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Identifying spatial variations of potentially toxic elements at different spatial scales and their contamination con-
ditions is important for soil management and remediation. Utilizing a 1 km × 1 km sampling grid, a total of 615
soil samples were collected from a phosphorus-rich area of South Central China and determined for arsenic (As),
cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn) con-
centrations. Factorial kriging analysis (FKA), enrichment factor (EF), and potential ecological risk (RI) were used
to examine scale-dependent correlations between the elements, identify factors of multi-scale spatial variations,
and assess pollution status, respectively. The results indicate that only the mean concentrations of As, Cd, and Pb
exceeded the background levels. Based on EFmethod, the pollution levels of As, Cd, and Pbwere assessed asmid-
dle or high, and according to the RI values, 11.2% of the study area was under considerable potential ecological
risk. Through linear model of co-regionalization (LMC) fitting, spatial multi-scale variations of elements could
be modeled as the sum of a nugget effect, an exponential structure (3 km), and a spherical structure (15 km).
At the short-range scale, spatial variations of Co, Cr, Cu, Ni, and V were controlled by parent materials, whereas
that of As, Pb, Cd, and Zn were related to human influence, such as phosphorus-related industrial activities and
river pollution. At the long-range scale, parent materials were the dominant factors regulating the spatial varia-
tions of all elements.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Soil is not only necessary for vegetation growth and acts as a sink for
contaminants, but also interactswith the atmosphere, hydrosphere, and
biosphere (Cai et al., 2015; Mihailović et al., 2015). Because of rapid ur-
banization and industrialization, soil pollution has become a pressing
problem. Among numerous kinds of soil pollutants, potentially toxic el-
ements are particularly concerning because of their non-biodegradabil-
ity and persistence (Islam et al., 2015;Mihailović et al., 2015). Excessive
accumulation of potentially toxic elements in soils not only has adverse
effects on the soil ecosystem but may also harm human health as it
passes through the food chain (Schneider et al., 2016).

Concentrations of potentially toxic elements in soils are mainly in-
fluenced by parent materials and human activities (Sollitto et al.,
2010). It has been found that the functional ranges of parent materials
f Information Engineering in
ity, Wuhan 430079, China.
and human activities on spatial variations of elements differ
(Benamghar andGómez-Hernández, 2014; Zhao et al., 2015). For exam-
ple, industrial wastewater affecting element variability generally has a
short-range scale of influence,whereas parentmaterials are likely to op-
erate over longer distances (Benamghar and Gómez-Hernández, 2014;
Lv et al., 2013). Thus, potentially toxic elements should be studied in a
scale dependent way. Factorial kriging analysis (FKA), a multivariate
geostatistical method, is particularly promising for interpreting spatial
multi-scale variations of elements. It employs co-regionalization analy-
sis to partition the spatial variations of elements into numerous spatial
components corresponding to different spatial scales (Goovaerts,
1992; Schneider et al., 2016). Combinedwith principal component anal-
ysis (PCA), this method can be used to examine the spatial correlations
between potentially toxic elements and identify the sources of spatial
variations of elements at each spatial scale (Chilès and Delfiner, 1999;
Lin et al., 2010).

With rapid economic development during recent decades, soil ele-
ment pollution has become an important problem in China (Chen et
al., 2011). Numerous surveys related to soil elements have been
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performed (Liu and Ma, 2012; Wu and Zhang, 2010), but few studies
have considered the element variability acrossmultiple scales, especial-
ly in areas with phosphate-rich rock. In this study, the phosphorus-rich
area of Zhongxiang City, South Central China, was selected. The phos-
phorus chemical industry in the study area has made significant contri-
butions to regional economic and social development (Chen et al.,
2012). However, due to a lack of pollution control during phosphoric
acid production, and the absence of standardized constructionmethods
for phosphogypsum slag sites, environmental problems, especially soil
element contamination, are becoming increasingly severe. The primary
aims of this study were to: 1) investigate concentrations of potentially
toxic elements in soils and assess their pollution levels and potential
ecological risk; and 2) identify the dominant factors regulating spatial
variations of elements at different scales. The results can be used to es-
tablish policies for protecting the soil quality in other areas with phos-
phate-rich rock.
Fig. 1. The location of study area and
2. Materials and methods

2.1. Study area

The study area is located in the northwest of Zhongxiang City, in the
central region of Hubei Province, China (Fig. 1). It includes three towns:
Huji, Linkuang and Shuanghe. This area lies within 31°11′–31°33′N and
112°7′–112°31′ E, and covers about 777 km2. It belongs to the northern
subtropical zone, and is characterized by amonsoonal climate with four
distinct seasons. The average annual temperature and rainfall are
15.9 °C and 970 mm, respectively. The elevation varies from 37 to
403 m above sea level; mountainous area is located in the northwest
and north (Fig. 2a). Parentmaterials in the study area contain phospho-
rite in the northwestern mountainous area, pyroclastic rock in the
northernmountainous area, pluvial and alluvial deposition in the north-
ern plain area, and glutenite in the western and northern parts of the
distribution of sampling sites.



Fig. 2. Topography, land use types, and parent materials of the study area.
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study area (Fig. 2c). Forest and grassland cover about 41.5% and 0.9% of
the total area, respectively, mainly in the mountainous area, and culti-
vated land accounts for 50.1% of the total area (Fig. 2b). The Hanjiang
River flows alongside the southeastern part of the study area, and is a
major water resource for agricultural, domestic, and industrial uses in
this area.

The study area is rich in phosphate-bearing rock, and there is a long
history of mining these resources. As an important area for phosphate
fertilizer production, this region now has numerous phosphate chemi-
cal enterprises and is well known in China for its phosphorus products
(e.g., monoammonium phosphate, diammonium phosphate, ammoni-
um bicarbonate, and ammonium nitrate). The biggest industrial park
of the study area, the Jingxiang Phosphorus Industrial Park, lies 2 km
west of the seat of the Huji town government.

2.2. Soil sampling and chemical analysis

A total of 615 soil samples (0–20 cm depth) were collected in the
study area in 2014. The sample sites were based on a 1 km × 1 km
grid, with each grid square containing one or two sampling sites (Fig.
1). Each sample was a mixture of five sub-samples, randomly collected
from around each sampling point with a stainless steel spade. The sam-
pling coordinates were recorded with a Global Positioning System
(GPS) device. The sampleswere air-dried at room temperature. After re-
moving stones and other debris, portions of the soil samples (about
100 g each) were ground with an agate grinder to pass a 100 mesh,
and stored in plastic bags prior to analysis.

A small portion of each samplewas digested usingHNO3–HCl–HClO4

and the concentrations of cadmium (Cd), cobalt (Co), chromium (Cr),
copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn) were
determined using inductively coupled plasma–atomic emission spec-
trometry (ICP-AES). Another small portion of each sample was digested
in aqua regia and the concentrations of arsenic (As) were measured
using atomic fluorescence spectrometry (AFS). The accuracy and preci-
sion of the analysis were controlled using blanks, replicates, and a stan-
dard reference soil sample, GSS-1 (Geochemical Standard Soil). The
analytical precision of replicate samples was within ± 10%, and the er-
rors between the measured and certified values of the elements were
below 5%.
2.3. Assessment of pollution levels and ecological risk

There aremany different indices used for assessing the pollution sta-
tus of potentially toxic elements, such as the pollution index (PI), the
integrated pollution index (IPI), the geoaccumulation index (Igeo), the
enrichment factor (EF), and the potential ecological risk index (RI)
(Mirzaei et al., 2014). Because using the EF reduces the influence of
grain size effect on element concentrations and improves quantification
of the extent of enrichment, the EFwas used in this study to understand
the pollution levels of the different elements. It is computed with the
following equation (Liu and Shen, 2014; Wu et al., 2015):

EF ¼ Ca=Crð Þsample= Ca=Crð Þbackground ð1Þ

where EF is the enrichment factor of element a, Ca is the concentration
of element a, and Cr is the concentration of a reference element. For cal-
culating the EF values, V was chosen as the reference element because V
usually originates from the parent materials of the soil, and the V con-
centrations of soils in the study area are similar to the regional back-
ground level (Wu et al., 2015). The background concentrations of
potentially toxic elements in soils of Hubei Province were selected as
the background levels (Liu andMa, 2012). Based on conventional classi-
fication standards and the characteristics of the EF (Wu et al., 2015;
Yuan et al., 2012), pollution levels of elements are classified as deficient
to minimal (EF b 1.5), middle (1.5 ≤ EF b 3), or high (EF ≥ 3).

First developed by Hakanson (1980), the potential ecological risk
index (RI) is evaluated based on the toxic-response factors of elements
and has been utilized by numerous researchers to assess the potential
ecological risk posed by potentially toxic elements (Islam et al., 2015;
Wang et al., 2014). The value of the RI is computed as follows:

RI ¼ ∑
n

i¼1
Eir ¼ ∑

n

i¼1
Ti
r � Ci

f ¼ ∑
n

i¼1
Ti
r � Ci

0=C
i
n ð2Þ

where RI is sum of the ecological risk indices of elements in soils, Eri is
the single ecological risk index, Tri is the toxic-response factor, Cfi is the
pollution coefficient of an element, and C0

i and Cn
i are the concentrations

of element i in the evaluated samples and reference background. The
toxic-response factors for As, Cd, Co, Cr, Cu, Ni, Pb, and Zn are 10, 30,
5, 2, 5, 5, 5, and 1, respectively (Yuan et al., 2014). The value of Eri is clas-
sified as low risk (Eri b40), moderate risk (40≤Eri b80), considerable risk
(80≤Eri b160), high risk (160≤Eri b320), or very high risk (Eri ≥320)
(Hakanson, 1980). The following thresholds are suggested for RI values:
RI b 65, low ecological risk; 65 ≤ RI b 130, moderate ecological risk;
130 ≤ RI b 260, considerable ecological risk; and RI ≥ 260, high ecological
risk (Hakanson, 1980; Luo et al., 2007).



Table 1
Descriptive statistics for soil element concentrations (mg kg−1).

Element As Cd Co Cr Cu Ni Pb V Zn

Mean 15.17 0.20 17.00 85.75 30.39 38.31 33.10 107.65 76.46
Maximum 48.70 0.58 32.90 119.00 64.70 70.40 53.80 164.70 142.30
Minimum 5.50 0.06 7.90 50.60 16.00 19.10 17.80 61.60 43.00
SD 5.08 0.10 3.48 11.97 5.67 7.43 9.30 16.73 16.74
CV (%) 33.48 48.52 20.51 14.03 18.68 19.37 30.89 15.45 21.91
Skewness 2.52 1.40 0.26 −0.18 1.30 −0.01 0.92 0.60 0.94
Kurtosis 10.71 1.92 1.42 0.27 4.93 0.77 3.71 1.18 1.16
Backgrounda 10.50 0.11 14.60 79.00 28.20 34.70 25.70 104.20 77.50
Guidelineb 25.00 0.30 – 300.00 100.00 50.00 300.00 – 250.00
Samples exceeding guideline value (%) 4.48 14.02 – 0.00 0.00 4.92 0.00 – 0.00

a Background: background value of potentially toxic element in soils of Hubei Province (Liu and Ma, 2012).
b Guideline: Environmental Quality Standard for Soils in China (Grade II), i.e., themaximumallowable concentration of elements in farmland soils, including arable land (vegetable, tea,

and fruit) and grazing land, formulated by the State environmental protection administration of China (SEPAC, 1995).

141C. Du et al. / Journal of Geochemical Exploration 175 (2017) 138–147
2.4. Factorial kriging analysis

Factorial kriging analysis was employed to analyze the multi-scale
structures of potentially toxic elements. This method facilitates linear
model co-regionalization (LMC) fitting to identify important informa-
tion related to interrelationships between elements at different scales
(Lin et al., 2016; Lv et al., 2015). In LMC, the auto- and cross-variograms
of a set of n variables are modeled as sums of variograms γij

u(h) at each
scale u, and can be described linearly by basic models gu(h). The LMC
can be shown in matrix from as:

γ hð Þ ¼ γij hð Þ
h i

¼ ∑
Ns

u¼1
Bugu hð Þ ð3Þ

where γ(h) states the n × n variogram matrix (diagonal and other ele-
ments representing auto- and cross-variograms, respectively), Ns is
the total number of the spatial structures, and Bu is the co-regionaliza-
tion matrix, which describes the relationships between different vari-
ables for the uth scale. This procedure was carried out using weighted
least-squares under the constraint that the co-regionalization matrices
for all structures were positive semi-definite.

Following the experiencewithmodeling the variograms of then var-
iables, a nested spatial structure, including a nugget effect, an exponen-
tial structure, and a spherical structure, was constructed and can be
expressed as:

γi j hð Þ ¼ b0i j for h ¼ 0 ð4Þ

γij hð Þ ¼ b0ij þ b1ij 1–e–h=a1
� �

þ b2ij
3
2

h
a2

� �
–
1
2

h
a2

� �3
" #

:

for 0bh≤a2 km

ð5Þ

γij hð Þ ¼ b0ij þ b1ij þ b2ij for hNa2 km ð6Þ
Table 2
Results of ANOVA for element concentrations by parent materials and land use types (mg kg−

Ns As Cd Co

Land use type Rural settlement 16 15.34b 0.33a 17.2
Cultivated land 373 14.17b 0.20b 16.4
Nature vegetation 226 16.66a 0.19b 17.8
F 19.94b 15.89b 12.3

Parent material Alluvial deposition 106 14.00c 0.28a 17.7
Pyroclastic rock 43 15.42b 0.19b 17.8
Glutenite 266 13.56c 0.17b 15.9
Phosphorite 200 17.88a 0.19b 17.7
F 34.64b 46.57b 14.0

Values marked by the same letter are not significant.
a Significant at the 0.05 level.
b Significant at the 0.01 level.
where bij
0 represents the nugget variances, bij1 states the sill for short-

range structure, bij2 is the sill for long-range structure, a1 and a2 state
the distance parameters of the short- and long-range structures.

Based on the co-regionalization matrices, the structural correlation
coefficient riju between different elements can be defined as:

ruij ¼ buij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
buii � bujj

q
ð7Þ

where bij
u is the value at position (i, j) in the matrix Bu at the particular

spatial scale u.
Principal component analysis was separately performed on each Bu

matrix to generate a set of principal components (Nanos et al., 2015).
The correlation circles were then employed to describe the correlation
coefficients between the first two principal components (PCs) and the
original variables at each scale. The FKA was carried out using the
gstat R package (Pebesma, 2004).

Each original variable can be broken down into the sum of various
spatial components corresponding to different spatial scales; the map-
ping of spatial components was carried out with ArcGIS 10.0 software
using ordinary cokriging.

When data distributions are highly skewed, the presence of outliers
maymake LMC fitting complicated. Usually, logarithm transformation is
employed to reduce the skewness coefficients of data (Liu et al., 2013),
although Box–Cox transformation generally performs better than loga-
rithm transformation (Zhang et al., 2009). Therefore, in this study, Box–
Cox transformation was adopted and after transformation, variables
were standardized with means of zero and unit variance.

3. Results and discussion

3.1. Descriptive statistics

Adescriptive summary of element concentrations in the soil samples
is given in Table 1. The average concentrations of the elements
1).

Cr Cu Ni Pb V Zn

6a 86.44a 33.59a 39.47a 32.31b 115.99a 89.39a
5b 84.70b 29.48b 37.02b 31.78b 106.95a 74.70c
8a 87.44a 32.74a 40.36a 34.24a 108.22a 78.46b
4b 3.75a 5.18b 15.07b 8.02b 2.45 8.68b

4a 90.32a 33.55a 40.81a 30.58c 123.37a 89.85a
0a 90.19a 31.23b 40.92a 33.03a 108.84b 79.92b
9b 81.54c 28.56c 35.44b 31.09b 101.13c 69.26c
7a 87.96b 30.95b 40.24a 34.30a 107.74b 78.21b
1b 22.49b 23.50b 26.40b 34.46b 57.01b 50.05b



Fig. 3. Potential ecological risk (RI) map for elements.
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decreased in the following order: V N Cr N Zn N Ni N Pb N

Cu N Co N As N Cd. The average concentrations of Co, Cr, Cu, Ni, V, and
Zn were close to the background levels in soils of Hubei Province,
which indicates only slight human inputs for these elements
(Liu and Ma, 2012). The mean concentrations of As, Cd, and Pb were
1.44, 1.82, and 1.28 times as high as the background levels, which
suggests that these elements may be influenced by human inputs
(Liu and Ma, 2012). The coefficient of variation (CV) for element con-
centrations showed a wide range, from 14.03% to 48.52%. Cadmium
had the highest CV value, reaching 48.52%, which indicates that Cd
may have the highest probability of being affected by anthropogenic in-
puts (Chen et al., 2008). Chromium had the lowest CV value at 14.03%,
which implies that Cr was fairly homogeneously distributed across the
study area (Cai et al., 2015). Some elements, such as As and Cd, had
skewness values significantly higher than zero. Therefore, in FKA, for
the purpose of eliminating the skewness values of elements and facili-
tating LMC fitting, Box–Cox transformation was carried out on the orig-
inal data set.

According to the Environmental Quality Standard for Soils in China
(SEPAC, 1995), the mean concentrations of As, Cd, Cu, Ni, Pb, and Zn
all fell under the guideline values. For As and Cd, about 4.5% and 14.0%
of the samples, respectively, exceeded their corresponding guideline
values. In addition, 4.92% of the samples exceeded the guideline value
for Ni, but this might be attributed to a high background Ni value
(Table 1). In general, there was slight element contamination in the
study area.

3.2. Comparison of element concentrations between land use types and par-
ent materials

To examine the total variation associated with environmental fac-
tors, analysis of variance (ANOVA) was employed to compare element
concentrations between different groups (i.e., land uses and parentma-
terials). ANOVA results by land use types and parent materials are pre-
sented in Table 2. There were significant differences for all element
concentrations except for V between various land use types. The mean
concentrations of Cd and Zn in rural settlement were significantly
higher than those associatedwith other land uses, whichmay be attrib-
uted to intensive human activities. The mean concentrations of As, Pb,
Zn, Co, Cr, Cu, and Ni in cultivated land were significantly lower than
Table 3
Statistical results for the enrichment factor (EF) and the potential ecological risk (RI) of
elements.

Element EF Percentage of samples with
each pollution level (%)

Min Max Mean Low Middle High

As 0.6 5.1 1.4 74.3 23.7 2.0
Cd 0.4 6.2 1.7 48.6 46.3 5.1
Co 0.5 2.1 1.1 96.7 3.3 0.0
Cr 0.8 1.9 1.1 99.8 0.2 0.0
Cu 0.6 2.3 1.1 99.0 1.0 0.0
Ni 0.6 2.2 1.1 99.3 0.7 0.0
Pb 0.6 2.2 1.3 87.8 12.2 0.0
Zn 0.6 2.4 1.0 98.9 1.1 0.0

Potential ecological risk for elements

Element Potential ecological index range (Eri) Mean (Eri) SD

As 5.2–46.4 14.4 4.8
Cd 15.5–151.8 52.2 25.4
Co 2.7–11.3 5.8 1.2
Cr 1.3–3.0 2.2 0.3
Cu 2.8–11.5 5.4 1.0
Ni 2.8–10.1 5.5 1.1
Pb 3.5–10.5 6.6 1.8
Zn 0.6–1.8 1.0 0.2
RI 49.3–221.5 92.2 27.2
in natural vegetation, including grassland and forest, which may be as-
sociated with the high geological background concentrations and indi-
cates that agricultural practices had insignificant influence on
concentrations of these elements.

Themean concentrations of As and Pb in soils from phosphorite and
pyroclastic rock were significantly higher than those associated with
other parent materials, which indicates influence of these parent mate-
rials. The mean concentrations of Co, Cr, Cu, Ni, and V in soils from
glutenitewere significantly lower than those from the other parentma-
terials, indicating that parent materials affected these element concen-
trations. For Cd and Zn, the mean concentrations in soils from pluvial
and alluvial deposition were higher.

3.3. Pollution and ecological risk assessment

The EF values for elements are shown in Table 3. Themean EF values
for Co, Cr, Cu, Ni, and Zn were 1.1, 1.1, 1.1, 1.1, and 1.0, respectively.
About 96.7%, 99.8%, 99.0%, 99.3%, and 98.9% of the samples, respectively,
were at the deficient tominimal pollution level for Co, Cr, Cu, Ni, and Zn,
indicating that there were no apparent pollution problems associated
with these elements. The EF values for Pb were between 0.6 and 2.2,
with an average value of 1.3, and 12.2% of the samples were at a middle
pollution level, which suggests that there may be Pb pollution in some
soils. Respectively, the mean EFs for As and Cd were 1.4 and 1.7, and
Table 4
Parameters for LMC and the ratios of nugget or sill to total variation for each scale.

Parameters of LMC Ratio of nugget or sill to total variation
for each scale

Nugget
effect

Sill of
short-range

Sill of
long-range

Non-spatial
scale

Short-range
scale

Long-range
scale

As 0.345 0.591 0.180 0.309 0.530 0.161
Cd 0.367 0.397 0.255 0.360 0.390 0.250
Co 0.655 0.203 0.307 0.562 0.174 0.264
Cr 0.599 0.249 0.173 0.587 0.244 0.169
Cu 0.583 0.352 0.091 0.568 0.343 0.089
Ni 0.590 0.164 0.326 0.546 0.152 0.302
Pb 0.344 0.705 0.088 0.303 0.620 0.077
V 0.562 0.109 0.359 0.546 0.106 0.349
Zn 0.391 0.317 0.337 0.374 0.303 0.322



Table 5
Structure correlation coefficients between elements.

Element As Cd Co Cr Cu Ni Pb V Zn

General correlation As 1.00
Cd −0.11 1.00
Co 0.58 −0.06 1.00
Cr 0.53 −0.11 0.67 1.00
Cu 0.42 0.26 0.51 0.68 1.00
Ni 0.57 0.00 0.76 0.89 0.71 1.00
Pb 0.63 −0.04 0.50 0.34 0.36 0.32 1.00
V 0.42 0.07 0.65 0.86 0.69 0.82 0.20 1.00
Zn 0.32 0.44 0.42 0.46 0.76 0.59 0.20 0.59 1.00

Nugget effect As 1.00
Cd −0.05 1.00
Co 0.27 0.05 1.00
Cr 0.49 0.10 0.59 1.00
Cu 0.13 0.35 0.42 0.62 1.00
Ni 0.40 0.15 0.70 0.88 0.62 1.00
Pb 0.31 0.00 0.45 0.37 0.29 0.234 1.00
V 0.37 0.24 0.60 0.90 0.66 0.80 0.31 1.00
Zn −0.05 0.54 0.39 0.68 0.67 0.68 0.06 0.77 1.00

Short scale (3 km) As 1.00
Cd 0.16 1.00
Co 0.32 −0.58 1.00
Cr 0.23 −0.61 0.58 1.00
Cu 0.51 0.06 0.44 0.45 1.00
Ni 0.52 −0.51 0.48 0.82 0.60 1.00
Pb 0.67 0.13 0.53 0.55 0.56 0.57 1.00
V 0.41 −0.39 0.14 0.79 0.48 0.74 0.41 1.00
Zn 0.78 0.66 0.01 −0.26 0.53 0.04 0.56 −0.09 1.00

Long scale (15 km) As 1.00
Cd −0.24 1.00
Co 0.58 0.56 1.00
Cr 0.49 0.64 0.88 1.00
Cu −0.01 0.94 0.72 0.85 1.00
Ni 0.52 0.57 0.97 0.93 0.77 1.00
Pb 0.67 −0.75 0.10 −0.12 −0.58 0.06 1.00
V 0.02 0.90 0.765 0.83 0.97 0.78 −0.53 1.00
Zn 0.03 0.85 0.73 0.84 0.96 0.82 −0.49 0.92 1.00
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about 25.7% and 51.4% of the samples were at the middle or high pollu-
tion level for these elements, which indicates the presence of As and Cd
pollution in these soils.

The results for potential ecological risk are shown in Table 3, and the
risk map is depicted in Fig. 3. The Er

i values for the nine elements de-
creased in the following order: Cd N As N Pb N Co N Ni N Cu N Cr N Zn.
The Eri values for Co, Cr, Cu, Ni, Pb, and Znwere lower than 40 in all sam-
ples, which indicates that these elements posed a low ecological risk. In
contrast, the Er

i values for As and Cd showed broader ranges, 5.2–46.4
and 15.5–151.8, respectively. For As, 0.7% of the samples indicated a
moderate ecological risk, and for Cd, 62.9% of the samples showed a
Fig. 4. Correlation circles for ele
moderate or considerable ecological risk. The RI values were used to
represent the ecological risk posed by various elements. RI values
were below130 for 88.8% of the study area,which indicates that thema-
jority of the study area had a low or moderate ecological risk. The re-
maining 11.2% of the study area was characterized by RI values
between 130 and 260, which indicates that the potentially toxic ele-
ments in this area may pose a considerable ecological risk. The highest
RI values were found in the area adjacent to the Hanjiang River (Fig.
3). It was apparent that Cdwas the key element representing the poten-
tial ecological risk of element contamination in the study area (Table 3
and Fig. 3).
ments at each spatial scale.
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3.4. Structure variation analysis

3.4.1. LMC fitting
FKA was carried out to analyze multi-scale spatial characteristics of

the nine potentially toxic elements at 615 sampling points. Based on
variogram analysis, 3 km and 15 km were selected as the distance pa-
rameters (a1 and a2 in Eqs. (4)–(6)) of short- and long-range structures.
Then, the procedure of LMC fitting was carried out.

The parameters for LMC and the ratio of nugget or sill to total varia-
tion for all spatial structures are presented in Table 4. All elements had a
large component of the nugget effect, ranging from 30.3% to 58.7%.
Some previous studies have employed nugget/sill ratios to assess the
spatial dependence of potentially toxic element concentrations with
two thresholds (0.25 and 0.75) and ascribed high spatial dependence
on intrinsic factors (e.g., parent materials, soil types, and topography)
and low spatial dependence on extrinsic factors (e.g., human
Fig. 5. Cokriged maps of spatial comp
contamination) (Cambardella et al., 1994; Wang and Lu, 2011). In the
present study, it was found that Co, Cr, Ni and V, which had low CV
values and were assessed at the deficient to minimal pollution level
based on the EF method had the highest nugget/sill ratios, and that As
and Pb, which had high CV values and were apparently polluted, had
the lowest nugget/sill ratios, which is inconsistent with these studies
(Li et al., 2013;Wang and Lu, 2011). This discrepancymay exist because
nugget variances are commonly caused by measurement error and es-
pecially spatial variations that cannot be detected within the shortest
sampling resolution because of coarse sampling intervals (Lv et al.,
2014; Xu et al., 2014). Therefore, the nugget/sill ratio should be used
with caution to associate observations with intrinsic or extrinsic factors
based on spatial dependence. Short-range structure was the largest
component for As, Cd and Pb; it accounted for 53.0%, 39.0%, and 62.0%
of the total variance of each of these elements, respectively, which indi-
cates the apparent influence of human activities on short-range spatial
onents at the short-range scale.
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variations. As Table 4 shows, long-range structure was the smallest
component for all nine elements.

3.4.2. Multi-scale interrelationships between elements
Structure correlation coefficients between elements at different

scales are shown in Table 5. Traditional correlation coefficients do not
reflect the real interrelationships between variables because they aver-
age out distinct changes in correlation structures at different spatial
scales and encompassmeasurement errors inherent in the nugget effect
(Liu et al., 2013). For example, the Spearman's nonparametric correla-
tion coefficient betweenCd andVwas 0.07,whereas after the nugget ef-
fect was filtered out, the correlation coefficients at the short- and long-
range scales were −0.39 and 0.90, respectively.

The correlations between elements at the long-range scale were
highest, which is because the nugget effect and short-range variances
Fig. 6. Cokriged maps of spatial comp
were filtered out. At the nugget effect, short- and long-range scales, As
and Pb showed significant positive correlations with each other,
which indicates that these two elements may share common sources.
Cobalt, Cr, Cu, Ni, and V were also highly correlated at all spatial scales,
indicating that the concentrations of these elements were influenced by
the same factors. Cadmium and Zn showed strong correlations with Co,
Cr, Cu, Ni, and V at the long-range scale, whereas weaker correlations
with these elements for the nugget effect and short-range scale may
be because Cd and Zn concentrations were locally impacted by human
inputs. It can be concluded that the correlation coefficients between el-
ements in the study area depended on the spatial scale.

3.4.3. Principal component analysis at different spatial scales
Principal component analysis was carried out on the co-regionaliza-

tion matrices to summarize the relationships among elements at
onents at the long-range scale.
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different spatial scales, and the correlations between the first two PCs
and the elements at each spatial scale are displayed in the unit circle
(Fig. 4). As discussed above, nugget variances contain the variances
within the sampling intervals and measurement errors, both of which
cannot be eliminated in structure analysis. Therefore, at the nugget ef-
fect scale the element sources cannot be accurately identified based
on the results of principal component analysis.

At the short-range scale, PC1 explained 56.6% of the total variance,
significantly positive loadings in Co, Cr, Cu, Ni and V and highly negative
loadings in Cd and Zn. PC2 accounted for 36.9% of the total variance,
with highly positive loadings of As, Cu, Pb, and Zn. At the long-range
scale, PC1 accounted for 78.3% of the total variance, and had highly pos-
itive loadings with Cd, Co, Cr, Cu, Ni, V, and Zn, whereas PC2 explained
21.2% of the total variance, and has higher loadings for As and Pb.

At the short-range scale, Co, Cr, Cu, Ni, and V were sorted into the
same group, which can be considered to be attributed to natural
sources. The concentrations of Co, Cr, and Ni in soils are controlled by
their concentrations in parent rock, which has been clearly illustrated
by many studies (Facchinelli et al., 2001; Nanos and Rodríguez Martín,
2012).Moreover, their human inputs are generally lower than the back-
ground concentrations in the soils (Facchinelli et al., 2001). The spatial
component maps show that the hotspots of Co, Cr, Cu, Ni, and V at the
short-range scale were not located at mining sites or residential areas,
but seemed to be random,whichmay be related to small patches of par-
ent rock (Fig. 5c, d, e, f, and h) (Lv et al., 2014). In addition, the mean
concentrations of Co, Cr, Cu, Ni, and V were approximately equivalent
to their background levels, and their CV values were low, which indi-
cates there were no apparent human inputs for these elements. There-
fore, it can be concluded that Co, Cr, Cu, Ni, and V at the short-range
scale were mainly influenced by natural factors.

At the short-range scale, As, Pb, Cd, and Zn were associated with an-
thropogenic sources. As discussed above, 25.7%, 51.4%, and 12.2% of the
samples had As, Cd, and Pb, respectively, at themiddle or high pollution
level based on the EF assessment, and As, Cd, and Pb also had higher CV
values. These features clearly demonstrate the influence of anthropo-
genic sources. Short-range variations of As, Pb, Cd, and Zn had a com-
mon hotspot with higher values in the northern part of the study area
(Fig. 5a, b, g, and i), which was consistent with the location of the
Jingxiang Phosphorus Industrial Park. Therefore, it can be inferred that
this hotspot of As, Pb, Cd, and Zn was linked to phosphorus-related in-
dustrial activities. During phosphoric acid production, wastewater and
residues that contain many potentially toxic elements (including these
four elements) are released into the soil. In addition, large amounts of
phosphogypsum are sometimes stacked in the vicinity of phosphate
rock mining enterprises, which also affect short-range variations of As,
Pb, Cd, and Zn through runoff and soil erosion. Another hotspot of
short-range variations of Aswas located in the vicinity of old arsenic en-
terprises in the northwestern part of the study area (Fig. 5a). Although
these arsenic enterprises were closed, complete elimination of As pollu-
tion in this area will require a significant amount of time. The surround-
ing regions of the Hanjiang River had higher values of short-range
variations of Cd and Zn, which indicates the influence of this River on
these elements (Fig. 5b and i). The water quality of the Hanjiang River
is markedly affected by wastewater discharge from cities along the
river such as Xiangyang City, approximately 80 km upriver from the
study area, which contributes 53% of the wastewater discharged into
the river (Lei et al., 2015). It has been reported that the sediments of
the middle and lower Hanjiang River are severely polluted with Cd
and Zn (Gao et al., 2011). Unavoidably, irrigation with water from the
Hanjiang River may cause Cd and Zn pollution in the soil. Therefore,
the high values of short-range variations of Cd and Zn in the soils adja-
cent to the Hanjiang River were mainly attributed to the long-standing
practices of irrigation using water from the Hanjiang River.

Many previous studies have found that agricultural practices have
significant influence on short-range variations of Cd, Pb, and Zn in agri-
cultural area due to the application of pesticides and fertilizer (Lv et al.,
2015; Rodríguez et al., 2008). However, in this study, at the short-range
scale, the spatial components of Cd, Pb, and Zn levels in cultivated land
did not show significantly higher values (Figs. 2b and5b, g, and i),which
is confirmed by with the results of ANOVA for land use types (Table 2).
In addition, the distributions of short-range variations of Cd, Pb, and Zn
in cultivated landwere similar to those of Cr and Ni, which generally are
not affected by agricultural practices (Nanos and Rodríguez Martín,
2012). Therefore, it can be concluded that agricultural practices did
not show significant influence on short-range variations of Cd, Pb, and
Zn.

At the long-range scale, Cd, Co, Cr, Cu, Ni, V, and Zn were classified
into the same group and were controlled by parent materials. Through
spatial overlay analysis, it was found that the higher values of spatial
variations of Cd, Co, Cr, Cu, Ni, V, and Zn were mainly in soils originated
from phosphorite, pluvial and alluvial deposition, and pyroclastic rock,
whereas low values were associated with glutenite parent rock, which
indicates the lithologic nature of Cd, Co, Cr, Cu, Ni, V, and Zn at the
long-range scale (Figs. 2c and 6b, c, d, e, f, h, and i). This inference is con-
firmed by the results of ANOVA for parent materials (Table 2). At the
long-range scale, As and Pb showed little correlation with Cd, Co, Cr,
Cu, Ni, V, and Zn and also were natural in origin. The higher values of
long-range variations for As and Pb were mainly in soils from phospho-
rite and pyroclastic rock (Figs. 2c and 6a and g), which indicates the in-
fluence of natural factors on these two elements, and is also confirmed
by the results of ANOVA for parentmaterials (Table 2). Generally, parent
materials with wide distributions operate at longer distances to domi-
nate long-range variability when short-range variations influenced by
human sources are filtered out (Lv et al., 2014; Nanos and Rodríguez
Martín, 2012). Previous studies have also indicated that long-range var-
iations of elements coincide with bedrock distribution and are mainly
influenced by parent materials (Davies, 1997; Lv et al., 2013).

4. Conclusions

The spatial multi-scale variations of potentially toxic elements in a
phosphorus-rich area, Zhongxiang, South Central China were revealed
based on the analysis of 615 topsoil samples. The average concentra-
tions of Co, Cr, Cu, Ni, V, and Zn were similar to the regional levels in
local soils, whereas the mean concentrations of As, Cd, and Pb were
1.44, 1.82, and 1.28 times as high as the background levels, respectively.
According to the EF values, Co, Cr, Cu, Ni, and Zn were mainly natural in
origin; in contrast, As, Cd, and Pb were influenced by anthropogenic in-
puts. Pollution levels of these three elementsweremiddle to high. Based
on RI values, 11.2% of the study area was under considerable potential
ecological risk due to potentially toxic element pollution, whereas the
remaining area had low ormoderate ecological risk. Spatial correlations
between the studied elements depended on spatial scales, which indi-
cates that traditional correlation coefficients did not reflect the real in-
terrelationships among the elements. Parent materials were the main
factor that influenced the structure variations of nine elements at both
the short- and long-range scales. At the short-range scale, phospho-
rus-related industrial activities increased the values of Cd, Zn, As, and
Pb, and the polluted Hanjiang River resulted the higher values of Cd
and Zn in regions near the river. These results should be taken into ac-
count when establishing policies for protecting the soil quality of the
study area.
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