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a b s t r a c t

Multiple-point geostatistics has recently attracted significant attention for modeling different environ-
mental variables. These methods employ the patterns of a training image (TI) to complete a simulation
grid (SG), resulting in realizations with good spatial continuity and structural properties. Most existing
multiple-point statistics (MPS) methods scan the SG in a random or raster order. In this paper, a new
method is presented with a data-driven scanning path giving high priority to pixels with high gradient
magnitude. As a result, the image edges are synthesized first, resulting in better connectivity preserva-
tion. Although MPS methods usually produce promising results compared to traditional variogram-based
modeling, their further development is somehow limited by their excessive computational burden. An
efficient search space reduction method, consistent with the proposed ordering scheme, is also pre-
sented in this paper. Experiments on different geological fields show results comparable to the state-of-
the-art with a significant improvement in CPU time.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple-point statistics (MPS) simulation is a spatial modeling
technique which has recently attracted significant attention for
characterization of different spatial variables. It relies on training
images (TIs) for modeling the spatial variability of environmental
variables (Guardiano and Srivastava, 1993).

The modeling of subsurface behavior is usually a difficult pro-
blem, due to the presence of complicated structures formed by
sedimentological and erosional processes (Huysmans and Dassar-
gues, 2009). Traditional variogram-based modeling approaches are
not so efficient in reproduction of realistically complex geological
structures (Journel and Zhang, 2006; Schlüter and Vogel, 2011).
Object-based modeling methods are useful in simulating complex
structures, but they lack flexibility in data conditioning (Michael
et al., 2010). MPS simulation methods are capable of handling
complex structures and conditioning constraints simultaneously.
However, they suffer from some disadvantages including their
heavy computational burden, the difficulty of selecting a re-
presentative and adequate training image specifically when en-
ough information is not available for such a decision (Pyrcz et al.,
2008), and the difficulty in TI parametrization (Suzuki and Caers,
2008).

MPS simulation proceeds by sampling from the conditional
probability distribution function (cpdf) at different SG nodes
conditioned to hard data and previously simulated data. This is
done by extracting a data-event from the SG and searching the
data-base of TI patterns to find a similar pattern and pasting the
data from the found pattern into the SG. While pixel-based
methods fill only one pixel in each step, patch-based methods fill
one patch at a time, resulting in faster simulation (Arpat and Caers,
2007).

To further increase the simulation speed, some researchers
suggested to cluster the pattern data-base into a limited number of
clusters and compare the data-event only with the cluster re-
presentatives (Zhang et al., 2006; Honarkhah and Caers, 2010;
Abdollahifard and Faez, 2013). Such methods usually require in-
tensive pre-computations.

Instead of searching a data-base of patterns, Mariethoz et al.
(2010) suggested to work directly with the TI. To reduce the ex-
cessive computational burden of this approach, Rezaee et al.
(2013) suggested pasting a bunch of nodes in each step, and Ab-
dollahifard and Faez (2013a) suggested using an approximate
gradient-descent template matching method.

Recently it has been realized that MPS simulation algorithms
are similar in many ways to techniques developed for texture
synthesis in computer graphics (Mariethoz and Lefebvre, 2014).
Tahmasebi et al. (2012) followed the line of Efros and Leung (1999)
by adopting a raster scanning path for simulation. Following the
image quilting (IQ) idea of Efros and Freeman (2001), Mahmud
et al. (2014) suggested to find a minimum error boundary cut
between subsequent patches resulting in seamless realizations
with very good spatial continuity. Markov mesh models are also
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employed for geostatistical modeling (Daly, 2005; Kjønsberg and
Kolbjørnsen, 2008; Stien and Kolbjørnsen, 2011).

While in most MPS simulation methods the SG is scanned in a
random or raster order, the effect of attentive path selection has
been tested in the computer graphics community resulting in re-
markable improvements in pattern connectivity (Criminisi et al.,
2004). Inspired by this work, in this paper a Fast Prioritized SI-
Mulation (FPSIM) method is proposed which assigns priorities to
SG nodes and selects the node with the highest priority as a new
node on the path.

By assigning high priority to pixels having high gradient mag-
nitude, the image edges are synthesized under minimal con-
straints resulting in improved connectivity patterns. In order to
achieve better conditioning we suggest to include the location of
hard conditioning data in the computation of priorities as well. It
should be noted that since the proposed algorithm is a patch-
based method, it synthesizes the low-gradient pixels around the
high-gradient point located at the center of the patch. As a result,
the method is capable of preserving the image proportions by
using large enough patches.

Informed simulation paths based on the information obtained
from observed data were previously exploited in MPS simulation
(Liu and Journel, 2004; Eskandaridalvand and Srinivasan, 2010).
Furthermore, Renard et al. (2011) proposed a method to condition
stochastic simulations of lithofacies to connectivity information
available before starting the simulation process. In this paper no
connectivity information is assumed to be available ahead of time.
Instead, the algorithm attempts to achieve better conditioning and
mimic the connectivity patterns of the TI by attentive path selec-
tion and continuous update of the priority function. It should be
noted that the proposed prioritization is applicable to many ex-
isting patch-based simulation methods.

Furthermore, in this paper a new gradient based search algo-
rithm is also proposed which reduces the search space up to
Fig. 1. (a) A simple TI along with an incomplete SG. (b) The completion progress using thr
on priorities defined using only the convexity term, and third row: ordered based on p
hundreds of times. By considering the image gradient as an im-
portant factor in determining the priority, most of selected data-
events have high gradient values in their central pixel. Given the
gradient vector in the central pixel, the search space can be con-
fined from the whole TI to templates with comparable gradient in
their center.

This paper is organized as follows. In Section 2 the details of the
proposed method are presented along with reasons on its im-
portance and usefulness. In Section 3 the algorithm is tested
and analyzed on a number of test cases. Finally we conclude in
Section 4.
2. Methodology

In MPS simulation methods, an incomplete simulation grid is
completed using patterns of a training image (Fig. 1). The simu-
lation proceeds by scanning the SG nodes in a specific order. For
each node, a data-event is extracted around the node, then the
pattern data-base is searched to find a match, and finally a piece of
data is transferred from the found pattern to the SG. The con-
tributions of this paper are twofold. First, it is shown that the order
of scanning the nodes has significant effect on simulation quality,
and a prioritization method is presented for path selection (Sec-
tion 2.1). Second, an efficient method for confining the search
space and reducing the computational complexity is proposed
(Section 2.2). It should be noted that the proposed search method
does not provide remarkable performance in general template
matching problems. However, as will be discussed later it works
very well for patches selected through the proposed prioritization.
Therefore, the two advances proposed in this paper are by no
means independent.
ee different ordering scenarios. First row: random order, second row: ordered based
riorities defined using Eq. (3).



Fig. 2. Our completion algorithm: P(p) is computed for all points on the fill front and the point with highest priority is selected as a new node on the path. Then a data-event
is extracted around the node and the TI is searched to find a match. Finally the match is replaced in the SG and the front is updated accordingly.

1 Consider the variable z defined in the interval z z,min max[ ]. Such variable can
easily be mapped to the arbitrary interval of w w,min max[ ] as follows:

w T z w w w .wmin wmax
z zmin

zmax zmin
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−
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2.1. Filling order

The data-event extracted around each node has a limited ex-
tent, ignoring far pixels. Therefore, synthesis of values inconsistent
with far pixels seems inevitable. The first row of Fig. 1b shows the
process of completion of an incomplete image using the simple TI
of Fig. 1a with a random scanning order. For data-events which
contains no data the match is selected randomly from the TI. Such
randomly selected patterns are likely to be inconsistent with far
pixels. As the simulation proceeds, propagation of initial long-
range inconsistencies leads to short range inconsistencies which
are not manageable anymore due to the limited patterns (i.e.,
behaviors) available in the TI.

Our algorithm is intended to reduce the chance for such in-
consistencies by modifying the scanning path. Let us assume that
at the nth iteration of the simulation algorithm the SG can be
partitioned into two continuous regions: the filled region Ω̄, and
the empty (or target) region Ω. The contour between Ω and Ω̄ is
denoted as δΩ. In order to prevent inconsistent synthesis, the new
node p is confined to be selected on the fill front δΩ (p δΩ∈ ). The
data-event around p is denoted by Ψp. To encourage convex
growth of Ω̄, a convexity term, C(p), is defined proportional to the
number of known neighbors (including hard conditions or pre-
viously synthesized values):

C p ,
1

p

p

Ψ Ω
Ψ

( ) =
| ∩ ¯ |

| | ( )

where |·| denotes the number of elements. This term is adopted
from Criminisi et al. (2004) with slight modifications to become
applicable to MPS simulation. By prioritizing the points on the fill
front based on the convexity term, the filling will proceed as de-
picted in the second row of Fig. 1b. The new path improves the
simulation output significantly, specifically in textureless areas.
Since the filling proceeds uniformly along the fill front, the blue
region reaches the horizontal image edge sooner than the gray
region. This causes an undesirable deviation in the image edge
(Fig. 1b, middle-right).

The continuity and structure of the synthesized image around
the edges is very important, specifically as far as flow and
transport processes are concerned. In order to achieve better
connectivity, points with high gradient values are given high
priorities. Let Ip∇ denote the gradient vector of the SG at point p,
and np denote a unit vector orthogonal to the fill front at point p
(see Fig. 1a). The edges perpendicular to the fill front have larger
impact and the edges tangent to the front have no impact on the
target region. Therefore, a diffusion term is defined as follows:

D p I n. , 2p p( ) = ∇ ( )⊥

where ⊥ denotes the orthogonal operator. This term is exactly bor-
rowed from image inpainting application of Criminisi et al. (2004).

Combining convexity and diffusion terms, the priority is
defined as follows:

P p C p T D p . 30.1,1( ) = ( ) { ( )} ( )[ ]

T ,1ξ[ ] is a linear transformation which maps its argument to the
interval , 1ξ[ ].1 Note that particularly in the case of categorical
variables the gradient magnitude is likely to be absolutely zero in
many points. Confining the minimum value of D(p) to 0.1 prevents
the diffusion term from nullifying the convexity term in such
points. In contrary to ordinary MPS methods which select the new
nodes randomly, in this paper P(p) is computed for all points on
the fill front and the point with highest priority is selected as a
new node on the path. Then a data-event is extracted around the
node and the TI is searched to find a match. Finally the match is
replaced in the SG and the front is updated accordingly (see Fig. 2).
As depicted in the third row of Fig. 1b, defining the priorities
using Eq. (3) results in diffusion of image edges under minimal
constraints.

2.2. Efficient search

For most MPS simulation algorithms, the template matching
problem is the most time-consuming part. In this paper, an
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Fig. 3. Our search algorithm preserves pattern connectivity by gradient-based screening. q1Ψ and q2Ψ are two approximate matches for Ψp extracted from the TI. Although
d d, ,p q p q2 1Ψ Ψ Ψ Ψ{ } < { }, q1Ψ is preferable because of better connectivity preservation. Our algorithm rejects q2Ψ in candidate selection phase and prefers q1Ψ .

Fig. 4. A channelized image used to test our search algorithm. 233 matches are
found as candidate set (and surrounded by rectangles) for the data-event extracted
from the patch in the green rectangle. See the text for more details. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 5. The space of possible gradient vectors in the gradient plane. The candidate
set for point p with gradient vector I p I p,x y[ ( ) ( )] – depicted as a red dot – is de-
termined by finding i j,[^ ^ ] using Eq. (7), and finding L i j L, 2, 3{^ ^} = { } using Eq. (6).
L 2, 3{ } contains TI points whose gradients lie within the shaded region 2,3Λ . Here k
is set to 5.
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efficient search algorithm is proposed taking the nature of the
prioritization algorithm into account. The priority function (3)
encourages the points with high gradients to be selected on the
path. When a match is replaced around such a node, its neighbors
are masked and removed from the front (Fig. 2). Consequently,
most of low-gradient points on the front will never get the chance
to be selected on the scanning path. Therefore, nearly all selected
data-events have high gradient magnitude at their center, re-
presenting a strong edge. A typical strong edge is not limited to a
single point but it continues in a long spatial range. As a result the
behavior of the image in the neighborhood is mainly determined
by the strength and direction of the edge. In this paper, the gra-
dient vector of the central pixel is employed as an effective way to
reduce the search space.
Consider an incomplete data-event Ψp around a point p with a
strong gradient I p I p x I p y I p I p/ , / ,x y∇ ( ) = (∂ ( ) ∂ ∂ ( ) ∂ ) = ( ( ) ( )). In order
to find a match for Ψp, we first compare its gradient vector with all
pixels in the TI to find a candidate set Q:

Q q J q I p t J q I p t: & , 4x x d y y d{ }( ) ( )= ( ) − ( ) < ( ) − ( ) < ( )

where J is the TI and td is a threshold. Then the match is found by
computing the normalized Euclidean distance between Ψp and Ψq

for all q Q∈ :

d
u u

,
5

p q
u p q

p

2
p ( )

Ψ Ψ
Ψ Ψ

Ψ
{ } =

∑ ( ) − ( )

| | ( )
Ψ∈

where u is a two-dimensional location vector and upΨ ( ) denotes
the value of Ψp at location u. Note that pΨ| | denotes the number of
known pixels in Ψp and the above summation is evaluated only
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over such pixels. As depicted in Fig. 3, this approach not only re-
duces the computational cost compared to exhaustive search
methods, but also results in improvements in pattern connectivity.

In order to demonstrate the effectiveness of this search strat-
egy, let us consider the 251�251 channelized image of Fig. 4. The
image shows a reservoir with soil properties classified into sand
(white) and shale (black) (Strebelle, 2002). The 10�10 patch de-
limited by the green rectangle is extracted from the image and its
right half is removed to form a hypothetical incomplete data-
event. Then the candidate set Q is computed using Eq. (4) by
setting t 6%d = . The candidate set obtained contains 233 points
which are surrounded by 10�10 colored (green, blue and red)
rectangles in the figure. After full comparison it has been realized
that, among candidate patches, 11 patches, distinguished by blue
rectangles, are exactly equal to the initial data-event. In this test
our algorithm performs 22 times faster than a full search. Note
that the efficiency of this algorithm increases by increasing the
patch size. For example if the same test is done by a 20�20 patch
the gain would be around 84.

Considering that the search space is reduced 270 times (from
251�251 to 233), one may expect to achieve a speedup of 270.
However, much time is needed for computation of the candidate
set. Further improvements can be achieved by pre-computing the
candidate sets via clustering the TI pixels based on their gradients.
Assume that partial derivatives are normalized so that their values
lie in the interval [�1,1]. In other words, J q∇ ( ) belongs to the
rectangular region 1, 1 2[ − ] for all q in the TI (this region is de-
picted in the gradient plane in Fig. 5). The subregion Λij designated
by

⎪

⎪⎧⎨
⎩

i k J i k

j k J j k

1 / 1 /

1 / 1 /
,x

y

( − ) ≤ ≤ ( + )
( − ) ≤ ≤ ( + )

is a square-shaped subregion centered at c i k j k/ , /ij = [ ] whose
horizontal and vertical positions can be controlled by i and j re-
spectively (i j k k, , ,∈ [ − … ], see Fig. 5 where 2,3Λ is shaded). List of
the positions of the TI pixels whose gradient vectors lie within this
region is denoted by L i j,{ }

L i j q J q, . 6i j,Λ{ } = { ∇ ( ) ∈ } ( )

For n dimensional variables, k2 1 n( + ) lists are formed. It should be
noted that these lists are overlapping so that each pixel belongs to
four lists (Fig. 5).

In Fig. 5, cijs are depicted with black dots. In the simulation
stage, at first the gradient vector of the selected point p, i.e. I p∇ ( ),
is compared with cijs:
Table 1
Unconditional simulation algorithm.

1. select p and q ( R2∈ ) randomly,

2. I p q
JΨ¯ ( ) ← , I px q

JxΨ¯ ( ) ← , I py q
JyΨ¯ ( ) ← ,

3. initialize δΩ by borders of the inserted patch,
4. while there exist any unfilled pixel in SG do
5. compute P(p) for all p δΩ∈ (Eq. (3)),

6. p P pargmaxp
^ ← ( ( )),

7. find i j,[^ ^ ] for p p= ^ (Eq. (7)),

8. Q L i j,← {^ ^},

9. compute d ,
p
I

q
JΨ Ψ{ }^ for all q Q∈ (Eq. (5)),

10. find N best matches: , ,q qN1Ψ Ψ… ,

11. n̂← produce a random integer from 1 to N,

12. I p qn
JΨ¯ (^) ← ^ , I px qn

JxΨ¯ (^) ← ^ , I py qn

JyΨ¯ (^) ← ^ ,

13. update δΩ,
14. end while
i j d I p c, argmin , , 7i j man ij, { }( )[^ ^] = ∇ ( ) ( )

where d .,.man ( ) denotes the Manhattan distance. Then, the points

belonging to the list Q L i j,= {^ ^} are considered as the candidate
set.

2.3. Unconditional simulation

The proposed prioritization method is applicable to many ex-
isting patch-based simulation algorithms. However, in this section
a specific MPS simulation algorithm is presented based on the
proposed prioritization and search methods described in previous
sections. The simulation algorithm is composed of two main stages
namely the preprocessing and simulation stages. In the pre-
processing stage, first the partial derivatives of the TI are com-
puted as follows:

J J F J J F, , 8x y
T= ⁎ = ⁎ ( )

where ‘n’ denotes convolution and F is a vertical high-pass filter. In
this paper, F is defined as follows:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥F 1/3

1 1 1
0 0 0

1 1 1
.

9
=

− − − ( )

After computing partial derivatives, the lists L i j,{ } are formed
using Eq. (6). Note that the lists are formed by processing only the
gradient vectors using a very simple clustering scheme. Therefore
the processing time required for this phase is several times less
than the preprocessing time required for clustering-based meth-
ods like FILTERSIM (Zhang et al., 2006).

After the preprocessing stage, the simulation algorithm is ac-
complished as summarized in Table 1. Ψp

X denotes a patch ex-
tracted from image X around the point p, and X p¯ ( ) is a portion of
the image X related to such a patch. For each data-event, the
candidate set is determined using the lists formed in the pre-
processing stage (Eq. (7)). Then the patches in the candidate set
are fully compared with the data-event to find the N most similar
patches. Among them, one patch is selected randomly and in-
serted in the SG. Note that the previously synthesized values are
not overwritten and the insertion takes place only in unknown
locations (see Fig. 3).

In this algorithm, the gradient vector is not computed in the
SG; instead it is transferred from TI just like patch values. This
ensures the presence of at least one point in the list corresponding
to the TI point from which the current node is synthesized.

The generalization of the algorithms for 3D grids is straight-
forward. Using three cubic filters, the gradient vectors are com-
puted for all TI voxels in three perpendicular directions ( x y, and
z). Then, the gradient vectors are indexed in k2 1 3( + ) lists. In the
simulation stage, the priorities are computed for voxels on the fill
front (note that for 3D grids the fill front is a surface). Then the
candidate set is determined using the gradient vector and the final
patch is selected in the candidate set just like the 2D case. Note
that although Ip∇ has infinite number of perpendicular vectors Ip∇ ⊥

in 3D space, each one of them can be equivalently used in Eq. (2).

2.4. Conditional simulation

MPS simulation algorithms are usually applied to fields with a
limited number of informed nodes called hard conditioning data.
Since conditioning data are usually obtained by direct measure-
ment, they have to be honored in the simulation process. Two
different approaches were proposed in the literature to meet
this requirement namely patch selection method and template



Fig. 6. Conditional simulation using the TI of Fig. 4 and 100 hard conditioning data depicted as red and blue circles for channel and non-channel samples. Patch size: 35�35,
k¼15, N¼3. (a) One of the realizations and (b) E-type of 100 realizations. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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splitting method (Tahmasebi et al., 2012; Mahmud et al., 2014).
The first approach is adopted in this paper. In conditional simu-
lation the following equation is used instead of Eq. (5):

d d d1 , 10h sα α= + ( − ) ( )

where dh and ds are distances between data-event and TI pattern
evaluated using Eq. (5) on hard data and simulated data regions
respectively. α is the weight factor which determines the relative
importance of the hard data with respect to the simulated data (α
is set to 0.9 in our tests).

Furthermore, the priority function (3) is modified giving more
priority to points with more hard neighbors. Consequently, such
points will see less synthetic data around themselves allowing
more concentration on hard data. Suppose that hard conditioning
data are available at a set of points pi

h
i M1:{ } = . Then, Conf(p) is de-

fined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Conf p

p p p p
exp

2
,

11i

M
i
h T

i
h

1
2∑

η
( ) = −

( − ) ( − )

( )=

where η is considered as one-third the width of the patches. It
should be noted that near the hard conditions more confident
predictions can be made and therefore this term is named as the
confidence term. Since Conf(p) is independent of the simulation
progress, it is evaluated one time for all SG points in the pre-
processing stage. In conditional simulation the priority of Eq. (3) is
modified as follows using the confidence term:

P p C p T D p T Conf p . 120.1,1 0.3,1( ) = ( ) { ( )} { ( )} ( )[ ] [ ]
Fig. 7. Unconditional simulation using the TI of Fig. 4. Patch size: 35�35, SG size: 251
(d) are obtained using IQ in 4.93 and 4.88 s respectively.
Furthermore, unlike unconditional simulation which selects the
first node randomly (line 1 of Table 1), in conditional simulation
the first node is selected at global maximum of Conf(p).

Like other patch-based algorithms, our algorithm simulates
faster using larger templates. However, handling a large number of
hard data in a large template is difficult and may reduce the
conditional data satisfaction degree. Tahmasebi et al. (2012) sug-
gested to use template splitting to handle this problem which
increases computational complexity and CPU time. Because of
higher priority given to points with large number of hard neigh-
bors, our proposed algorithm achieves better conditioning using
patch selection method described above. In this paper the data-
event size is considered constant during simulation. However, the
algorithm can easily be modified to achieve better conditioning by
allowing data-events with variable size. The data-event size can be
defined in inverse relation with Conf(p). Note that, unlike cluster-
ing methods, our proposed preprocessing does not impose any
constraint on the patch size.
3. Simulation results

In this section the proposed algorithm is tested on different
training images. Unless otherwise specified, in this section the
algorithm parameters are set as follows: patch size¼35�35,
k¼15, N¼3. Furthermore, in all tests the SG has the same size as
the original TI.
�251. (a) and (b) are obtained using FPSIM in 0.81 and 0.78 s respectively. (c) and



Fig. 8. (a) A 243�243 binary image obtained based on a satellite image of Ganges delta (Bangladesh), with channels in white and alluvial bars in black. (b) and (c) two
unconditional realizations obtained using FPSIM in 0.651 s and IQ in 3.57 s respectively. Patch size: 35�35, SG size: 243�243.
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3.1. Conditional simulation

In order to generate conditioning data with consistent histo-
gram and variogram, first an unconditional realization is produced
and then a number of randomly located samples are extracted
from the realization. Using this strategy, 100 samples are gener-
ated based on the training image of Fig. 4. Then the conditional
simulation algorithm is employed to generate 100 different con-
ditional realizations. Fig. 6a shows one such realization. The pro-
duced realization not only satisfies the conditioning data well, but
also preserves the connectivity of the channels.

The E-type image calculated as the average of 100 different
realizations is also depicted in Fig. 6b. From the E-type image it
can be verified that all conditioning data are honored in all reali-
zations. Furthermore, the E-type image shows obvious channels
where the channel samples are well aligned.

3.2. 2D unconditional simulation

Image quilting (IQ) method as one of the most efficient patch-
based MPS simulation methods was recently proposed by Mahmud
et al. (2014). This algorithm scans the SG in a raster order and pre-
serves the pattern connectivity very well by finding the minimum
error boundary cut between subsequent patches. Furthermore, the
algorithm is very fast in simulating images. The tests have shown
that IQ simulates up to hundreds times faster than direct sampling
(Mahmud et al., 2014).

In this section the results of the proposed algorithm will be
presented and compared with IQ. It should be noted that the patch
cutting feature of IQ results in seamless realizations with ex-
tremely good connectivities. Although the patch cutting methods
are applicable to our algorithm with the potential of improving
pattern connectivities, the tests show that our algorithm produces
acceptable realizations even without using such methods. As
Fig. 9. (a) A 200�200 continuous training image. (b) and (c) two unconditional reali
35�35, SG size: 200�200.
suggested by Mahmud et al. (2014), the IQ overlap size is set to 1/3
of patch size in all tests in this paper. Furthermore, N is set to 10
for IQ in this section. All simulations are carried out in MATLAB on
a laptop computer with a 2.6 GHz Processor.

Based on the training images of Figs. 4, 8a, 9a, 10a and 11a, a
number of realizations are produced using FPSIM and IQ and de-
picted in the following five figures i.e. Figs. 7, 8, 9, 10 and 11 (more
examples can be found in the supplementary materials). Fig. 8a
shows a binary image obtained based on a satellite image of the
Ganges delta (Bangladesh), with soil properties classified to
channels (white) and alluvial bars (black). Fig. 9a shows a con-
tinuous image representing a stone wall. The complex and struc-
tured image of Fig. 10a is a satellite image captured from Lena
delta in Russia. Fig. 11a shows another complex image represent-
ing mud cracks. All TIs are obtained from the website of the book
Mariethoz and Caers (2014).

The time required for each realization is reported in the figure
caption indicating that the proposed method is faster than IQ by a
factor ranging from 5 to 11. The reason lies in the different tem-
plate matching approaches employed. While IQ searches the
whole TI to find a match for a given data-event, the proposed
method searches only a candidate set. It seems that both methods
perform well in terms of pattern reproduction and connectivity
preservation.

3.3. Quantitative evaluation

It is difficult to evaluate the pattern reproduction capability of
MPS methods visually based on a limited number of realizations.
Quantitative indicators can be employed to summarize the char-
acteristics of a statistically representative number of realizations.
Tan et al. (2014) have recently proposed a quantitative measure for
comparing geostatistical simulation methods. The measure is
computed as the ratio of relational between-realization variability
zations obtained using FPSIM in 0.301 s and IQ in 2.158 s respectively. Patch size:



Fig. 10. (a) A 250�250 continuous satellite image of Lena delta, Russia used as TI. (b) and (c) two unconditional realizations obtained using FPSIM in 0.508 s and IQ in 5.182 s
respectively. Patch size: 35�35, SG size: 250�250.

Table 2
Quantitative comparison between FPSIM and IQ for different TIs. Each cell contains
rA B, where A is FPSIM (N¼3) and B is IQ (N¼3), IQ (N¼5) or IQ (N¼10).

Reference algorithm Fig. 4 Fig. 8a Fig. 9a Fig. 10a Fig. 11a

IQ (N¼3) 0.90 0.97 7.62 13.03 3.57
IQ (N¼5) 0.79 1.12 3.35 3.77 1.52
IQ (N¼10) 0.75 1.13 1.18 1.48 3.93

Table 3
Comparison of FPMPS and IQ in terms of average CPU time and average number of
patch comparisons (NC). The average for 20 similar simulations is reported in each
row. Patch size¼35�35, k¼15, N¼3.

TI No. of SG nodes CPU time (s) Gt NC (�105) Gn

FPSIM IQ FPSIM IQ

Fig. 4 63 001 0.785 4.951 6.3 0.918 56.977 62
Fig. 8a 59 049 0.657 3.56 5.4 0.700 52.854 76
Fig. 9a 40 000 0.302 2.164 7.2 0.192 22.320 116
Fig. 10a 62 500 0.510 5.041 9.9 0.420 56.454 133
Fig. 11a 154 224 1.709 18.624 10.9 1.500 268.122 178
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to relational within-realization variability:
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Relational between-realization variability of the algorithm A with
respect to the reference algorithm B (i.e. rA B

between
, ) summarizes the

variability present between different realizations. Large values for
rA B

between
, indicate that the algorithm A produces more diverse rea-

lizations with respect to B, better representing the spatial un-
certainty. On the other hand, rA B

within
, summarizes the variability

present between the realizations and the training image. Small
values for rA B

between
, indicate that the realizations produced using

algorithm A adhere well to the provided model (TI) comparing
with B. Note that rA B, is equal to 1 if A¼B and r 1A B, > indicates that
the algorithm A outperforms the algorithm B.

In order to compare the realizations either with each other or
with the TI, their multiple-point histograms (MPHs) or clustering-
based histograms of patterns (CHPs) are compared using Jensen–
Shannon divergence in different resolutions (Tan et al., 2014). For
binary images, MPH is employed with the patch size of 4�4 in 10
different resolutions. For continuous images CHP is used with the
patch size of 20�20 in 3 different resolutions.

The experiments show that FPSIM produces acceptable reali-
zations using different TIs by setting N¼3. However, since IQ is
sensitive to N to some extent, three different values are considered
for its N namely 3, 5 and 10. For each scenario, namely FPSIM
(N¼3), IQ (N¼3), IQ (N¼5) and IQ (N¼10), 50 different realiza-
tions are generated based on each TI and the quantitative eva-
luation results are summarized in Table 2.

In most cases FPSIM outperforms IQ. The results suggest that
Fig. 11. (a) A 440�288 continuous TI depicting mud cracks. (b) and (c) two FPSIM re
obtained in 18.3 and 18.4 s respectively. Patch size: 35�35, SG size: 440�288.
the proposed algorithm is well suited for complicated structures
where the image contains many pixels with high gradients (see for
example Figs. 10 and 11). As depicted in Fig. 7 and quantified in
Table 2, IQ outperforms FPSIM in the case of channelized TI which
is a simple binary image. It should be noted that for small N, the
verbatim copy problem degrades the IQ results significantly.
alizations obtained in 1.75 and 1.69 s respectively. (d) and (e) two IQ realizations
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Fig. 12. CPU time of FPSIM for simulation of 250�250 images using TIs of Figs. 4 and 10a for different values of k, patch size¼35�35, N¼5.
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Increasing N for reducing the verbatim copy problem degrades the
pattern connectivity. FPSIM is less prone to verbatim copy and
presents acceptable results even for N¼3.

3.4. Algorithm performance

As indicated before the proposed algorithm performs several
times faster than IQ. In this section the average CPU time for
Fig. 13. Unconditional simulation of 3D grids, patch size: 30�20�20, k¼10, N¼3. Se
voxels), (c) realization (90�75�60 voxels), and (d) realization (100�80�50 voxels).
several similar simulations is reported in Table 3.
Note that in the IQ method, the image is scanned in a raster

order. Therefore, the overlap of each data-event with previously
synthesized data has a pre-specified shape (Γ shape) and size. This
allows to use MATLAB built-in functions (like filt2) to find the
match for each data-event. In the FPSIM algorithm however, the
overlap region has a different shape for each data-event. This
makes it impossible to use built-in functions. Since MATLAB built-
e the text for more information. (a) TI (90�75�60 voxels), (b) TI (100�80�50
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in functions are remarkably faster than their counterparts written
by users, it seems that the processing time is not a good re-
presentative for computational complexity in MATLAB.

As a fairer criterion, the average number of patch comparisons
required for each simulation (shown by NC) is also reported in
Table 3. It is worth emphasizing that in all MPS simulation algo-
rithms most of the computations are dedicated to template
matching and the additional computations are negligible. IQ
compares each data-event with all of the TI patterns but FPSIM
selects a candidate set via gradient vectors and compares the data-
event only with the candidate set. As a result the computational
complexity of FPSIM is several times less than IQ as depicted in
Table 3.

Gt is the ratio of IQ CPU time to the FPSIM CPU time.
The number of comparisons ratio is also denoted by Gn

( N IQ N FPSIM/C C= ( ) ( )). While Gt varies between 5.4 and 10.9 in our
tests, Gn varies in the interval [62,178], indicating that the pro-
posed algorithm has the potential of being implemented several
times faster in an optimized programming environment.

Another important issue to be considered is the remarkable
variation of Gt and Gn for different TIs. In binary images a majority
of pixels have a gradient of zero and the other pixels have high
gradient magnitudes. There is not any pixel with intermediate
gradient magnitude in such images. As a result, most of the gra-
dient cells (see Fig. 5) are empty and the gradient vectors are
concentrated in a limited number of bins. The non-uniform dis-
tribution of the gradient vectors in the gradient plane, leads to an
increase in the number of required comparisons.

In structured images however, the gradient vectors are dis-
tributed more uniformly, leading to cells with lower number of
members. Consequently the number of comparisons will be lower
in more structured images. Thus, the proposed method has an
interesting property that not only produces more realistic results
for structured TIs, but also handles them much faster.

As another way to assess the effectiveness of the proposed
search algorithm, CPU times of FPSIM are reported for different
values of k in Fig. 12. The case with k¼0 is equivalent to exhaustive
search. By increasing k from 0 to 19 the CPU time decreases by the
factors of 30 and 54.2 for TIs of Figs. 4 and 10a respectively. Due to
the limited number of gradient vectors present in the binary image
of Fig. 4, increasing k beyond 4 has approximately no effect on CPU
time. On the other hand, more diverse gradient vectors of Fig. 10a
cause a smoother change in CPU time for increasing values of k.

3.5. 3D unconditional simulation

Since the number of grid points increases dramatically in real
3D fields, the computational efficiency becomes more important in
such cases. The proposed algorithm could be employed to handle
3D grids in a limited time. The algorithm efficiency in simulating
3D fields is evaluated in this section on training images of Figs. 13a
and b. The first TI shows meandering channels (Mariethoz and
Caers, 2014) and the second one is a portion of 3D flume model of
Paola et al. (2001). The parameters settings are defined as follows
in both tests: patch size: 30�20�20, k¼10, N¼3. Unconditional
realizations are depicted in Figs. 13c and d. The results seem
acceptable in terms of pattern reproduction and continuity
preservation.

The CPU times for these realizations are 11.3 s (for Fig. 13c) and
9.8 s (for Fig. 13d). Similar tests with k¼0 (using exhaustive
search) take 1275 s and 1183 s respectively, indicating that the
proposed search algorithm accelerates the simulation process
more than 100 times. These experiments prove the applicability of
the FPSIM algorithm on real 3D fields with hundreds of thousands
of points.
4. Conclusion

In this paper a novel MPS simulation algorithm is proposed
which works based on two important factors: a new way to de-
termine the SG scanning path (based on an inpainting algorithm
taken from computer graphics literature), and an efficient search
algorithm proposed herein. The method proposed by Criminisi
et al. (2004) is modified to handle hard conditioning data by giving
more priority to points with more hard neighbors and computing
a weighted distance giving higher weights to hard data. Further-
more the original method is generalized to simulate 3D fields.

The proposed method is tested on different TIs ranging from
binary to continuous. Giving high priorities to points with high
gradient magnitudes results in proper continuity preservation.
Furthermore, the efficient search algorithm introduced in this
paper reduces the CPU time by a factor of the order of 10, com-
pared with IQ (Mahmud et al., 2014). Sedimentological and ero-
sional processes usually cause complex subsurface structures.
FPSIM shows special efficiency in simulating structured fields
where not only produces high quality results, but also achieves
higher time gains. The experiments suggest that it is possible to
achieve more time efficiency by implementing the algorithm in an
optimized programming environment.
Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2015.10.010.
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