
Computers and Geosciences 109 (2017) 194–205
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier .com/locate/cageo
Research paper
Finite-element time-domain modeling of electromagnetic data in general
dispersive medium using adaptive Pad�e series

Hongzhu Cai a,b,f, Xiangyun Hu c, Bin Xiong d,*, Michael S. Zhdanov a,b,e

a Consortium for Electromagnetic Modeling and Inversion (CEMI), University of Utah, Salt Lake City, UT 84112, USA
b TechnoImaging, Salt Lake City, UT 84107, USA
c China University of Geosciences, Institute of Geophysics and Geomatics, Wuhan, China
d College of Earth Sciences, Guilin University of Technology, Guilin, Guangxi 541004, China
e Moscow Institute of Physics and Technology, Moscow 141700, Russia
f Department of Geoscience, Aarhus University, Aarhus C, DK-8000, Denmark
A R T I C L E I N F O

Keywords:
Geophysical electromagnetics
Induced polarization
Finite-element time-domain
Pad�e series
* Corresponding author.
E-mail addresses: caihongzhu@hotmail.com (H. Cai), x

http://dx.doi.org/10.1016/j.cageo.2017.08.017
Received 3 January 2017; Received in revised form 2 Jul
Available online 3 September 2017
0098-3004/© 2017 Elsevier Ltd. All rights reserved.
A B S T R A C T

The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable
targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive
conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to
simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for
total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt
the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for
the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system
of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity
dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Pad�e series with
adaptive selection of the center frequency of the series for early and late time. This approach can significantly
increase the accuracy of FETD modeling.
1. Introduction

Time-domain electromagnetic (TEM) methods have been widely used
to study subsurface conductive structures (Ward and Hohmann, 1988;
Zhdanov, 2009). Compared to frequency-domain electromagnetic
methods, the TEMmethod usually has better resolution and sensitivity to
deep targets for typical transmitter-receiver configurations and broad
time scales. The correct interpretation of the TEM data requires accurate
forward modeling methods. There exist two major methods for solving
this problem – one is based on the Fourier transform of the frequency-
domain response to the time domain (e.g. Knight and Raiche, 1982;
Everett and Edwards, 1993; Raiche, 1998; Mulder et al., 2007; Ralph-
Uwe et al., 2008), and another exploits a direct discretization of the
Maxwell's equation in both spatial and time domains (Wang and Hoh-
mann, 1993; Commer and Newman, 2004; Maaø, 2007; Um et al., 2012;
Jin, 2014; Yin et al., 2016).

Note that, the accuracy of Fourier transformation is affected signifi-
cantly by the frequency sampling and the transformation methods, such
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as the choice of the digital filters (Li et al., 2016). The finite-difference
time-domain (FDTD) methods have been used for modeling the electro-
magnetic response in time domain for decades (Yee, 1966).

We should note also that, in the framework of the finite-difference
method, the complex geometries need to be approximated by a stair-
cased model. It is well known that, these complications of finite-
difference modeling, can be overcome by the finite-element approach.
It has been demonstrated that the FETDmethod with unstructured spatial
discretization can reduce the size of the problem dramatically (Um, 2011;
Jin, 2014).

There are two major types of time discretization: 1) an explicit
scheme, 2) an implicit scheme. The explicit scheme requires a small time
step size to satisfy the Courant stability condition (Wang and Hohmann,
1993; Um, 2011; Jin, 2014), which makes this approach computationally
expensive for TEM modeling with time scale from a small fraction of a
second to hundreds seconds (Zaslavsky et al., 2011). The implicit
approach is unconditionally stable but it requires solving a linear system
of equations with the matrix depending on the time step size. This
msn.com (B. Xiong), michael.s.zhdanov@gmail.com (M.S. Zhdanov).
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problem can be addressed by adopting modern direct solvers, since the
corresponding matrix needs to be decomposed only once for a fixed time
step size (Um, 2011; Jin, 2014). We adopt the FETD scheme proposed by
Um (2011) for solving the TEM modeling problem. We also update the
time step, in an adaptive manner, to reduce the computational cost.

The conventional modeling of TEM data usually considers a non-
dispersive medium, with frequency-independent conductivity. In the
presence of IP effect, the conductivity becomes frequency dependent. It
was shown by Pelton et al. (1978) that the conductivity relaxation model
can be well represented by the Cole-Cole model. In this paper, we
consider the dispersive conductive medium with the conductivity
described by the Cole-Cole model. Zhdanov (2008) introduced a more
general conductivity relaxation model based on the generalized
effective-medium theory of IP (so called “GEMTIP”model). It was shown
by Zhdanov (2008) that the GEMTIP model reduces to the Cole-Cole
model in a special case of spherical inclusions within a homogeneous
background model. We could update Cole-Cole model with GEMTIP
model in our FETD modeling algorithm.

Frequency-dependent dispersion models need to be represented by a
convolution of the electric field in the time domain. The convolution
term can be introduced into Maxwell's equation through the fractional
derivative with respect to time (Zaslavsky et al., 2011; Marchant et al.,
2014). Solving such equations with convolution or fractional derivative
terms requires the electric field at all previous stages (Zaslavsky et al.,
2011), since either the convolution or the fractional derivative corre-
spond to a global operator. Due to this problem, the TEM data with IP
effect are rarely modeled directly in time domain.

The Pad�e series (Baker and Graves-Morris, 1996) can be used to avoid
the fractional derivative problem raised in modeling the EM field in
dispersive medium (Weedon and Rappaport, 1997). The fractional dif-
ferential equation can be transformed to the differential equation with
integer order and further to be solved using numerical methods such as
FDTD (Rekanos and Papadopoulos (2010)). Based on the work of Wee-
don and Rappaport (1997) and Rekanos and Papadopoulos (2010) for the
FDTD method with the Pad�e approximation, Marchant et al. (2014)
proposed a finite-volume time-domain method for simulating IP effect
with the Cole-Cole model.

In all the publications cited above, in order to calculate the Pad�e
coefficients, the Taylor series was implemented in the vicinity of one
preselected center frequency. However, we will demonstrate that the
accuracy of the corresponding Pad�e approximation depends significantly
on the selected center frequency. In order to keep the same accuracy of
the Pad�e approximation for different timemoments, we propose selecting
different central frequencies for early and late time moments. We call this
approach the adaptive Pad�e series. We have implemented the FETD
modeling with IP effect using this adaptive Pad�e approximation. Instead
of using a Taylor expansion at the fixed point for calculating the Pad�e
coefficients, we update the Pad�e coefficients adaptively during the FETD
modeling process. This approach increases the accuracy of FETD
modeling with IP effects.

2. Finite element time domain discretization of Maxwell's
equation

The Maxwell's equations in time domain for the quasi-stationary EM
field can be described as follows (Zhdanov, 2009; Jin, 2014):

∇� E ¼ �μ
∂H
∂t
; (1)

∇�H ¼ je þ Js; (2)

where E andH are electric andmagnetic fields, Js is the current density of
the source, and je is the induction current density, described by the
Ohm's law:
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je ¼ σE: (3)

In the last formula, σ is the electric conductivity. In a nondispersive
medium, σ is time invariant.

We eliminate the magnetic field from the system of equations and
obtain the diffusion equation for electric field:

∇� ∇� EðtÞ þ μ
∂jeðtÞ
∂t

¼ �μ
∂JsðtÞ
∂t

: (4)

We first consider that the conductivity is independent of time.
Substituting equation (3) into (4), we obtain the following equation (Cai
et al., 2017b):

∇� ∇� EðtÞ þ μσ
∂EðtÞ
∂t

¼ �μ
∂JsðtÞ
∂t

: (5)

We consider the Dirichlet boundary conditions for equation (5), ac-
cording to which the tangential component of electric field vanishes on
the boundary of the modeling domain:

EðtÞ � v ¼ 0; (6)

where v is the unit vector directs outside the surface of the
modeling domain.

We can solve equation (5) using the edge-based finite element
method (Jin, 2014; Cai et al., 2014) with an unstructured tetrahedral
mesh. The electric field inside the tetrahedral element at any time t can
be represented as the linear combination of the fields along the element
edges at the same time moment:

EeðtÞ ¼
X6

i¼1

Ne
i E

e
i ðtÞ: (7)

We use the superscript e to emphasize the local electric field inside
the element.

After applying the edge-based finite element analysis to 5, we arrive
at a global system of equations as follows (Jin, 2014):

KEðtÞ þ μL
∂EðtÞ
∂t

¼ �μ⋅
∂JsðtÞ
∂t

; (8)

where the stiffness matrices K and L are defined as follows:

Ke
ij ¼ ∫ Ωe

�
∇� Ne

i

�
⋅
�
∇�Ne

j

�
dv; (9)

Le
ij ¼ ∫ Ωe

Ne
i ⋅
�
σeNe

j

�
dv; (10)

and Ωe indicates the domain for each element. Ke and Le are the local
stiffness matrices while K and L are the global stiffness matrices. Again,
we use the superscript e to emphasize the local element (e.g. σe empha-
size the conductivity for the local element). Note that the conductivity
information has already been included in the stiffness matrix L as shown
in 10. We also introduce another matrix Te

ij similar as Leij but without any
conductivity information:

Te
ij ¼ ∫ Ωe

Ne
i ⋅N

e
j dv; (11)

and the corresponding global matrix is denoted as T.
In this paper, we use the linear edge-based finite element method for

simplicity and the stiffness matrix can be calculated efficiently using the
analytical solution.

To approximate the time derivative of electric field in 8, we adopt the
backward Euler approximation (Jin, 2014):

∂EðtÞ
∂t

≈
EðtÞ � Eðt � ΔtÞ

Δt
; (12)
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where Δt is the time-step size. It can be shown that the backward Euler
approximation is unconditionally stable, regardless of the choice of Δt.
We have the similar equation for the current density:

∂jeðtÞ
∂t

≈
jeðtÞ � jeðt � ΔtÞ

Δt
: (13)

By substituting equation (12) into equation (8), we obtain:

KEðtÞ þ μ

Δt
LEðtÞ ¼ μ

Δt
LEðt � ΔtÞ � μT

∂JsðtÞ
∂t

: (14)

From equation (14), we can see that, given proper initial and
boundary conditions, we can calculate the electric field at time moment,
t, from the values known in the previous time moment, t � Δt, and the
source waveform, Js(t).

Equation (14) can be written in a compact form as follows:

AEðtÞ ¼ b; (15)

where:

A ¼ K þ μ

Δt
L; (16)

and

b ¼ μ

Δt
LEðt � ΔtÞ � μT

∂JsðtÞ
∂t

: (17)

As we can see from equations (14) and (15), one needs to solve the
linear system of equations at each time moment for this implicit scheme.
In this case, the computational cost can be expensive, especially for
iterative solvers. However, the matrix A stays unchanged for the constant
size of the time step, Δt. Therefore, it is beneficial to adopt the direct
solver in order to keep the matrix factorization for the same time step
size. We use SuiteSparse v4.5.3 (Davis, 2006) for matrix factorization. In
order to speed up the computation, we adopt an adaptive time step
doubling method (ATSD) to adjust the step size Δt (Press et al., 1992; Um
et al., 2012). Within the framework of this approach, a constant size of
the time step, Δt, is kept for n time moments. After that, the time-domain
response is calculated at a time of tþ 2Δt using two different step sizes of
Δt and 2Δt, respectively. If the calculated fields from these two different
steps are close to each other, the time step doubling is accepted. Other-
wise, the original time step, Δt, is used for the following n time moments
until the next time step doubling trial is performed. We select n ¼ 100
based on our numerical testing.

Before the time stepping, we have to specify the initial conditions for
the electric field. The initial condition of zero values of the field should be
used for the step-on and impulse-type source waveforms. However, the
initial condition of nonzero values can be used for other source wave-
forms such as the step-off excitation. The FETD modeling of the step-off
excitation requires solving a DC problem first to obtain the initial field
values and this will be implemented in the future research. In this paper,
we use the impulse-type waveform of the source approximated by
Gaussian function to simplify the initial condition. The time domain field
caused by other arbitrary source waveform can be obtained by a
convolution between the impulse-type response and the actual source
waveform (Ward and Hohmann, 1988).

3. Modeling IP effects with adaptive Pad�e series

Previously, we assumed that the electric conductivity was time and
frequency independent. However, we often encounter the frequency-
dependent conductivity in geophysical exploration, and this phenome-
non is manifested by the IP effect (Ward and Hohmann, 1988; Hallof and
Yamashita, 1990; Luo and Zhang, 1998; Seigel et al., 2007; Zhdanov,
2009). There exist different dispersion models to describe the IP
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phenomenal. Pelton et al. (1978) derived the Cole-Cole relaxation model
based on the equivalent circuit. As an extension of the Debye model, the
Cole-Cole relaxation model converges to Debyes, when the relaxation
parameter is equal to 1. The Cole-Cole relaxation model uses a distribution
of the relaxation time values and as a result can take into account a wider
dispersion comparing to the Debye model (Tarasov and Titov, 2013).
Zhdanov (2008) introduced the generalized effective-medium theory of
induced polarization (GEMTIP). The Cole-Cole model can be explained as
a reduced form of the GEMTIP model for inclusions having spherical
shape. Due to the mathematical simplicity and its ability to explain the
commonly encountered IP relaxation, the Cole-Cole model is still widely
used (e.g. Marchant et al., 2014).

The Cole-Cole relaxation model of electric conductivity can be
described as:

σðωÞ ¼ σ0

�
1� η

�
1� 1

1þ ðiωτÞc
���1

; (18)

where σ0 is the DC conductivity with the unit of S/m, η is the charge-
ability (unitless), τ is the time parameter with the unit of second (s), and c
is the unitless relaxation parameter ranges from 0 to 1.

We consider the Ohm's law in a different form, which relates the
electric field and current density in frequency domain, as follows:

EðωÞ ¼ ρðωÞjeðωÞ (19)

By substituting the Cole-Cole relaxation in equation (18) in equation
to 19, we can write the Ohm's law (3) as follows:

σ0EðωÞ þ ðiωÞcτcσ0EðωÞ ¼ jeðωÞ þ ðiωÞcð1� ηÞτcjeðωÞ (20)

First of all, we consider a simple Debye model with c ¼ 1 (Marchant
et al., 2014). In this case, equation (20) reduces to the following form:

σ0EðωÞ þ ðiωÞτσ0EðωÞ ¼ jeðωÞ þ ðiωÞð1� ηÞτjeðωÞ (21)

By applying the inverse Fourier transform to 21, we arrive at Ohm's
law in the time domain with IP effect:

σ0EðtÞ þ τσ0
∂EðtÞ
∂t

¼ jeðtÞ þ τð1� ηÞ ∂jeðtÞ
∂t

; (22)

Considering the finite difference scheme in equations (12) and (13),
we can write equation (22) as:

σ0EðtÞ þ τσ0
Δt

ðEðtÞ � Eðt � ΔÞÞ ¼ jeðtÞ þ τð1� ηÞ
Δt

ðjeðtÞ � jeðt � ΔtÞÞ:
(23)

The simple rearrangement of equation (23) gives the expression of the
current density as:

jeðtÞ ¼ ðΔt þ τÞσ0
Δt þ τð1� ηÞEðtÞ �

τσ0
Δt þ τð1� ηÞEðt � ΔtÞ

þ τð1� ηÞ
Δt þ τð1� ηÞjeðt � ΔtÞ:

(24)

Similarly, we can write equation (4) as:

∇� ∇� EðtÞ þ μ

Δt
jeðtÞ � μ

Δt
jeðt � ΔtÞ ¼ �μ

∂JsðtÞ
∂t

: (25)

By substituting equation (24) into equation (25) and eliminating the
term je(t), we obtain:

∇�∇�EðtÞþ ðΔtþ τÞμσ0

Δt½Δtþ τð1�ηÞ�EðtÞ¼
τμσ0

Δt½Δtþ τð1�ηÞ�Eðt�ΔtÞ

þ μ

Δtþ τð1�ηÞjeðt�ΔtÞ�μ
∂JsðtÞ
∂t

:

(26)
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Equation (26) can be used to calculate the electric field, E(t), in a time
stepping manner for Debye relaxation model with the given value of
electric field, E (t �Δt), and current density, je (t �Δt), at the previous
time moment, and with the source waveform. By applying FETD analysis
(see section 2), we can solve the system of finite element equations for 26
to obtain the electric field, E(t). We want to emphasize that in equation
(26), the parameter of unknown is the electric field E(t) at the time
moment t. In the finite element system of equation, we only discretize the
electric field at the time moment of t and assume that the current density
at the previous time steps are already known. Once we solve the electric
field at the current moment of t, we can use 24 to calculate the current
density at the moment of t.

Note that, in the framework of the FETD method, the electric fields
are assigned on the edges of the elements, which automatically enforces
continuity of the tangential components of the electric field. At the same
time, one cannot use the same approach for the current density, je,
because the tangential components of the current density are not
continuous on the boundary with the conductivity's discontinuity.

In order to solve this problem, we assign the values of the current
density at the Gaussian integral points inside of each tetrahedral element.
The Gaussian quadrature method is used to calculate the integral of the
dot product between edge-based function and the current density in the
finite element formulation of the right hand side (RHS) of equation (26).
With the known electric field in the Gaussian integral point, we can use
24 to calculate the current density at time moment t. By solving equations
(24) and (26) in a recursive manner, we can calculate the electric field
directly in the time domain taking into the IP effect, represented by the
Debye relaxation model. Note that, equation (24) provides a simple
explicit expression for the current density, je(t), at a moment t using the
known value of the current density, je (t �Δt), at a previous
moment, (t�Δt).

Next, we consider a general scenario of the Cole-Cole relaxation
described by equation (20) with c≠1. Applying inverse Fourier transform,
equation (20) can be transformed into the fractional differential equation
(Miller and Ross, 1993; Meerschaert and Tadjeran, 2004):

σ0EðtÞ þ τσ0
∂
cEðtÞ
∂tc

¼ jeðtÞ þ τð1� ηÞ ∂
cjeðtÞ
∂tc

: (27)

In the last formula, the fractional derivative of real order c is defined
as (Caputo, 1967):

∂
cf ðtÞ
∂tc

¼ 1
Γðn� cÞ∫

t
c

f ðnÞðsÞ ds
ðt � sÞc�nþ1; (28)

where n is the nearest integer greater than c, f (n)(s) is the n-th order
derivative of f (n)(s), and Γ is the gamma function. However, the direct
approximation of fractional differential equation is usually avoided, due
to its numerical complexity, by using such methods as Laplace trans-
formation (Ge et al., 2012, 2015).

We apply an alternative approach to approximate equation (20) for a
dispersive medium, based on expansion of the rational function (iω)c

(where 0 < c < 1) in a form of Pad�e series (Baker and Graves-Morris,
1996; Weedon and Rappaport, 1997; Marchant et al., 2014). These se-
ries usually converge for rational functions much faster than Taylor se-
ries. The Pad�e approximation of order (M,N) to function r(x) is usually
defined as a rational function RM,N(x) expressed in the following form:

rðxÞ≈RM;NðxÞ ¼ PMðxÞ
QNðxÞ; (29)

where PM(x) and QN(x) are two polynomials:

PMðxÞ ¼
XM
m¼0

pmxm; QNðxÞ ¼
XN
n¼0

qnxn: (30)
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where the parameters m and n are some summation index.
Following Marchant et al. (2014), we approximate the term (iω)c in

20 by the Pad�e series with M ¼ N and q0 ¼ 1, as follows:

ðiωÞc ¼
PM
m¼0

pmðiωÞm

1þ PM
m¼1

qmðiωÞm
: (31)

By substituting equation (31) into equation (20), we obtain the
following equation in the frequency domain:

a0σ0EðωÞ þ
"XM

m¼1

amðiωÞm
#
σ0EðωÞ ¼ b0jeðωÞ þ

"XM
m¼1

bmðiωÞm
#
jeðωÞ

(32)

where we have defined the coefficients am and bm ðm ¼ 0;1::::MÞ as:

a0 ¼ 1þ P0ðωÞτc;
am ¼ QmðωÞ þ PmðωÞτc;
b0 ¼ 1þ P0ðωÞð1� ηÞτc;
bm ¼ QmðωÞ þ PmðωÞð1� ηÞτc:

Note that, the fractional orders disappeared in equation (32) and all
the orders are integer numbers now. By applying the inverse Fourier
transform to equation (32) we arrive at the following high order ordinary
differential equation in the time domain:

a0σ0EðtÞ þ
XM
m¼1

�
amσ0

∂
mEðtÞ
∂tm

�
¼ b0jeðtÞ þ

XM
m¼1

�
bm

∂
mjeðtÞ
∂tm

�
(33)

We use the high order backward Euler method for the time dis-
cretization (Marchant et al., 2014):

∂
mf ðtÞ
∂tm

≈

Pm
k¼0

ð�1Þk�mk�f ðt � ΔtÞ
Δtm

: (34)

By substituting equation (34) into equation (33), we can obtain:

~aσ0EðtÞ þ
XM
m¼1

� am
Δtm

σ0Em
�
¼ ebjeðtÞ þXM

m¼1

�
bm
Δtm

jem
�
; (35)

where we have introduced the auxiliary parameters:

~a ¼ PM
m¼0

am
Δtm

;

eb ¼ PM
m¼0

bm
Δtm

;

Em ¼ Pm
k¼1

ð�1Þk
�m
k

�
Eðt � ΔtÞ;

jem ¼ Pm
k¼1

ð�1Þk
�m
k

�
jeðt � ΔtÞ:

We need to note that this numerical scheme works well even when we
use the ATSD method to increase the time step size from Δt to 2Δt at the
time moment of t. We never use a mixed time step size in these equations.
When the time step size is changed to 2Δt, the parameter of Δt in the
previous equations are all replaced by 2Δt. As a result, the solution of
electric fields at previous steps of t� 2Δt, t� 4Δt, etc., which has already
been computed using the old time step size of Δt, is needed.

From equation (35), we can derive the explicit equation for the cur-
rent density je(t):

jeðtÞ ¼ ~aebσ0EðtÞ þXM
m¼1

�
amebΔtmσ0Em

�
�
XM
m¼1

�
bmebΔtmjem

�
(36)



Fig. 1. A comparison between the Cole-Cole conductivity spectrum, for Debye relaxation
model, and the corresponding Pad�e approximation.

Fig. 2. A comparison between the Cole-Cole conductivity spectrum, with c ¼ 0.6, and the
corresponding Pad�e approximation with two different center frequencies.
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Similar as was done for the case of Debye relaxation model, we can
substitute equation (36) into equation (25), and arrive at:

∇�∇� EðtÞ þ μ~a

Δtebσ0EðtÞ ¼ μ

Δt
jeðt� ΔtÞ � μ

∂JsðtÞ
∂t

�
XM
m¼1

�
μamebΔtmþ1

σ0Em

�

þ
XM
m¼1

�
μbmebΔtmþ1

jem
�
:

(37)

By applying the edge-based finite-element method with linear basis
functions to equation (37), we obtain:

KEðtÞþ μ~a

ΔtebL0EðtÞ ¼ μ

Δt
∫ Ve

Ne
i ⋅jeðt � ΔtÞ dv� μ∫ Ve

Ne
i ⋅
∂JsðtÞ
∂t

dv

�
XM
m¼1

�
μamebΔtmþ1

L0Em

�
þ ∫ Ve

Ne
i ⋅

"XM
m¼1

�
μbmebΔtmþ1

jem
�#

dv:
(38)

where the stiffness matrix L0 is similar as L which is defined in equation
(10), but for DC conductivity σ0

After solving equation (38) to find the electric field, we apply equa-
tion (36) to calculate the current density je(t).

From the derivations, one can see that the accuracy of our modeling
depends on how accurately we can approximate the (iω)c term using the
Pad�e series as shown in equations (29) and (31). As in the case of the
Taylor series expansions, the accuracy of the Pad�e series for the (iω)c term
is only guaranteed in the vicinity of the frequency, ω0, at which the Pad �e
expansion is performed:

ðiωÞc ¼ ðiω0Þc þ
PM
m¼0

pm½iðω� ω0Þ �m

1þ PM
m¼1

qm½iðω� ω0Þ �m
: (39)

here, ω0 is the center angular frequency for Pad�e series, and f0 is the
corresponding center frequency:

f0 ¼ ω0

2π
: (40)

Note that, for Debye model, c ¼ 1, the term of (iω) can be perfectly
represented by the Pad�e series for any choice of the center frequency.

As an example, we consider a Cole-Cole model with σ0 ¼ 0.001 S/m,
τ ¼ 1 s, η ¼ 0.1. First, we consider the Debye relaxation. Fig. 1 shows a
comparison between the actual conductivity spectrum and its first order
Pad�e approximation with the center frequency of 1 Hz. The Pad�e series
with other orders and center frequencies produce exactly the same result
as the Debye model.

We consider now c ¼ 0.6, and use the third order Pad�e series with
different center frequencies to approximate the actual conductivity
spectrum. Two center frequencies with the values of 0.01 Hz and 100 Hz
were used. Fig. 2 presents a comparison between the Cole-Cole conduc-
tivity spectrum and the corresponding Pad�e approximations with these
two different center frequencies. One can see that the low frequency part
of the spectrum is well fitted by the Pad�e approximation with the center
frequency of f0¼ 0.01 Hz; however, the high frequency part shows a clear
discrepancy. For the center frequency of f0 ¼ 100 Hz, the high frequency
section of the spectrum can be accurately approximated by the Pad�e se-
ries, but not the low frequency part.

For the same center frequency, the accuracy of the Pad�e approxima-
tion can be improved by adopting higher order Pad�e approximation.
However, the higher-order Pad�e series can result in instability problems.
In our modeling, the order of Pad�e approximation is selected automati-
cally by the algorithm. It starts with lower order and only increase the
order when the IP spectrum cannot be fitted by the lower order Pad�e
approximation. One can see the term, Δt�ðmþ1Þ; for the Pad�e series of
order m in equation (38). Based on our experience, the time step, Δt,
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could be as small as 10�6 s in order to accurately represent the impulse
waveform and produce an accurate early time response. For such small
time step, the term Δt�ðmþ1Þ can become extremely large for high order
Pad�e series, which can cause serious numerical problems (Ascher and
Greif, 2011).

In order to avoid the use of high order Pad�e series, it is crucial to select
the proper center frequency for Pad�e series. We introduce an adaptive
method of selecting the center frequency for Pad�e series. The key idea of



Fig. 4. A comparison between the time domain electric field, Ex, produced using the
actual model and the Pad�e approximation with both adaptive (upper panel) and fixed
(lower panel) center frequency. In each panel, the solid blue curve represents the time
domain response for the actual half-space model, obtained from cosine transform method.
(For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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the adaptive Pad�e series is based on using the large center frequency in
early time and gradually decreasing the center frequency with the in-
crease of time moments.

We divide the total observation time period into a series of segments
and the time step sizes for FETD modeling within each segment are the
same. For a model with Cole-Cole relaxation, the true time domain
response of a half-space model, with the same relaxation model, is
calculated by cosine transform for each time segment. The corresponding
Pad�e approximation for the same time segment is also calculated for a
series of trial center frequencies. A large frequency range with fine fre-
quency sampling will be better. However, we find that the frequency
range between 10�3 Hz–103 Hz with 5 frequency per decade (in loga-
rithmic space) is good enough to ensure the modeling accuracy. The
optimal center frequency is selected, for each time segment, based on the
misfit between the Pad�e approximation and the true half-space response.
Comparing to the method which use one center frequency for the entire
time period (Marchant et al., 2014), we found that the adaptive method
produces a better result for Pad�e series with the relatively lower order.
For a 3D model with variable relaxation parameter, of c, an equivalent
half space model with averaged cwill be used for Pad�e approximation. In
our future research, we will consider a more strict way to deal with this
problem by using different Pad�e approximation for different area with
variable relaxation parameter of c. The described algorithm can be
summarized in the pseudocode showing in Fig. 3.

To illustrate this approach, we consider again a dispersive half-space
model with the Cole-Cole model parameters the same as above:
σ0 ¼ 0.001 S/m, τ ¼ 1 s, η ¼ 0.1, c ¼ 0.6. The EM field is excited by a
horizontal electric ground wire with an impulse moment of 105 Am. We
first calculated the in-line electric field, Ex, at the offset of 1000 m using
cosine transform method for the actual model. Next, we calculated the
same Ex field using the Pad�e approximation with both optimized fixed
center frequency and using the adaptive selection for the center fre-
quency. Fig. 4 presents a comparison between Ex produced using the
actual model and the Pad�e approximation with both fixed and adaptive
center frequency.

We can see that the adaptive Pad�e approximation produces almost the
same time domain response as the true model. However, the response
computed using the Pad�e approximation with fixed center frequency
shows some difference comparing to the response for the actual model
Fig. 3. Pseudocode for the described FETD modeling algorithm with adaptive Pad�e
approximation.
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(especially near t ¼ 10�2 s). In order to better demonstrate these results,
we have normalized the time domain responses produced by the Pad�e
approximation with adaptive and fixed center frequencies by the time
Fig. 5. A comparison between the time domain response computed using the Pad�e
approximation with adaptive (solid blue) and fixed (dashed red) center frequencies. Both
responses are normalized by the response for the actual half-space model. A ratio value of
1 indicates that the Pad�e approximation produces the same result as the true Cole-Cole
model. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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domain response for the actual half-space model. The calculated rations
are presented in Fig. 5. One can clearly see the advantage of the adaptive
Pad�e method over the Pad�e series with a fixed center frequency.

Fig. 6 presents a plot of the center frequency for the adaptive Pad�e
method as a function of time. We can see that the center frequency de-
creases with time, which reflects well the fact that the late time response
corresponds to the low frequency signal. For the Pad�e approximation
with the fixed frequency, the optimized center frequency was 0.4 Hz.

4. Model studies

We now demonstrate the developed algorithm using several model
studies. At first, we consider a half space model with IP effect for both
Debye and a general Cole-Cole conductivity relaxation. Then, we
consider a model with non-dispersive half-space background and local-
ized dispersive 3D anomaly.
Fig. 7. Discretization of the Gaussian pulse waveform.
4.1. Half space model

Let us consider a half space model with a conductivity of 10�3 S/m.
The EM field is excited by an x�oriented grounded electric bipole source
with the center located at (�1000,0,0) m and a length of 10 m. An unit
impulse electric current is injected into the bipole. The inline electric
field, Ex, will be recorded at two offsets of 1000 m and 2000 m from
the bipole.

The time constant τ is set to 1 s and the chargeability η is set to be 0.1.
For comparison, the time domain response is also calculated by the
frequency-time domain transformation (Ward and Hohmann, 1988). For
all models in this paper, we use 51 frequencies uniformly spaced in
logarithmic space from 10�5 Hz–105 Hz to perform the frequency-time
domain transformation.

We approximate the impulse signal with a Gaussian pulse (Jin, 2014).
A short duration time for the Gaussian pulse is required to accurately
approximate the impulse. Fig. 7 shows the discretization of the Gaussian
pulse used for this model which results in an initial time step size of
5� 10�8 s. Note that the maximum current in Fig. 7 is 4� 106 A since the
integral of current over time for this Gaussian impulse is equal to 1 which
is equivalent to the unit impulse electric current source.

The modeling domain was selected to be 80 km � 80 km � 80 km in
the x, y, and z directions. The domain was discretized using unstructured
tetrahedral mesh, which contains 162,394 elements and 193,341 edges.
The resulting size of the finite element system of equations was
193,341 � 193,341.
Fig. 6. A plot of the center frequency for the adaptive Pad�e method as a function of time
for the half-space model.
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4.2. Debye dispersion

First, we consider the Debye relaxation model with c ¼ 1. In this case,
there is no need to use the Pad �e approximation because the FETD
method can be applied directly to solving equation (26).

We calculated the time domain response up to late time of t ¼ 1 s. It
only took 6 min to complete the calculation with 2671 time steps. Note
that the number of time steps would be 20 million without adopting the
ATSD scheme. Fig. 8 shows an increase of the size of time steps with time
for this model.

The upper and lower panels of Fig. 9 show the comparisons between
the FETD modeling results and the analytical solutions for this model at
the offset of 1000 m and 2000 m, respectively. We can see that the FETD
results compare well to the analytical solutions. Fig. 10 shows a com-
parison between the electric field for the non-dispersive half space model
and the half space model with Debye dispersion at the vertical plane of
y ¼ 300 m. We can clearly see that the time domain response is distorted
significantly by the IP effect.
Fig. 8. A plot illustrating the increase of the time step size with time for the half-space
model with no IP effect.



Fig. 9. A comparison between the analytical solution and FETD solution at the offset of
1000 m (upper panel) and 2000 m (lower panel) for the half-space model with
Debye dispersion.

Fig. 11. A plot of the center frequency for the adaptive Pad�e method as a function of time
for the Cole-Cole conductivity relaxation model of the half space with c ¼ 0.6.
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4.3. Cole-Cole dispersion

We now consider a general Cole-Cole conductivity relaxation with
c ≠ 1. At first, we consider c ¼ 0.6. We use the Pad�e series with the
Fig. 10. A comparison between the time domain electric field for the non-dispersive half-
space model (upper panel) and half-space model with Debye type dispersion (lower
panel), at y ¼ 300 m and t ¼ 0.22 s. The arrow represents the direction of the total electric
field on this vertical plane. The colorbar uses a logarithmic scale. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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order of three to approximate the Cole-Cole model and the center fre-
quency of the Pad�e series is selected in an adaptivemanner. Fig. 11 shows
the optimized Pad�e series center frequency used for the FETD modeling
at different time stages. The value of the center frequency decreases with
time increase, as we have expected.

The upper and lower panels of Fig. 12 show the FETD modeling re-
sults for this half-space dispersion model, with c ¼ 0.6, compared to the
analytical solutions at two different offsets. We can clearly see that the
FETD solutions corresponds well to the analytical solution for both early
and late time.

We now consider another case of c ¼ 0.4 for this half-space model.
Fig. 13 shows a comparison between the FETD and the corresponding
analytical solutions. We can see that the FETD solution still compares
well with the analytical solution. A smaller value of c corresponds to a
Fig. 12. A comparison between the analytical and FETD solutions at the offset of 1000 m
(upper panel) and 2000 m (lower panel) for the Cole-Cole dispersive half-space model
with c ¼ 0.6.



Fig. 13. A comparison between the analytical and FETD solutions at the offset of 2000 m
for the Cole-Cole dispersive half-space model with c ¼ 0.4.

Fig. 14. A 3D model of a conductive cube located within a homogeneous half space. The
blue dots represent the receiver locations, while the red dot on the left indicates the center
position of the electric bipole source. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 15. A comparison between the FETD solution and the frequency domain transformed
solution for the 3D model with no IP effect. The upper and middle panel shows the map
view on the earth's surface where the arrows represent the direction of the electric field on
the earth's surface. The lower panel shows a comparison at y ¼ 0 on the earth's surface.

Fig. 16. A comparison between the FETD solution and the frequency domain transformed
solution for the 3D model with no IP effect in the receiver located directly above the center
of the anomaly.
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broader dispersion spectrum, which is more difficult to describe by the
Pad�e series with order 3.

4.4. 3D model

Now, we consider a 3D model shown in Fig. 14. The source is exactly
the same as in the previous section. This model consists of a half space
backgroundwith the conductivity of 10�3 S/m, and a cubic anomaly with
the conductivity of 10�2 S/m. The size of the cube is
500 m � 500 m � 500 m, its center is located at a point with coordinates
of (0, 0, 500) m. The size of the modeling domain was
80 km � 80 km � 80 km. The tetrahedral discretization of this domain
contained 270, 553 elements and 319, 029 edges.

For comparison, we also calculated the frequency domain response
using the frequency-domain FEM code (Cai et al., 2017a), and the cosine
transformation was applied to calculate the time-domain response.

In the first numerical test we assumed that there was no IP effect.
Fig. 15 shows a comparison between the FETD solution and the fre-
quency domain transformed solution, at t ¼ 0.1 s, on the earth's surface.
Fig. 16 shows a similar comparison at the receiver located directly above
the center of the 3D body. We can see that the FETD solution compares
well with the frequency domain transformed solution. The total
computation time for this model was only 10 min, with 1416 time steps.
202



Fig. 18. A comparison between the FETD solution and the frequency domain transformed
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In the next example, we consider the same 3D model, but with the
dispersive conductivity of the cubic body. We first consider a simple
Debye relaxation model for anomalous conductivity with τ ¼ 0.1 s
and η ¼ 0.5.

Fig. 17 shows a comparison between the FETD solution and the
frequency domain transformed solution, at t ¼ 0.1 s for this dispersive
model. We can see that the FETD solution compares well with the fre-
quency domain transformed result. By comparing this figure with
Fig. 15, one can clearly see that the field is distorted significantly by the
IP effect.

Fig. 18 shows the time domain response, obtained from FETD and
cosine transformation, for this 3D IP model with Debye dispersion at the
receiver which is directly above the center of the 3D body. The total
computation time is around 15 min after 1416 time steps. We can see
that the computation complexity increases after considering the
IP effect.

Finally, we consider a general case of the Cole-Cole model with
c ¼ 0.6,. The optimized Pad�e series with third order and adaptive center
frequency were applied. Fig. 19 shows the center frequency of the
adaptive Pad�e series expansion at different time stages.

Fig. 20 shows a comparison between the FETD solution and the
Fig. 17. A comparison between the FETD solution and the frequency domain transformed
solution for the 3D model with IP effect described by Debye relaxation model. The upper
and middle panel shows the map view on the earth's surface where the arrows represent
the direction of the electric field on the earth's surface. The lower panel shows a com-
parison at y ¼ 0 on the earth's surface.

solution for the 3D model with IP effect described by Debye relaxation model at the
receiver located directly above the center of the anomaly.
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frequency domain transformed result for this model at t ¼ 0.1 s, on the
earth's surface. Fig. 21 presents the FETD solution and the frequency
domain transformed solution at different time stage for the receiver
directly above the center of the 3D body. From these figures, we can see
that the FETD solution compares well with the frequency-domain
transformed result. The computation time was around 27 min after
1416 time steps. For all the above scenarios of this 3D model, the run
time for the frequency-domain finite element code was around 3 h in the
same machine and we have used 51 frequencies uniformly spaced in
logarithmic space from 10�5 Hz–105 Hz. We want to emphasize that the
solver for our FETD algorithm is only serial version but the frequency-
domain finite element code we used here adopts the Intel MKL Pardiso
solver which is fully parallelized.

Finally, for comparison, Fig. 22 presents the plots of the electric
field computed for the receiver located directly above the 3D body for
four different scenarios: 1) half-space model with no IP effect; 2) 3D
conductivity anomaly with no IP effect; 3) 3D conductivity anomaly
Fig. 19. A plot of the center frequency for the adaptive Pad�e method as a function of time
for the Cole-Cole conductivity relaxation model of 3D anomalous cubic body with c ¼ 0.6.



Fig. 20. A comparison between the FETD solution and the frequency domain transformed
solution for the 3D model with IP effect described by Cole-Cole relaxation model. The
upper and middle panel shows the map view on the earth's surface where the arrows
represent the direction of the electric field on the earth's surface. The lower panel shows a
comparison at y ¼ 0 on the earth's surface.

Fig. 21. A comparison between the FETD solution and the frequency domain transformed
solution for the 3D model with IP effect described by Cole-Cole relaxation model at in the
receiver located directly above the center of the anomaly.

Fig. 22. The plots of the electric field computed for the receiver located directly above the
3D body for four different scenarios.
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with Debye relaxation; 4) 3D conductivity anomaly with Cole-Cole
relaxation (c ¼ 0.6). By comparing the electric field for the homoge-
neous half-space background model and for a model with 3D anomaly
with no IP effect, we can see that the curves are shifted. For both
Debye and Cole-Cole models of 3D anomalous conductivity, the IP
effect delays the decay of the signal in comparison to the 3D model
with no IP effect.

5. Conclusions

We have developed an edge-based finite-element time-domain
method for simulating electromagnetic fields in conductive and disper-
sive medium. We consider a total field formulation and use unstructured
tetrahedral mesh to reduce the size of the problem. We also use the
backward difference, which is unconditionally stable, for time domain
discretization. We adopt time step doubling methods to gradually in-
crease the step size and reduce the computational expense. The sparse
system of equations is solved using the direct method based on a sparse
LU decomposition. We have demonstrated that this step doublingmethod
with direct solver can significantly reduce computation time.

The developed FETD modeling method takes into account the con-
ductivity dispersion (IP effect) directly in the time domain. We use the
Pad�e series to approximate the Cole-Cole model, which allows us to
approximate the differential equation in the time domain with fractional
derivatives by the differential equation with integer order. In order to
increase the accuracy of the Pad�e approximation for a wide time range,
we introduced a method of adaptive Pad�e series with variable center
frequency of the series for early and late time. This approach increases
the accuracy of FETD modeling. We validate the developed algorithm
using several models with and without the IP effect.
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