Sensitivity analysis to the grain size for σ( )d50 ¼0.015 10�3 m (full lines) and
for σ( )d50 ¼0.030 10�3 m (dotted lines). Standard deviation of the bed level σ( )Zb
after 15 h, calculated by FOSM/AD (in red thick) and Monte Carlo simulations (in
blue thin). Here all input variables are assumed constant except the grain size.
5.2. Effect of grain size

We consider two values of the grain size standard deviation:
σd50

¼0.015 10�3 m and σd50
¼0.030 10�3 m. The standard devia-

tion of the 15 h bed evolution, with all variables except grain size
fixed at their mean values, is estimated by both MC and FOSM/AD
and compared. The results of all MC simulations are shown in
Fig. 5 for σd50

¼0.015 10�3 m.
The standard deviation estimates are compared in Fig. 6 for

both values of the grain size standard deviation.
Fig. 7 compares mean and 95% confidence interval estimates for

the trench evolution. Differences between the AD/FOSM and MC
confidence limits are again attributed to the non-Gaussian beha-
viour of the bed evolution.

For the smaller value of the standard deviation ( σd50
¼0.015

10�3 m), both FOSM/AD and MC are found to give similar results.
For the larger value of the standard deviation ( σd50

¼0.030
10�3 m), the estimated standard deviation in the model output is
very large. FOSM/AD overestimates the standard deviation of the
bed evolution in comparison to the MC method. Most likely this is
due to the first-order Taylor expansion used by FOSM/AD. This
approximation is correct only when the model response is linear
which does not appear to be the case here.

As expected, FOSM/AD gives best estimates when deviations
are small and higher order moments will be investigated in future
work.
5.3. Local sensitivity analysis of selected input parameters

The effects of each individual input variable on the bed evo-
lution (after 15 h of simulation) are compared in Fig. 8. The stan-
dard deviations obtained by MC and FOSM/AD are similar. In this
case, with dominant suspended load, the settling velocity is found
to be the most sensitive parameter, followed by the grain size.
Both Ws and d50 are found to contribute to as much as 20–25% of
variability in the morphodynamic model results. The other input
parameters (MPM factor, bed roughness) are found to play a minor
role in the present application.
6. Conclusions

The first order second moment method using Algorithmic
Differentiation (FOSM/AD) presented in this paper, provides an



Fig. 7. Sensitivity analysis to the grain size for σ( )d50 ¼0.015 10�3 m. The 95%
confidence interval calculated based on percentile of the MC is shown in blue thin
dotted line and the envelope calculated based on the standard deviation for FOSM/
AD in red thick dotted line.

Fig. 8. Contribution of the 4 variable input parameters to the standard deviation of
the bed evolution after 15 h of simulation. The effect of variable grain size is shown
in red dash dotted for σ( )d50 ¼0.015 10�3 m, the effect of bed roughness in blue full
line for σ( )ks ¼5 10�3 m, the effect of settling velocity in green dashed line for
σ( )Ws ¼1.5 10�3 m/s, and the effect of the MPM factor in black dotted line for
σ( )MPM ¼1.
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efficient and reliable tool for both uncertainty and sensitivity
analysis in morphodynamic models.

Both FOSM/AD and Monte Carlo simulations (MC) have been
applied to estimate the uncertainty of the bed evolution as a result
of variability in 4 input parameters (Ws,ks, d50, MPM factor) using an
AD-generated TLM model of Telemac-2D/Sisyphe. The advantage
of FOSM/AD is CPU time and efficiency over MC. In the example
above involving 100 MC runs and 4 uncertain input variables,
FOSM/AD is approximately a factor 10 faster for the uncertainty
analysis. The advantage of MC is its simplicity, robustness and
flexibility, allowing to account for the morphodynamic model non-
linear response.

With Gaussian input distributions and small standard devia-
tions, FOSM/AD gives a reliable first-order estimate of the sensi-
tivity to all input variables. For larger values of the standard de-
viations, the non-linearities in the model response become more
significant and FOSM/AD is found to overestimate the uncertainty
in comparison to the MC method.
Given the number of input parameters and CPU cost associated
with morphodynamic model simulations, the FOSM/AD approach
is well adapted, for both sensitivity and uncertainty analysis in
large scale models. The method can be applied to more complex
2D/3D applications, although a parallel version of the TLM would
need to be applied.
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