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a b s t r a c t

In this paper, a suite of algorithms are presented which facilitate the identification and tracking of storm-
indicative features, such as mean sea-level pressure minima, in high resolution regional climate data. The
methods employ a hierarchical triangular mesh, which is tailored to the regional climate data by only
subdividing triangles, from an initial icosahedron, within the domain of the data. The regional data is
then regridded to this triangular mesh at each level of the grid, producing a compact representation of
the data at numerous resolutions. Storm indicative features are detected by first subtracting the back-
ground field, represented by a low resolution version of the data, which occurs at a lower level in the
mesh. Anomalies from this background field are detected, as feature objects, at a mesh level which
corresponds to the spatial scale of the feature being detected and then refined to the highest mesh level.
These feature objects are expanded to an outer contour and overlapping objects are merged. The centre
points of these objects are tracked across timesteps by applying an optimisation scheme which uses five
hierarchical rules. Objects are added to tracks based on the highest rule in the scheme they pass and, if
two objects pass the same rule, the cost of adding the object to the track. An object exchange scheme
ensures that adding an object to a track is locally optimal. An additional track optimisation phase is
performed which exchanges segments between tracks and merges tracks to obtain a globally optimal
track set. To validate the suite of algorithms they are applied to the ERA-Interim reanalysis dataset and
compared to other storm-indicative feature tracking algorithms.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The automated tracking of extra tropical cyclones, by identify-
ing and tracing the evolution of storm-indicative features in
gridded meteorological data is an active and challenging research
topic, with over 15 research groups having developed their own
algorithms (Neu et al., 2013). Although these algorithms use dif-
ferent methods to identify and track the features, they all split the
problem into two distinct phases. The first is the identification of
the storm-indicative features in the gridded data. The second
phase is the tracking of these features across timesteps, associating
features in one timestep with features in subsequent timesteps so
as to track the feature as it moves through time and across a do-
main, which is known as the correspondence problem (Post et al.,
2003). The analysis of the resulting feature tracks, which include
acception or rejection of some tracks based on inclusion criteria
may be performed before calculating the track statistics.

A common problem facing all tracking algorithms stems from
the representation of data on a regular latitude–longitude grid.
This causes grid boxes to become smaller toward the poles, in
effect increasing their resolution and decreasing the spatial scale
that features occur at. In addition, the data exhibits a singularity at
the poles, with the first and last row of data having the same value,
which makes searching for localised features difficult. Tracking
algorithms overcome these problems in a number of ways. To
correct the spatial discrepancies, the data may be smoothed by a
Cressman filter (Murray and Simmonds, 1991; Sinclair, 1994),
transformed to spectral space and truncated at a wavenumber
(Hodges, 1994; Benestad and Chen, 2006), convolved with a filter
(Hewson and Titley, 2010; Rudeva and Gulev, 2007) or regridded
(Serreze, 1995; Wang et al., 2006). In order to account for the pole
singularities, the data may be reprojected to a stereographic polar
projection (Murray and Simmonds, 1991; Hoskins and Hodges,
2002, 2005), at the expense of only being able to track storms in
one hemisphere at a time.

Massey (2012) shows that both of these problems can be
overcome by regridding the latitude–longitude data to a hier-
archical triangular mesh obtained by repeatedly sub-dividing an
icosahedron contained within the unit sphere. Constructing the
icosahedron so that a centroid of a triangle corresponds to the
locations of the poles ensures that there are no singularities.

This paper extends and improves Massey (2012) to enable the
regridding of regional climate data to a sparse version of the
hierarchical triangular mesh. Improvements to both the identifi-
cation of storm-indicative features and their tracking are
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presented and incorporated into a new suite of regridding, feature
identification and tracking software. To validate the methods, the
software is applied to reanalysis data compared to other tracking
algorithms, and is also applied to output from a high-resolution
(50 km) regional climate model.
2. Regional hierarchical mesh generation

2.1. Generating the mesh

Generation of the mesh commences with the construction of
an icosahedron bound by the unit sphere and rotated so the poles
lie at the centroid of a triangle. The coordinates of this icosahedron
are provided in Table 1 of Massey (2012). The vertices of the tri-
angles are stored in a point cloud and the indices of the point
cloud for the vertices of the triangles are stored in an array of 20
quad trees, as in Massey (2012). In this revised mesh generation
scheme, the user is required to supply an example of the data they
wish to track features within, in the form of a netCDF file with
latitude and longitude dimensions. This can be defined for regions
including hemispheres or the entire globe, either on a regular or
rotated pole grid.

For the purpose of the mesh generation and, later, the
Fig. 1. The repeated subdivision of the triangular mesh based on the grid from the Ha
points of the HadRM3P grid and each panel shows the triangles at the maximum mesh
are subdivided per iteration. The triangular mesh is shown on a Dymaxion projection (G
for displaying the hierarchical triangular mesh. (For interpretation of the references to c
regridding of data to this mesh, grid points in the latitude–long-
itude grid are taken to be at the centre of the grid box, and the grid
box is assumed to have the same value within the grid box. No
interpolation to the triangular mesh is attempted and a triangle
value is taken to be at the centroid of the triangle and throughout
the triangle.

The grid of latitude–longitude coordinates are converted to 3D
Cartesian coordinates and then assigned to one of the 20 triangles
in the icosahedron by way of a point inclusion test (Eq. (5) in
Massey (2012)), or a nearest point test if the point inclusion test
fails. Each of these 20 triangles is split into 4 sub triangles if it
contains a point, by projecting the midpoints of each triangle side
onto the unit sphere and adding to the point cloud. The four new
triangles are added to the quad tree as children of the initial tri-
angle. Additionally, the point inclusion test is applied to the lati-
tude–longitude coordinates that are within the original triangle to
determine which child triangle they should be assigned to. This
splitting process continues iteratively until all triangles contain
one point or a maximum mesh level is reached. Fig. 1 shows this
iterative process of subdividing the mesh on a Dymaxion projec-
tion (Gray, 1994, 1995) and Fig. 2 contains a pseudo-code algo-
rithm of the splitting process. Each subdivision of a triangle is
referred to as a level in the mesh, the 20 base triangles are at level
0, a triangle that has been split once is level 1, twice level 2, etc.
dRM3P regional climate model over Europe. Red dots show the latitude–longitude
level after the subdivision. Only triangles with at least one latitude–longitude point
ray, 1994, 1995), which represents the world map on an icosahedron and so is ideal
olour in this figure caption, the reader is referred to the web version of this paper.)



Fig. 2. Outline of the algorithm used to generate the sparse triangular mesh from
climate data. See Fig. 1 in Massey (2012) for references to triangle vertices in the
splitting algorithm.
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For each level in the mesh each triangle has assigned to it the
indices of the original gridpoints of the latitude–longitude co-
ordinates which enables very efficient indexing when regridding
data and also allows the representation of the data at different
spatial scales. Finally, point and edge adjacency relationships be-
tween triangles at the same level in the mesh are calculated as in
Massey (2012) for both point adjacency and edge adjacency.

The mesh generation only needs to be performed once for a
dataset as the mesh is written to a file and read in by the regrid-
ding and feature identification algorithms.

2.2. Labelling scheme

The revised method follows a similar labelling scheme to
Massey (2012), but stores the label as a single 64-bit wide integer,
rather than a string. Each of the initial 20 triangles is labelled with
an integer from 1 to 20. The triangles that result from a subdivi-
sion have a 1,2,3 or 4 added to them after multiplication by

( + )10 parent triangle level 2 . Using an integer allows for efficient compar-
isons between labels, especially when checking for label equiva-
lence. Additionally, labels at a higher level in a mesh will be
greater than those labels at a lower level in the mesh. Traversing
the tree to a triangle label is easily performed by determining
which triangle to reference at each level in the mesh by a com-
bination of modulo and division operations. Fig. 3 illustrates the
labelling scheme for a single initial triangle.
Fig. 3. Illustrative example for the triangle labelling scheme for a single initial triangle.
initial label according to Section 2.2. These triangles are further subdivided and labelled
3. Regridding data to the mesh

3.1. Storing the data on the mesh

The mesh will be sparse when applied to regional data and so
the indexing scheme of Massey (2012) cannot be used. However, a
simpler and more efficient indexing method can be used where
each triangle maintains an index into a data storage array. The 20
initial triangles will have indices of …0 19 and, as the mesh gen-
eration algorithm splits triangles, it maintains a count of the total
number of triangles that have been produced so far. When a tri-
angle is split into four child triangles the new triangles are as-
signed the count, countþ1, þ2, and þ3. The count itself is then
incremented by 4. To store the regridded data, a two-dimensional
array is required, one dimension equal to the number of timesteps
that are to be regridded, and the other dimension equal to the
number of triangles in the mesh. The mesh is fixed over time and
so these indices are used in the regridding algorithm to assign data
to a triangle for every timestep.

3.2. Regridding algorithm

Due to the user supplying an example of the data they wish to
regrid, the point-inclusion test is performed during the mesh
construction phase and at each level each triangle stores the in-
dices of the latitude–longitude points which fall within the tri-
angle. A triangle at level 0 will contain all the points which its
children (and grandchildren and great-grandchildren etc.) contain.
Regridding the data requires a loop through every triangle in the
mesh at every level, recovering the indices of the original grid-
points, reading the data to be regridded using these indices and
then assigning the data to the triangle. For triangles which have
many grid points, the weighted area mean is taken for the data, as
in Massey (2012).

Applying the regridding algorithm at every level of the mesh
ensures that the regridded data is available at different spatial
scales. This enables the storm-indicative feature detection phase to
search for features of a particular spatial scale by searching at a
level in the grid whose triangle area corresponds to that scale, and
then to refine the search into higher levels of the grid to determine
the exact footprint and location of the storm-indicative feature.
4. Objective feature detection on the mesh

Storm-tracking methods are sensitive to the type of back-
ground field removed prior to feature identification (Anderson
et al., 2003). Massey (2012) uses a hemispherical mean as the
background field, which leads to a low spatial density of storm-
indicative features. The revised method uses the data at a lower
level in the regridded data, which is a lower resolution version of
the data at higher levels. This is analogous to the spectral spatial
The 10th initial triangle is subdivided into 4 triangles and the label is added to the
.
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filter of Anderson et al. (2003), which removes the large spatial
scale flow, maintains the spatial density of features and preserves
the intensities of the features.

4.1. Background field removal

The feature detection process commences with the removal of
the background field, which is the data at a lower mesh level (the
background level) in the regridded mean sea-level pressure (MSLP)
data. Subtracting data at this level from the data at the level which
features are identified (the identification level) produces the
anomaly from the large spatial scale flow and negative values in
the resulting data can be identified as low pressure systems.

Subtracting the value in a triangle in the background level from
triangle values in the identification level produces sharp edges in
the resulting data which occur at the edge of the triangles in the
background level and lead to the erroneous identification of low
pressure systems along the edges of those triangles. In order to
avoid this edge-effect, the data at the background level is smoothed
to all higher levels. The smoothed data is then subtracted from the
original data at all higher levels and rounded to the nearest H hPa,
which aids the feature identification process as MSLP values that
are within a H hPa contour are assigned the same value.

4.2. Feature point detection

Features are detected as anomalies from the large spatial scale
flow, by using one of the adjacency lists to consider the triangles
surrounding each triangle at the identification level. At this level,
features are identified by comparing the value of a triangle with
the values of the adjacent triangles. If the triangle value is less
than the surrounding triangle values, and the value is also less
than a user defined maximum difference from the large spatial
scale flow, then the triangle is considered as a feature. To create
the feature object, the labels of the descendants of the initial tri-
angle ( )Ti at the highest level in the mesh (the refinement level) are
added to a list and the location of the object is set to be the cen-
troid of Ti.

Not all of the triangles at the refinement level in the list of labels
should belong to the object, as they have anomalies that are larger
than the largest anomaly in the object ([ ])maxanom . To account for
this, triangle labels are removed from the list of labels if the value
of the triangle is not equal to, or less than [ ]maxanom .

4.3. Feature object detection

At this stage, the feature object identified will not extend be-
yond the bounds of the triangles at the identification level, even
though the feature itself may extend into other triangles at the
refinement level. To counteract this, an object growing routine is
employed.

The feature object is grown by examining the values of the
triangles surrounding it, and if a surrounding triangle value is
within one contour level of [ ]maxanom then it is added to the
feature object by appending its label to the list of triangle labels.
This process is repeated until no extra triangles can be added to
the object, as none of the surrounding triangles are within the
contour level. An added restriction here is that objects are not
allowed to grow to be more than 1000 km in radius. This has the
consequence that non-closed systems will have an artificial clo-
sure 1000 km away from the triangle with [ ]maxanom .

After the object growing routine has completed, any over-
lapping objects are merged, with the same 1000 km restriction as
in the feature growing phase. If a triangle in an object is 1000 km
or less away from the central triangle of an overlapping object
then it is added to the object. If it is more than 1000 km away then
it is retained in its current object. Objects are deemed to overlap if
one or more triangles in an object also occur within the other
object, or a triangle in one object is adjacent to a triangle in the
other object. Objects are merged by appending triangle labels to
one object and deleting the other.

4.4. Deriving the feature point from the object

The feature tracking algorithm in Section 5 requires a single
point, as well as the object definition (the list of triangles in the
object), to track the evolution of the feature objects across multi-
ple timesteps. To derive this point a weighted average of the lo-
cations of the triangles in the object is used:
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where P is the central feature point of the object, Pi is the location
of the centroid of the ith triangle in the object, Vi is the value of the
ith triangle in the object, n is the number of triangles in the object
and [ ]maxanom is the maximum anomaly in the object. The point P
is then converted to latitude and longitude coordinates using the
standard transformation. The object also records the intensity of
the MSLP low, which is [ ]minMSLP , the minimum MSLP value in the
object, and the delta of the MSLP low, which is
[ ] − [ ]min maxMSLP MSLP . Fig. 4 provides a summary of the feature
detection routine.
5. Feature tracking

After the feature identification routine of Section 4 has been
applied to the regridded data, a list of feature objects exist for each
timestep. It is the job of the feature tracking algorithm to associate
these objects across the timesteps to track the progress of the
features as they form, move and dissipate. The revised feature
tracking method in this paper deviates from that in Massey (2012),
which requires the assigning of weights to four terms in a cost
function, whereas the new method uses a series of hierarchical
rules to assign objects to tracks.

5.1. Tracking rules

The rules to determine whether a feature object should be
added to an existing track are based on five criteria, given below.
Three of the criteria (5.1.1, 5.1.3, 5.1.5) use the feature point, de-
rived from the feature object in Section 4.4, one (5.1.2) uses the
object definition (the list of triangle labels within the feature), and
one uses a property of the object (5.1.4).

5.1.1. Distance rule
The user can specify a maximum distance between the last

object in a track ( )−Ot 1 and the candidate object ( )Ct , which should
be based upon the number of hours per timestep in the source
data (h) and how far the object is expected to move within that
time period. Extra-tropical cyclones in the Northern Hemisphere
have a mean propagation speed of up to −30 ms 1 (Hoskins and
Hodges, 2002), so it is suggested to set this search radius to be
upwards of 125h km.

An adaptive constraint (Hodges, 1999) on this search radius is
calculated from the geostrophic wind steering vector. If the mag-
nitude of this vector multiplied by h is greater than the user input
search radius, then the search radius is set to be this value. The
distance between the last track object and the candidate track



Fig. 4. Illustrative depiction of feature identification routine. (a) MSLP anomaly from the background field at a single timestep at mesh level 3. (b) MSLP anomaly from the
background field at mesh level 7. (c) MSLP minima detected at mesh level 3. (d) Feature object composed of triangles at level 7 descended from those triangles in c identified
as minima at level 3. (e) Refinement of the triangles in the feature object in d by discarding triangles whose values are not within one contour level of the maximum anomaly
in the object. (f) Feature objects after the growing of the objects to encompass all triangles whose values are within one contour level of the maximum anomaly. The objects
are also merged. Note that two objects are detected in this example and that the red dots show the centroid of the triangles and (in (f)) the feature point position. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Track cyclone centre density from applying the tracking procedure to the
northern hemisphere ERA-Interim reanalysis data for DJF, 1989–2009. Cyclone
tracks have to last 24 h or more. Density shows the percentage of cyclone occur-
rence per timestep and area of 1000 km2.
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object is:

Δ = ( ) ( )−C O, 1t t 1

where is a function that calculates the haversine distance
(Sinnott, 1984) between −Ot 1 and Ct. The haversine distance cal-
culates distances over the skin of a sphere, rather than through it.

5.1.2. Overlap rule
An advantage of identifying feature objects, rather than single

feature points, is that their spatial characteristics can be used
during the tracking phase. This is useful, in this context, to identify
slow moving features which are blocked by high-pressure systems
and may change direction sharply (Hodges, 1999). In order to as-
sess this in terms of minimising a cost function the rule is:

β = − ( ) ( )−C O100 , 2t t 1

where is a function that measures the percentage of overlap
between the candidate object Ct and the object −Ot 1.

5.1.3. Steering rule
Using a steering vector to predict the motion of a feature based

on physical characteristics of the field can reduce the number of
erroneous point assignments in a tracking algorithm (Murray and
Simmonds, 1991). Here the geostrophic wind in spherical co-
ordinates (Andrews, 2000), approximated by fitting splines to the
geopotential height field and taking the derivatives of the splines,
is used.

The steering rule uses the geostrophic wind and the central
point of −Ot 1 to predict the position of the next object in the track:
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360
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Fig. 6. Relative frequencies of track metrics in the tracks identified by applying the storm tracking procedure to the Northern hemisphere ERA-Interim reanalysis data for DJF
from 1989 to 2009. Left to right: Cyclone intensity (minimum pressure in feature object), lifetime of the cyclone in days and mean propagation speed of the cyclone in km/h.
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where λ ϕPt
, is the projected latitude–longitude point, λ ϕ

−Ot
,

1 is the
central point of ( )−Ot 1 , ( )u v,g g is the geostrophic wind vector, FR is
the meridional circumference of the Earth, Fϕ is the zonal cir-
cumference of the Earth at latitude ϕ and ER is the radius of the
Earth.

The cost function is the difference in bearing between the
projected point ( )λ ϕPt

, and the last track point ( )λ ϕ
−Ot
,
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λ ϕ
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,

1 and the candidate point ( )λ ϕCt
, :
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Where ∠( )A B, is the bearing between latitude–longitude co-
ordinates A and B, as defined by Jennings (1994). Objects with
bearing differences of �90° to °90 are considered to have passed
the rule.

5.1.4. Intensity rule
Using the value of the MSLP minimum associated with the

object (the intensity) is useful when tracking very deep depres-
sions where smaller depressions are introduced into the domain,
as it encourages the correct (deep) depression to be allocated to
the track, even if allocating the smaller depressions would meet
some of the rules. The intensity cost is defined as:

χ = ( ) − ( ) ( )−C O 5t t 1

where is a function that returns the intensity value of the object.
Objects with intensity differences less than or equal to 100 hPa are
considered to have passed the rule.

5.1.5. Curvature rule
The curvature rule aims to maximise smoothness within tracks.

Like the steering rule, it uses the definition of the bearing as de-
fined by Jennings (1994). The curvature between a candidate point
and the track is:

= ∠( ) − ∠( ) ( )λ ϕ λ ϕ λ ϕ λ ϕ
− − −O C O O, , 6t t t t
,

1
, ,

2
,

1

where λ ϕ
−Ot
,

2 is the central point of the penultimate object in the
existing track. Candidate objects with curvatures of between �90°
and °90 are considered to have passed the rule, with a cost of:

Ξ α= ( )7

where is the distance cost, as defined in Eq. (1) and α is a scalar
which ensures the resulting cost is not dominated by the distance
term. α is set to be 10�3, so as to convert the distance in metres
from Eq. (1) into kilometres. This ensures that candidate objects
that have a small curvature, but are far away from the last track
object, are penalised equally, or more, than those candidate points
which are closer but have a larger curvature.

5.1.6. The hierarchy of rules
The optimisation routine that forms the core of the tracking

algorithm uses a hierarchy of rules:

5 Distance rule
4 Overlap rule
3 Steering rule
2 Intensity rule
1 Curvature rule

All candidate objects have to pass the distance rule require-
ment first, to ensure that the point is within the search radius
before the other rules are considered. Using the hierarchy has the
advantage that during the optimisation process candidate objects
can be compared to each other to see which has passed the
highest rule. If two objects have passed the same rule, then the
costs for both objects are calculated and the object with the lowest
cost can be assigned.

5.2. Assigning objects to tracks

The tracking routine commences with constructing a new track
for each feature object in the first timestep, i.e. t¼0. In subsequent
timesteps, objects are added to existing tracks based on whether
they pass the inclusion rules and subject to a local optimisation
protocol. If an object cannot be added to an existing track then a
new track is created, with that object as the first object in the
track.

The local optimisation routine adds feature objects in timestep
t to tracks ending in timestep −t 1. For each timestep t, all feature
objects in t are added to a queue of objects. In turn, these objects
at the front of the queue are assessed against the tracks that end in
timestep −t 1 ( )…

≤ − n
a t
0

1 , using the rules in Section 5.1. If an object
passes the distance rule and at least one other rule then it is added
to track ≤ − i

a t 1 as the candidate object. It is possible that an object
might pass the rules for multiple tracks, in which case it is added
to the track for which it minimises the cost for the highest rule it
has passed.

To avoid the ordering of objects influencing the tracking out-
come (Hodges, 1999), feature objects that are still in the queue are
allowed to replace the current candidate object if they are deemed
to be more locally optimal. This is done by following the hierarchy
of rules for the new object ( )Nt and the current candidate object
( )Ct . If, after assessing Nt against −Ot 1 (the last object in a track), Nt

passes a higher rule than that which Ct passes, then Nt becomes
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the candidate object and Ct is returned to the queue of feature
objects so that it may be assigned to other tracks. If the two objects
have both passed the same rule, then the costs for the highest rule
are calculated for each object and the object with the lowest value
is assigned as the candidate object.

During the optimisation procedure, objects may be assigned to
a track, replaced, and then assigned to another track as the pro-
cedure continues until there is no more assignment of objects. If
an object cannot be assigned to a track (as it does not pass any of
the rules, or another object passes the rules with a lower cost)
then a new track is started in timestep t, with the feature object as
the first object in the track.

5.3. Track optimisation

The procedure in Section 5.2 produces a set of tracks that are
locally optimal at each timestep. However, this approach may
encounter several problems which prevent a globally optimal so-
lution being found. These include the false assignment of an object
to a track, the premature ending of a track where a feature object
has not been identified in the next timestep, or the premature
ending of a track where subsequent features in the track have
erroneously been assigned to another track. To alleviate these
problems, the track optimisation routine employs two strategies to
find an optimal set of tracks:

� Track merging: extending a track which ends at timestep −t 1,
by another track, which begins at timestep t or timestep +t 1.

� Track reassignment: splitting two tracks, which overlap in time,
at timestep t and reconstructing up to three tracks where the
combined cost of the tracks is less than the cost of the original
two tracks.

The optimisation process has the advantage over the track as-
signment routine of Section 5.2 that it operates on a near optimal
set of complete tracks. Many of the tracks will contain more than
one timestep and, therefore, a measure of track smoothness over a
number of timesteps can be used as the cost function in the op-
timisation process. This cost is the mean curvature cost of the (up
to) five track objects centred around the timestep t:

∑ α=
( )= − >

= + ≤
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1

8
t

s t s

s t s L
s s

2, 0

2,

where s is the curvature at timestep s, as defined in Eq. (6), s is
the distance between the track object at timestep s as defined in
Eq. (1), L is the number of timesteps in the track and N is the
number of track points in the sum which satisfy the equalities.

5.3.1. Track merging
Given two tracks, ≤a r

1 and ≥b s
2 , there are two different cases for

testing whether tracks can be merged, depending on the timestep
in which ≤a r

1 ends and the timestep in which ≥b s
2 begins. If the

last timestep in track ≤a r
1 is = −r t 1, then the first case occurs

when the first timestep in ≥b s
2 is s¼t and the second case occurs

when = +s t 1.
For the first case, a track ending at timestep −t 1 ( )≤ −a t

1
1 may

be merged with a track beginning at timestep t ( )≥b t
2 if the last

feature object in ≤ −a t
1

1 ( )−Tt
1

1 is within the search radius of the first
object in ≥b t

2 ( )Tt
2 and that, by merging the tracks, the maximum

allowed curvature is not exceeded. The curvature is measured
using an adaptation of Eq. (6):

′ = ∠( ) − ∠( ) ( )λ ϕ λ ϕ λ ϕ λ ϕ
+ −S S S T, , 9t t t t
,

1
, , ,

1t

where λ ϕ
+St
,

1 and λ ϕSt
, are the points of the first two feature objects in
≥b t
2 .
The second case ( = −r t 1 in ≤a r

1 , = +s t 1 in ≥b s
2 ) occurs when

a feature has been obscured by another feature, or if the identifi-
cation routine fails to detect a feature object. Hodges (1994, 1995)
use phantom feature points during the track optimisation to en-
able tracks to be continuous, even if feature points are missing.
Here, the idea of phantom feature objects is used to predict a point
at timestep t.

Two tracks, ≤ −a t
1

1 and ≥ +b t
2

1 are merged if a point projected
forward from ≤ −a t

1
1 to timestep t is within the search radius of a

point projected backwards from ≥ +b t
2

1. The projection is made
using either the geostrophic wind (Eq. (3)) or a projection based
upon the central points of the last (or first) two objects in the
track:

= + ( − ) ( )λ λ λ λ
− − −T T a T T 10t t a t a t a2

= + ( − )ϕ ϕ ϕ ϕ
− − −T T a T Tt t a t a t a2

where λ ϕTt
, is the projected point at timestep t. a controls the di-

rection of the projection – to project forwards, a¼1, to project
backwards, = −a 1. Whether the geostrophic wind or the two
objects are used in the projection depends on which of the two
projected vectors has the largest magnitude. To project backwards
using the geostrophic wind, the sign of NH is reversed in Eq. (3).

Merging is achieved by adding a phantom feature object to
track ≤ −a t

1
1 at timestep t, which has the interpolation of object −Tt

1
1

and +Tt
2

1 as values for the position (latitude and longitude), in-
tensity and delta of the MSLP low, and then appending track ≥ +b t

2
1

to the resulting track. Phantom feature objects have no triangle
labels associated with them and are deemed to have passed no
rules.

It may be the case that track ≤ −a t
1

1 can be merged with mul-
tiple tracks, as there may be more than one track that begins at

+t 1 and whose projected point is nearer than the user defined
search radius. If this occurs then the merged track which has the
smallest mean curvature cost ( t in Eq. (8)) is selected.

5.3.2. Track reassignment
Due to the nature of the tracking algorithm, feature objects may

be assigned to tracks in a sub-optimal way, with respect to the
mean curvature cost (Eq. (8)). This occurs mostly in the first few
timesteps of tracks where there are not enough objects in the track
to make an optimal choice between two candidate track objects.
To counter this a phase of the track optimisation process reassigns
sections of track between the set of tracks produced by the
tracking algorithm.

Two tracks, ≤ ≤ S t E
1

1 1 and ≤ ≤ S t E
2

2 2 are candidates for reassignment
if they overlap in time – i.e. if the range ≤ ≤S t E1 1 shares at least
one value of t with the range ≤ ≤S t E2 2. To determine whether a
section of ≤ ≤ S t E

1
1 1 should be replaced by a section of ≤ ≤ S t E

2
2 2, for

each overlapping value of t, the mean curvature cost of ≤ ≤ S t E
1

1 1 is
calculated for t, as well as the mean curvature cost of replacing the
objects at +t t, 1 and +t 2 with the objects at those timesteps in
track ≤ ≤ S t E

2
2 2. If this mean curvature is less than the previous va-

lue, then track ≤ ≤ S t E
1

1 1 is split at point t and three new tracks are
created. The first of these is the compound track of < S t

1
1 up to

timestep t and track ≤t E
2

2 beyond timestep t. The second is the last
part of track ≤t E

1
1, after timestep t and the third is the first part of

track < S t
2

2 , before timestep t.
Optimising the tracks by splitting them may lead to two tracks

being produced which are, in fact, part of the same track. To enable
these tracks to be merged, the track optimisation process runs the
track merging and track reassignment algorithms repeatedly until
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no tracks are merged, or no track sections are reassigned, or a
maximum number of iterations is reached.

5.4. Post-processing of tracks

After the completion of the tracking algorithm, the tracks may
be filtered on various criteria, including a minimum number of
timesteps the track persists for, how far the track moves from
genesis to lysis, the length of the track or the minimum value of
MSLP reached along the track. This filtering is left to the user as
post-processing is not directly provided by this suite of algorithms.
Note that the splitting of tracks is not explicitly accounted for. If a
storm feature splits into two distinct features, then one of these
features will be assigned to the original track, whereas a new track
will be created starting at the timestep at which the split occurred.
There is no indication in the tracking results that these two tracks
are related.
6. Results

Validating a storm tracking algorithm is problematic as there is
no universally agreed set of historical storm tracks with which to
compare the output from a storm tracking algorithm (Neu et al.,
2013). In this section, the full process of storm-indicative feature
tracking detailed in Sections 2.1–5 is applied to two different data
sets and compared to the output from other tracking algorithms.

6.1. Application to ERA-Interim data

Neu et al. (2013) analyse the disparities between 15 different
storm tracking procedures by applying the algorithms to the ERA-
Interim reanalysis (Dee et al., 2011). Total cyclone centre densities
for all 15 methods are compared, along with histograms of the
track metrics. To compare its performance the procedure detailed
in this paper is applied to the Northern hemisphere winter (DJF)
ERA-Interim data from 1st January 1989 to 28th February 2009.
The mean sea level pressure (MSLP) variable is used to identify
features, with the geopotential height at 500 hPa (Z500) used to
determine the steering vector.

After applying the tracking procedure to ERA-Interim, 43,310
tracks were identified of which 14,351 had a persistence of 24 h or
more. This is directly comparable to the number of tracks pro-
duced by the 15 algorithms in Table 2 of Neu et al. (2013), where
the number of tracks identified in DJF ranges between 5700 and
20,500, with a mean of 12,393 and standard deviation of 4504.

Fig. 5 shows the density of cyclone centres per timestep and
1000 km2. This figure applies the same method of calculating the
cyclone density as Fig. 1 in Neu et al. (2013), and so is directly
comparable with the results presented there. The storm tracking
procedure performs as well as the 15 methods in Neu et al. (2013),
qualitatively agreeing with the identification of the areas of high
storm activity east of Greenland, around the Northern edge of the
Scandinavian peninsula, the two centres in the North Pacific and
on the leeward side of the Rocky mountains. The procedure pre-
sented here also identifies a large frequency of occurrence of
storms over the Mediterranean, which (Neu et al., 2013) note has a
large discrepancy between methods. However, as noted in Neu
et al. (2013) there is no attempt in their study to standardise the
depression depth or intensity that a cyclone is required to pass the
threshold of each individual algorithm. The algorithm presented
here is somewhat inclusive, requiring only a depression of 2 hPa
from the spatial scale flow to register as a storm-indicative feature.

Fig. 6 shows the relative frequencies of three storm track me-
trics. This figure is directly comparable to Fig. 3 in Neu et al. (2013),
and the method presented here compares favourably with the 15
studied there. For intensity, the fraction of unit for each bin is
within the standard deviation of the 15 other tracking methods.
For lifetime, the same is true, even though the standard deviations
have a much narrower range than the intensity. Again, for pro-
pagation speed the method compares well with the 15 other
methods, except here there is a higher occurrence of tracks with a
speed between 0 and 10 km/h.
7. Conclusion

This paper presents a suite of algorithms which regrid regional
climate data to a sparse version of the hierarchical triangular
mesh. This facilitates the identification of storm-indicative fea-
tures by first removing the large spatial scale flow and then
searching for anomalies from the background field. These
anomalies are then tracked across timesteps to produce storm
tracks. The use of a sparse mesh produces a very compact re-
presentation of the data and the hierarchical nature of the mesh
allows the large spatial scale flow to be extracted directly from the
data. Additionally, the feature objects can be refined to the highest
level in the mesh in order to obtain the footprint of the storm-
indicative feature. Applying the algorithms to the ERA-Interim
reanalysis shows that the method produces comparable results to
15 other tracking procedures. The procedures described in this
paper are particularly suitable for regional climate model output.
8. Obtaining the code

The algorithms are written in Cþþ and can be downloaded
from GitHub by using the command: git clone https://github.
com/nrmassey/tri_tracker.git –branch CAGEO-version.
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