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We introduce a normalization algorithm which highlights short-term, localized, non-periodic fluctua-
tions in hyper-temporal satellite data by dividing each pixel by the mean value of its spatial neigh-
bourhood set. In this way we suppress signal patterns that are common in the central and surrounding
pixels, utilizing both spatial and temporal information at different scales. We test the method on two
subsets of a hyper-temporal thermal infra-red (TIR) dataset. Both subsets are acquired from the SEVIRI
instrument onboard the Meteosat-9 geostationary satellite; they cover areas with different spatio-
temporal TIR variability. We impose artificial fluctuations on the original data and apply a window-based
technique to retrieve them from the normalized time series. We show that localized short-term fluc-
tuations as low as 2 K, which were obscured by large-scale variable patterns, can be retrieved in the
normalized time series. Sensitivity of retrieval is determined by the intrinsic variability of the normalized
TIR signal and by the amount of missing values in the dataset. Finally, we compare our approach with
widely used techniques of statistical and spectral analysis and we discuss the improvements introduced
by our method.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Short-term, localized, non-periodic fluctuations in hyper-tem-
poral measurements are often obscured by background patterns in
the data. The terms ‘short-term’ and ‘localized’ respectively refer
to duration and spatial extent considerably smaller than the rest of
the dataset. Such fluctuations are often of interest for geoscience
applications based on detection of extremes and/or environmental
monitoring. Potential examples include fires, volcanic and geo-
thermal activity, fluctuations of climatic variables, urban heating
incidents, leakage of pollutants, abrupt changes in vegetation, ir-
rigation leakages, and weather extremes. All these phenomena
would be recorded as fluctuations in a satellite signal. They may be
expressed in different parts of the spectrum, evolve in different
spatiotemporal scales, and they can influence the original signal
without exceeding the range of normal values. They may occur
regularly or unexpectedly, in known or unknown locations.

Usually, there is not enough information available on a fluc-
tuation of interest to facilitate its isolation. In such cases, local
fluctuations can be made more visible by suppressing patterns
that are common to the majority of the dataset. Patterns may be
suppressed by explicitly modelling and removing signal
u).
components, if characteristics of these components are a priori
available. An alternative option would be the application of nor-
malization techniques, which rescale the data, provide adjustment
for overall patterns and allow the data to become internally
comparable.

Popular choices to identify and remove general trends and
periodic signal components include autoregressive and ordinary
regression models and filtering and decomposition techniques
(e.g. Cleveland et al., 1990; West, 1997; Jonsson and Eklundh,
2002; Grieser et al., 2002; Alegana et al., 2013; Wang et al., 2014).
Wavelets and Fourier transforms are widely used to define signal
patterns of different periodicity in a variety of geophysical appli-
cations, ranging from climatic studies to hazards and environ-
mental research (e.g. Meyers et al., 1993; Kumar and Foufoula-
Georgiou, 1997; Ghil et al., 2001; Sajda et al., 2002; de Jong and
van der Meer, 2004; Labat, 2005; Scharlemann et al., 2008;
Humlum et al., 2011; Pyayt et al., 2013; Tary et al., 2014; Qader
et al., 2015). Randolph (2005) describes typical methods to nor-
malize signals and/or images; the adjustments presented in his
work include corrections for constant and non-constant shifts,
scaling, and combinations thereof. Adaptations of the Standard
Normal Variate method he mentions are often applied in geos-
ciences to identify extremes (e.g. Tramutoli, 1998; Jimenez-Munoz
et al., 2013, 2015).

These methods face three possible limitations. First of all, they
cannot easily define signal components with a period longer than
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the temporal length of the available dataset. Secondly, large-scale
patterns which are changing through time may still obscure fluc-
tuations of very small intensity. A third limitation arises because
existing methods rely only on the temporal dimension of the
measurement. This is an issue especially relevant for research
based on multidimensional data, as is the case of hyper-temporal
satellite measurements. Satellite sensors provide synoptic, time-
synchronous and consistent sampling of geophysical parameters
over large areas and over long periods of time; both the temporal
and spatial characteristics of the data are needed to extract fluc-
tuations of these parameters from a complicated mix of different
influences and noise. As noted by Tary et al. (2014), multi-
dimensional geophysical data are traditionally analysed in-
dividually in a one-dimensional manner, but it would be very
important to consider more dimensions in the analysis.

Spatial information is commonly used in satellite image pro-
cessing. Such image processing techniques have been applied,
among others, for feature extraction (e.g. van der Werff et al.,
2006; Soto-Pinto et al., 2013), change detection (e.g. Coppin et al.,
2004; Canty and Nielsen, 2012), normalization of specific influ-
ences in the satellite signal (e.g. Yang and Lo, 2000; Canty and
Nielsen, 2008; Ulusoy et al., 2012), active fire monitoring (e.g.
Giglio et al., 1999, 2003; Ichoku et al., 2003; Stolle et al., 2004;
Kuenzer et al., 2007, 2008; Calle et al., 2008; Xu et al., 2010;
Wooster et al., 2012), and studies of volcanic and geothermal ac-
tivity (e.g. Coolbaugh et al., 2007; Ganci et al., 2011; Koeppen et al.,
2011; Murphy et al., 2011; Steffke and Harris, 2011; Gutierrez et al.,
2012; Vaughan et al., 2012; Blackett, 2014, 2015; van der Meer
et al., 2014). A main aim is often the selection of an optimum
background: this is used to contrast with an expected change or to
describe a representative average state of a given neighbourhood.
Subsequent processing and statistical analyses vary depending on
the field of application.

Our work is a modification on aforementioned attempts to
apply normalization for spatial data. We build on kernel-based
approaches (for an overview see, e.g., Canty, 2010). We use a de-
convolution matrix to select a pixel's spatial neighbourhood and
normalize every pixel by the mean value of its neighbourhood set.
In this way, patterns that are present in the central as well as the
surrounding pixels are suppressed, and localized fluctuations are
made more visible. We then apply a window-based retrieval
technique to isolate these fluctuations in the normalized time
series.

The added value of our approach is that spatial and spectral
techniques are combined in a single algorithm and in a non-ap-
plication-driven manner. Our normalization can suppress re-
gionally extended patterns at different time-scales (diurnal, sea-
sonal, yearly, etc.), based on both spatial and temporal compo-
nents of the original data, and independently of the length of the
dataset. Processing is run uniformly in the whole dataset and can
isolate fluctuations which are not expected or known in advance.
The processing chain is at the same time generic and flexible en-
ough to be applied in different domains, and may be applied in
near real-time mode.

We demonstrate our approach on a hyper-temporal geosta-
tionary thermal infra-red (TIR) dataset, recorded by the SEVIRI
sensor onboard the Meteosat-9 satellite, and subset over two areas
of different TIR variability in time and in space. We choose to base
our case study on TIR data because of the wide range of earth-
science related TIR applications: monitoring of fire and volcanic
activity, geothermal exploration, and others (Sobrino et al., 2013;
Ulusoy et al., 2012). The resolution of the sensor (3�3 km spatial,
15-min temporal) supports temporally intensive monitoring. In
real-life applications, it rarely happens that the same well-known
fluctuation is repeated in different conditions. Thus, to be able to
evaluate the performance of our algorithm in different contexts
and with better control, we carry out experiments with known
synthetic fluctuations imposed in real data. We increase a small
number of consecutive brightness temperature (BT) values in the
original data and show that the normalization makes these in-
creases more visible. We retrieve the fluctuations in the normal-
ized time series and evaluate retrieval in reference to the intrinsic
signal variability.

We then compare our findings with results of the application of
widely used statistical and spectral methods. We decompose the
TIR signal using Seasonal-Trend Decomposition based on LOESS
(STL), following Cleveland et al. (1990) and Hafen (2010). In this
way we remove the dominant daily and seasonal component of
the data and we try to detect the artificially imposed fluctuation in
the remainder. As an alternative, we use Fast Fourier Transform to
define all principal frequencies of the signal. Similar work has
been done, for example, by Humlum et al. (2011) to study periodic
oscillations in climatic records and by Wang et al. (2014) to study
water level fluctuations. We remove the defined patterns and re-
construct the signal based on the remaining frequency compo-
nents, in order to trace the imposed fluctuation there. Finally, we
apply the Standard Normal Variate method version which Jime-
nez-Munoz et al. (2013, 2015) used to detect anomalous thermal
episodes over the Amazon. The technique rescales the data using
their mean and standard deviation; thresholds are then applied to
detect anomalous standardized values. The comparison between
results of the different approaches concludes the performance
evaluation of our method.
2. Methodology

In the first part (Section 2.1) we present our method. We then
shortly present the three spectral and statistical approaches we
applied to evaluate its performance (Section 2.2).

2.1. Proposed method

Our proposed method consists of three steps: pre-processing,
normalization and retrieval (Fig. 1).

Pre-processing. Image pre-processing is intended to discard
measurements that have been disturbed by factors other than the
variable of interest. This step requires consistently defined a priori
knowledge on the presence of disturbances. Pre-processing is
specific to each application and dataset, and is not covered here in
detail. In the case of most satellite imagery-based studies, the
main factor interfering with the signal from the earth's surface is
the atmosphere, and especially the presence of cloud cover.

Normalization. In this step we use spatial information to sup-
press temporal patterns common between a pixel and its neigh-
bourhood, without explicitly modelling them. As a result, fluc-
tuations which affect only the central pixel stand out.

We define a square, single-pixel-wide frame of neighbouring
pixels (from here on, ‘neighbourhood set, see Fig. 1A). The neigh-
bourhood set lies at a defined distance around a central pixel
(Fig. 1A, details on choosing the distance are provided later). The
inside of the frame is not included in the neighbourhood set. The
underlying assumption is that a localized fluctuation has a spatial
extent smaller than the area framed by the neighbourhood set; it
is thus contained in the central pixel, but not in its neighbours. We
divide the central pixel value by the average value of the neigh-
bourhood set (Fig. 1B). The process is repeated for all time-steps
and results in a spatially based normalized time-series, which
retains the temporal resolution and serial dependence of the ori-
ginal time-series.

The normalized time series shows the degree of dissimilarity
between a pixel and its surroundings. In that sense, it expresses



Fig. 1. (A) With normalization, every pixel value in the image is divided by the average value of a frame of neighbouring pixels. The pixels between the frame and the central
pixel are not included to ensure that a localized fluctuation is not averaged out. (B) Original time series from central Pixel Y (black line) and the average value of its
neighbourhood set (red line), with offset for clarity. (C) The same series after normalization. The daily pattern common in the central and neighbouring pixels is no longer
dominant in the data. During retrieval, normalized values above the threshold are flagged. A temporal moving window counts the number of flags within a specific time
period. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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local heterogeneity and the way this changes over time. When the
central and neighbouring pixels are similar, the expected nor-
malized value is approximately 1 and constant throughout time
(Fig. 1C). Normalized values deviate from 1 as the differences be-
tween the central pixel and the frame increase. These differences
reflect the natural variability in the signal, which may be due to
differential heating of the earth surface, atmospheric effects, dif-
ferences in reflective/emissive properties of different land covers,
soil moisture, etc. An anomalous fluctuation in this context is
defined as an unusual change in the relation between the pixel
and its surroundings. This translates to normalized values largely
deviating from the series mean.

Natural variability of the signal is statistically described by its
standard deviation (s). Normalization is designed to minimize this
natural variability by suppressing signal patterns which are com-
mon between the pixel and its neighbours. Short-term localized
anomalous fluctuations are better visible when the rest of the
normalized series has minimal variability. We thus use s of the
normalized series to evaluate performance of normalization and to
choose the distance between the normalization frame and the
central pixel. We first calculate s for each normalized time series
separately. We then calculate the average s of all normalized series
in the dataset to describe variability for the whole study area
(sdataset). We choose as optimal the normalization distance which
results to the lowest sdataset. Once set, the distance between central
pixel and frame remains the same for all the pixels of the dataset.
This setting is not built in the code because every study area has
different natural variability, potentially changing through time. By
allowing the distance to be user-defined, we ensure flexibility of
the method.

The statistical metric of sdataset is the only criterion to choose
frame size in the case of unknown fluctuations. However, it should
be critically assessed as well, especially if there is more informa-
tion available on an expected fluctuation. The distance should be
large enough that a localized fluctuation is not included in the
neighbourhood set. If the aim is to detect an oil spill extending
over hundreds of km2, it would be pointless to choose a 1-km
distance (even if this resulted to the lowest sdataset). Larger sets
increase statistical consistency in the normalization process and
may decrease the variability. However, if the size of the set is so
large that the central pixel and its neighbours are incomparable
(e.g. if they belong to different climatic regions), there may be
hardly any common patterns left for the normalization to sup-
press. In the cases mentioned above, the optimal choice would be
the set which fulfills all provisions: lowest sdataset possible; and,
distance larger than the expected spatial extent of the fluctuation
but within the limits of the same climatic region.

Data availability may influence the result of normalization. In
each time-step different parts of the normalization set may be
missing. In case of extensive cloud cover there is a possibility that
the few pixels that remain after cloud-masking are not re-
presentative of the complete neighbourhood set. We set a
threshold to ensure that normalized values of consequent time-
steps are comparable. The threshold discards normalized values
which have been calculated with less than a specific portion of the
pixels of the neighbourhood set. This threshold is optional. We
statistically test if its application is needed and define its level (see
following sections).

Retrieval. Retrieval highlights and temporally isolates periods in
time when the normalized signal is dominated by values strongly
deviating from the mean. Fluctuations which are not only localized
but also temporally persistent are retrieved using a window-based
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approach. A temporal moving window can locate fluctuations in
time and its application is independent of the process that may be
generating the fluctuation (Chandola et al., 2012).

A meanþ2s threshold is applied on the normalized time series
to distinguish the values which most strongly deviate from the
mean. All values exceeding this threshold are flagged (Fig. 1C) and
from here onwards they will be referred to as anomalies. Conse-
quently, a temporal moving window counts the anomalies falling
within the specified duration of the window (Fig. 1C). The tem-
poral length of the moving window is defined by the user, de-
pending on the application, the temporal resolution of the sensor
and the desired level of detail in temporally locating the fluctua-
tion. The resulting time series consists of the total number of
anomalies per window and represents temporal clustering of
highly deviating normalized values.

Also for this step the results of retrieval may be affected by data
availability. Lack of data within the temporal windowmay result in
low numbers of flags; these may be mistakenly considered to re-
flect low values in normalized data. To compensate for this effect,
we divide the number of anomalies in the temporal window by
the ratio existing observations/theoretical number of observations.
Furthermore, we use a threshold to discard values which were
calculated with less than a minimum number of available ob-
servations. This threshold is optional. We statistically test if its
application is needed and define its level (see following sections
for more details).

2.2. Traditional methods applied for evaluation

We apply three commonly used spectral and spatial
approaches.

First we use Seasonal-Trend decomposition by LOESS (STL)
(Cleveland et al., 1990; Hafen, 2010; Wang et al., 2014) to define
the daily and yearly components in the data. These components
were subtracted by the original values. We examine the remainder
Fig. 2. Natural colour RGB images from the study areas in Niger (A) and Kenya (B). The
with the exception of the rock formations in the NE corner of the image. Kenya has a mo
urban areas and mountains. The main feature is Mount Kenya circled in blue, in this
references to colour in this figure caption, the reader is referred to the web version of t
to detect the imposed þ3 K fluctuation.
We then apply Fast Fourier Transform (FFT) to define all prin-

cipal frequency components in the dataset (Humlum et al., 2011;
Wang et al., 2014). FFT requires continuous series; to eliminate
missing data, we apply Singular Spectrum Analysis (SSA). This is a
gap-filling method which preserves periodic patterns of the signal
(Buttlar et al., 2014; Korobeynikov, 2010; Kondrashov and Ghil,
2006). After performing forward-FFT, we remove the most domi-
nant frequencies and use inverse-FFT to reconstruct the signal. We
expect to detect the imposed þ3 K increase in the reconstructed
signal.

Finally, we apply the version of Standard Normal Variate
method which was recently presented in Jimenez-Munoz et al.
(2013, 2015). Following this approach, standard scores are calcu-
lated from original values to show how many standard deviations
is the distance between each observation and the mean of the
series:

σ
=

−
( )BT

BT BT
1standardized

original mean

The authors classify standard scores to the following levels of
warming (standardized score range in brackets): abnormal [þ0.5,
þ0.8], moderate [þ0.8,þ1.3], severe [þ1.3,þ1.6], extreme [þ1.6,
þ2.0] and exceptional [þ2.0 and higher]. The probability of a
score being anomalous is up to 57.6% for the abnormal warming
level, up to 80.4% for moderate, up to 86% for severe, up to 95.4%
for extreme and more than 95.4% for exceptional warming levels
(Jimenez-Munoz et al., 2015).

We apply this method in the three recommended scales:
monthly (June), seasonal (May, June and July), and yearly (2011).
3. Application and evaluation

In the first part of this section we demonstrate application of
area in Niger is almost completely covered by desert consisting of sand and gravel,
re complex cover including bare soil, vegetated land, rock formations, water bodies,
image partly covered by clouds (white and turquoise). (For interpretation of the
his paper.)



Table 1
Experiments and related choices.

Objective Experimental setting

Choice of settings
1. Size of normalization set: Prefer the size which results to normalized series with

the lowest standard deviation
Use frame side of 9, 17, 25, 33, 41, 49, 57, 65, 73 pixels, corresponding to ap-
proximate radii ranging between 13 and 108 km.

2. Retrieval with temporal windows of different length: Prefer windows of similar
duration as the fluctuation of interest

5-day long artificial fluctuation retrieval with 2-, 4-, 7-, 10- and 20-day windows.

3. Data availability threshold for normalization: Choose the minimum data avail-
ability that preserves the distribution of values in the set

Normalize with sets of minimum 30%, 50%, 60%, 70%, 75%, 80%, and 100% data
availability. Record standard deviation and distribution of values within the set.

4. Data availability threshold for retrieval: Choose the minimum data availability that
preserves the distribution of values in the series leaving enough data for analysis

Retrieval with minimum 10%, 20%, 30%, 35%, 40%, 50%, 60%, and 80% of data
available .

Experiments on normalization and retrieval
5. Spatial extent of fluctuations suppressed by the normalization Impose þ3 K fluctuation in (a) 1 pixel, (b) 10 pixels and (c) 7411 pixels (67% of

the image).
6. Evaluate intensity of retrieved fluctuations Impose and retrieve fluctuations of þ1, 2, 3, 4, 5, and 6 K.
7. Retrieve fluctuations in different locations in the image and in the time series Impose and retrieve the same þ3 K fluctuation. (a) In timeslots with/without

gaps (February, June, September, and November) (b) At locations with high/low
variability in the normalized series.

8. Effect of clouds on normalization Process data with and without cloud masking.
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our method on two spatial subsets of a year-long satellite TIR
dataset. The two subsets represent study areas of different
homogeneity (e.g. in local weather, land cover, and anthropogenic
activities, see Fig. 2). We impose in both datasets artificial fluc-
tuations in the form of increased brightness temperatures (see
Table 1 for details). We describe how we defined the settings for
the processing. We evaluate the choices in terms of their effect on
single-series s and sdataset. We then retrieve the imposed anoma-
lies and evaluate performance of the method. In the second part of
the section we process the same data with three traditional ap-
proaches and compare results with our method to evaluate it
further.

3.1. Input

We used TIR imagery acquired from the Spinning Enhanced
Visible and Infra-Red Imager (SEVIRI) onboard EUMETSAT's Me-
teosat-9 geostationary satellite, positioned at 0°/36,000 km. The
instrument has a nominal spatial resolution of 3�3 km2 at nadir
and a sampling rate of 15 min in the TIR channels. We used two
spatial subsets of a year-long (2011) whole-disk dataset from
channel 9, registered at a wavelength range of – μ9.8 11.8 m
(λ = μ10.8 mcent ). Original top-of-atmosphere radiance values were
converted to Brightness Temperatures (BT, in K, following Cler-
baux, 2006). The first study area (spatial extent: 327�303 km or
109�101 pixels) was located in the desert in Niger, and served as
an example of a homogeneous background with low spatial and
temporal variability in the TIR. The second study area was located
in Kenya (spatial extent 309�318 km or 103�106 pixels) and was
very diverse in terms of geomorpology and land cover, re-
presenting a very heterogeneous background.

3.2. Pre-processing

We masked cloud-affected pixels using masks of EUMETSAT's
Climate-Monitoring Satellite Application Facility (CM-SAF). This
dataset was produced with software of the Nowcasting SAF (Der-
rien and Le Gleau, 2011). We excluded cloud-filled and cloud-
contaminated pixels from further processing. As some of the
clouds in the dataset were not detected by the available masks, we
further discarded remaining pixels with values lower than the
lowest recorded temperatures in historical archives.

3.3. Results and evaluation of our method

We first present and evaluate the choice of settings applied in
the processing; then we evaluate performance of retrieval. All the
performed tests are described in Table 1. Experiments 1–4 (Ta-
ble 1) were designed to test the following settings: size of the
neighbourhood set, data availability thresholds, and length of re-
trieval window. These settings are application-dependent; the
choices we present are specific for this case study. Experiments 5–
8 (Table 1) were designed to test performance of normalization
and retrieval of synthetic fluctuations.

Settings. The first parameter to test was the optimal size of the
normalization set (Experiment 1, Table 1). We performed nor-
malization with different sizes of neighbourhood sets, their frame
sides ranging from 9 to 73 pixels (respectively 12–108 km shortest
distance between each side and the central pixel). We selected the
size with the minimum sdataset. For Niger and Kenya the statistics
were different but in both cases we had minimum sdataset when
applying a 57-pixel frame side. The sdataset was increased from
0.001 (57-pixel frame side) to 0.003 (9-pixel frame side) in Niger,
and from 0.003 to 0.006 respectively in Kenya (Fig. 3A).

We tested retrieval of a 5-day artificial fluctuation using tem-
poral windows of 2–20 days. The fluctuation was retrieved as an
anomaly in all of the cases. The main differences in retrieval were
the timing, the width and the size of the resulting peak. For all
windows the anomaly starts to be visible at the same time, but the
center of the peak shifts to later times for larger windows. The
peak is higher for longer windows since more anomalous values
are captured in a single window. The optimum window length is
roughly the same as the anticipated length of the anomaly. If this
is not known in advance, it is recommended to test multiple
windows and assess the persistence of peaks between short(er)
and long(er) windows.

The application of data availability thresholds is not relevant for
datasets which are not affected by missing values. We calculated
the sdataset at different data availability levels to see if the use of
these thresholds would be needed in this study. We found that a
20% decrease in data availability doubled the sdataset of Niger; in
Kenya the corresponding sdataset became five times higher. We
thus decided that it would be relevant to apply the thresholds in
order to minimize this variability. The choice on these thresholds
is based on two criteria: (a) preserve the distribution of values in
the normalization set/temporal window and (b) make sure that
enough data remain for analysis. We decided that a minimum of
75% data was needed for normalization, and a corresponding 25%
for retrieval. The reduction in variability of normalized series after
application of a 75% threshold can be seen in Fig. 3B.

The examples we show in the figures are obtained with the
following optimal settings: a normalization set of a 57-pixel frame



Fig. 3. Effect of algorithm settings and missing data. (A) Effect of frame size. The panel shows the result of normalization of series with different imposed fluctuations, using
different frame sizes, in both study areas. The series are displayed with offset for clarity. Normalized series in the heterogeneous area of Kenya (first two rows) are more
variable than in homogeneous Niger (last two rows). Imposed fluctuations of þ(3–5) K exceed the detection threshold regardless of frame size, and are more visible when
the variability is low. Artificial fluctuations increase linearly the normalized values. (B) Effect of clouds and missing data. The presence of clouds increases variability in the
time series (grey dashed line); even after cloud masking, cloud remnants introduce spikes. Lack of data in the neighbourhood set also increases variability of cloud-masked
normalized series. In contrast, the series normalized with at least 75% of the data available (red solid line) is the least variable. (For interpretation of the references to colour
in this figure caption, the reader is referred to the web version of this paper.)
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side, with at least 75% of the pixels present; and a 7-day long
temporal window, with at least 25% of the observations present.

Retrieval performance. With Experiment 5 (Table 1) we tested
the hypothesis that fluctuations of extent smaller than the nor-
malization set are detectable. We imposed the same þ3 K fluc-
tuation in areas of different spatial extent. As expected, the fluc-
tuation was visible when its extent was smaller than the area
framed by the normalization set but not when its extent was lar-
ger. In Fig. 4, artificial fluctuations of þ3 K which cover both the
central pixel, coincide after retrieval with the þ0 K imposed
fluctuation (black line).
Fig. 4. Detection of synthetic anomalies of different magnitudes (Niger). Localized
artificial fluctuations are retrieved as peaks of different magnitudes.
In Experiment 6 (Table 1) we imposed fluctuations of magni-
tude (þ1) to (þ6) K in the data (Fig. 4 for Niger). Regardless of the
size of the fluctuation, higher fluctuations linearly increased nor-
malized values (Fig. 3A). In the retrieval the effect was non-linear.
The smallest imposed fluctuations we could retrieve, under con-
ditions of high variability and low data availability, were þ2 K in
Niger and þ3 K in Kenya (Fig. 4).

We imposed fluctuations in different locations in space and in
time, to examine cases with higher and lower variability and with
more or less missing values (Experiment 7, Table 1). Retrieved
anomalies had different amplitudes when the same fluctuation
was imposed in different times. Peaks were in general larger when
the variability of the time series was lower and data availability
was higher. As a result, we cannot quantify that a specific fluc-
tuation will be always retrieved as an anomaly of corresponding
amplitude; this should be evaluated in the context of each study
area.

Our last experiment (Experiment 8, Table 1) tested the effect of
cloud masking. Cloud masking reduced the variability of the nor-
malized series approximately by a factor of 4 (Fig. 3B). The value of
sdataset changed from 0.020 to 0.005 after cloud masking in Niger
and from 0.037 to 0.009 in Kenya. In contrast, the increase of
sdataset that was caused by localized fluctuations, like the ones we
imposed in both datasets, was of the order of 10�4. This shows the
importance of removing disturbances from the data prior to
processing.



Fig. 5. Application of different methods to detect a synthetic þ3 K 5-day BT increase imposed in the Niger dataset. A1: Original time series, with the imposed anomaly in
red. The imposed anomaly does not stand out from the rest of the data. A2: the same (detail). B1: Remainder of STL decomposition of the original series. The anomaly is not
distinguishable. B2: The same (detail). C1: FFT-reconstruction of the original series, after removing the three dominant frequency components (yearly, daily and twice-per-
day). The impose anomaly does not stand out. C2: The same (detail). D1: Time series of the standard scores calculated from the original year-long dataset. The green dashed
line designates extreme values, and the green solid line shows values which are classified as exceptional. The imposed BT increase is classified as anomalous but cannot be
distinguished from the rest of the extreme/exceptional standardized values in the dataset. D2: The same but in monthly scale. E1: The methodology described in this paper
clearly identifies the imposed anomaly as the single highest peak in the dataset. E2: Normalized dataset (detail). The imposed anomaly stands out in the normalized series,
largely exceeding the detection threshold (in green). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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3.4. Comparison with other methods

We used the original dataset from Niger and imposed a þ3 K
5-day increase in BT in June 2011. This had proven straightforward
to retrieve with our method, so we tested detecting it with others.

Results. Results from the application of all methods are sum-
marized in Fig. 5.

The first row shows the original series with the imposed
fluctuation.

The second row shows the remainder of STL decomposition.
This was the result of subtracting the seasonal and daily patterns
from the original series. The artificial fluctuation (in red) is con-
tained in the remaining values, but cannot be distinguished from
the rest of the data (Fig. 5B1,2).

In the case of FFT, the dominant frequency components were
yearly, daily, and twice-per-day. We removed these components
and reconstructed the signal using inverse FFT. The imposed
anomaly did not stand out in the reconstructed signal (Fig. 5C1,2).

Detection with standardized scores in a yearly scale yielded
extreme and exceptional anomalies throughout the period be-
tween mid-April to October (Fig. 5D1). Standardized data retained
the seasonal pattern of the original dataset. The imposed fluc-
tuation was included in the values which are considered extreme/
exceptional, but so were many other values. As a result, the im-
posed anomaly did not stand out. We obtained similar results with
analysis on seasonal and monthly scale (Fig. 5D2).

In contrast, after applying the normalization we describe in this
paper, we detected the imposed þ3 K 5-day increase as the single
most prominent peak in the whole dataset (Fig. 5E1). The majority
of anomalous values exceeded the detection threshold already in
the normalized series (Fig. 5E2).
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4. Discussion

Fluctuations of geophysical parameters are of interest in ap-
plications ranging from climatic studies to hazard monitoring.
Detection of such fluctuations is often a complicated task, even
with the variety of available satellite sensors. Depending on the
parameter of interest, input from multiple parts of the spectrum
may be needed; issues of saturation may arise in different scales;
and fluctuations may be obscured by predominant patterns.

Localized fluctuations of interest may remain within the ex-
pected range of original values. In such cases, pixel values are
normal in absolute value, and the fluctuation is easily obscured by
predominant (daily and seasonal) patterns of the signal. Such
fluctuations can be detectable if we examine each value in its
spatial context (Byun et al., 2007). For example, a forest fire which
would saturate the TIR channels of high-resolution sensors may
increase the pixel value of low-resolution TIR imagery only by a
few degrees Kelvin (Wooster et al., 2005). This increase is localized
and alters the usual relationship between the affected pixel and its
surroundings. Our methodology targets such fluctuations by
identifying anomalies as deviations from the usual relation be-
tween a pixel and its spatial neighbourhood. This approach facil-
itates detection of contextual anomalies which remain within the
normal range of values. Furthermore, it allows detection of fluc-
tuations over constantly elevated or constantly low background.
This could be the case, for example, of temporally variable volcanic
activity in a permanent lava lake.

Considering the spatial context of an anomaly offers another
advantage: it constrains its occurrence locally, providing insight on
the relation between the anomaly and the potential underlying
causes. An anomaly that extends in thousands of km2 can most
likely not be attributed to a spatially limited process. In that re-
spect, the shape of the normalization frame serves as an upper
boundary for the areal extent of a detected anomaly. The use of an
open frame ensures that only a spatially limited fluctuation is
detectable; if the fluctuation was included in the normalization
set, it would be averaged out when we divide an anomalous pixel
by equally anomalous surroundings. As we show in Experiment 5
(Section 3.3), anomalies are only detected when they are not
covered by the frame.

In terms of the temporal dimension of the data, our method
suppresses patterns not by modelling past observations, but by
identifying the commonalities between signals of neighbouring
areas in the time when they emerge. This is especially important
because predominant patterns, like seasonality, often vary in time.
For example, weather extremes are becoming more frequent
(Easterling et al., 2000); by using our method, a short-lived loca-
lized brightness temperature increase caused by spatially finite
surface processes can be distinguished from a short-term, unu-
sually warm period affecting the whole TIR image. Present-time
normalization of commonalities allowed our method to outper-
form approaches which do not fully address predominant patterns
or rely on past observations to suppress them. Another advantage
is that processing can take place in near-real-time mode. Ad-
ditionally, by defining the temporal occurrence of an anomaly we
can better evaluate its relation with potential causative processes.

Rather than pre-defining the settings of our method, we sta-
tistically determine specific criteria for the choices. In this way we
ensure flexibility of the method and optimal application in study
areas with different local conditions. Information on the char-
acteristics of the fluctuation of interest can be used to constrain
application of the methodology, but it is not required to have a
priori knowledge of the expected fluctuation or the predominant
patterns in the signal. Settings are applied uniformly to the whole
dataset, and retrieval is automated, supporting objectivity and
comparability of the results. The meanþ2s threshold that isolates
anomalies is based on each single-pixel time series; that has the
advantage that anomaly detection is performed considering the
local conditions. Normalized series of high variability has higher
meanþ2s threshold; then, values need to be higher before they
are declared anomalous. Datasets of long duration are re-
commended to better describe the usual relation between a pixel
and its surroundings.

Our results show that we could detect short-term (lasting 1.4%
of the duration of the dataset), localized (affecting only one pixel)
and low-intensity anomalies (as low as 0.7% of the signal, which
was the case of þ2 K over a 300 K background in Niger). This fa-
cilitates use of low spatial resolution sensors for detection of
small-scale environmental changes, even with only one band
available. The case study we presented as an example was based
on geostationary TIR input. Geostationary products offer the ad-
vantage of high temporal coverage, which is important for timely
monitoring of extremes (Giglio et al., 2003). We emphasize the use
of hyper-temporal datasets further because temporal resolution is
required to detect short-lived fluctuations. Our method, however,
is not restricted to the input of our example; it may be applied at
different scales and different types of spatio-temporal data. Higher
spatial resolution may also provide more detail in locating a po-
tential source of anomaly.
5. Conclusions

We focus on unexpected, localized, short-term signal fluctua-
tions and propose a methodology to detect them using single-
band input. Our normalization procedure suppresses spatially ex-
tended, large-scale temporal patterns in single-pixel time series
without having to explicitly model them. Data are brought to scale
and localized fluctuations with an extent smaller than the defined
become more obvious, regardless of the underlying causative
processes. The fluctuations are distinguished from large-scale
periodical patterns by analysing both the spatial and temporal
dimensions of geophysical data. This can serve a wide spectrum of
applications and facilitate monitoring of extremes.
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