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Hatu and Baogutu are two typical gold deposits in the study area. Hatu gold deposit is associated with
magmatism and controlled by regional-scale faults; mineralisation mainly occurs within hydrothermally altered
felsic rocks and quartz veins. In thewest region of theHatumining area, Cu, Ag, As and Sb are present in high con-
centrations in carbon tuffaceous shale. Baogutu gold deposit is associated with the evolution of felsic magmas,
and the porphyry copper-gold mineralisation and copper-gold ore body dominated by sulphide were formed
in the rock or near the contract zone in the faults, respectively. The ore-forming elements include Au, As and
Sb. In this study, exploratory data analysis (EDA) and singularitymapping (SM) techniqueswere applied to iden-
tify geochemical anomalies caused by Au-relatedmineralisation according to stream sediment geochemical data
set in Karamaymineral district, northwestern China. Silver, As, Au and Sbwere chosen as indicator elements. The
results show that EDA could not well identify weak anomalies within the strong variance of the background,
while SM can recognise effectively weak anomalies, and quantify the properties of enrichment caused by
mineralisation. The results obtained by SM demonstrated that the anomalies are closely associated with the
known Au deposits in the study area. The anomalous areas delineated by the SM have potential for follow-up
mineral exploration. In addition, the results document that Ag, As, Au and Sb may be reliable indicator elements
for Au-related mineralisation in the study area.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Identifying anomalies during mineral exploration is one of the basic
tasks in geochemical data utilisation. Several techniques can be used to
identify anomalies in geochemical data sets, which can be broadly
classified into two categories according to the number of thresholds
used in the study area: (i) ‘hard threshold techniques’ (employing a
global threshold level for all data in the study area), and (ii) ‘soft thresh-
old techniques’ (which employs local, dynamical thresholds over a
study area). For hard threshold techniques, the anomaly threshold is
often calculated, e.g. by using the mean of a variable or element plus
two or three times the variable/element’s standard deviation (MSTD)
(Reimann and Garrett, 2005; Reimann et al., 2005; Xie et al., 2008a),
or by the value of the median of a variable or element plus two times
the median absolute deviation (MMAD) (Bounessah and Atkin, 2003;
Chipres et al., 2009; Reimann and Filzmoser, 2000; Reimann et al.,
2005) or by using the concentration–area (C-A) multifractal model
(Cheng et al., 1994). In soft threshold techniques, some window-based
contrast filtering methods (Jin and Chen, 2011; Shi et al., 1999; Zhao
et al., 2012b), such as the spectrum and area model (S-A model)
(Cheng, 2000) and the SM technique developed by Cheng (2007a), are
widely used (Chen et al., 2007; Cheng et al., 2009; Wang et al., 2013a,
b; Zuo and Cheng, 2008; Zuo et al., 2013, 2015–in this issue).

In China, theMSTD is often used as the canonical anomaly threshold
definition, in the statistical treatment of regional geochemical data for
mineral exploration, even at the present time when computers and
new and efficient techniques are available. MMAD, as a kind of explor-
atory data analysis (EDA), is considered a robust method of treating
exploration data. By contrast, the C-Amodel has limited success in iden-
tifying weak anomalies in covered areas (Zuo et al., 2013), and expert
knowledge is needed to determine the anomaly threshold according
to the log-log plot. The problem in using contrast filtering methods is
that the size of the window used needs to be determined according to
a priori knowledge, which limits practical application. The S-A model
is complicated and suffers from edge effects in irregularly shaped
study areas (Zuo et al., 2013). By contrast, the SM technique has been
reported widely and often produces meaningful results when used in
the statistical treatment of geochemical data (Bai et al., 2010; Cheng,
2012; Sun et al., 2010; Xiao et al., 2012; Zuo et al., 2013).
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In this paper, the Hatu and Baogutu gold districts in Karamay,
Xinjiang, China are selected as the study area used for comparison of
the results of MMAD (hard threshold) and the SM technique (soft
threshold) with respect to identifying geochemical anomalies associated
with mineralisation.

2. Study area and data set

The study area (Fig. 1) is located in the western Junggar Basin,
approximately 330 km northwest of Urumqi, Xinjiang, China. This dis-
trict is mainly controlled byNNE faults. Major faults in this area include,
from north to south, the Hatu, Anqi, Darabut and Yijiaren faults. The
Darabut ophioliticmélange belt, distributed as a band along theDarabut
fault, is approximately 50 km2 in size, whichwas tectonically disrupted,
and now forms the present imbricate structure that ismainly controlled
by thrust faults. Materials from the oceanic crust often appear in terrig-
enous detrital sediment at old continental margins, and exhibit
geochemical characteristics that are similar to the materials from the
mantle (Zhang and Huang, 1992). Major plutonic rocks are represented
by Miaoergou, Hatu, Akebasitao, Red Mountain and north Karamay
granite batholiths in this area, with an age of 300 Ma from zircon
LA-ICP-MS U-Pb (Su et al., 2006). The distributions of intrusive rocks
and ore deposits in this area are highly correlated with the faults.

The Hatu gold deposit in the NW and the Baogutu gold deposit in the
SE of the study area are two representative deposits of the regional
mineralisation geology. The Hatu gold deposit is controlled by two NE
trending faults, namely, Anqi (extension fault) and Hatu (compression
and scissor fault). SomeNW,NE and EWtrending secondary faults are as-
sociated with ore formation and with the NE trending fault. The ore bod-
ies occur in groups, en échelon, and end-to-end alignment (Zhu et al.,
2013). The Hatu gold deposit mainly consists of superficial quartz vein-
type and altered rock-type ore bodies, and these ore bodies are products
of a homologous hydrothermalflow (Zhang, 2003). Copper, Ag, As and Sb
are present in high concentrations in carbon tuffaceous shale. Antimony
occurs in the Lower Carboniferous stratum. Gold mineralisation is asso-
ciated with silicification, sericitisation, pyritisation and arsenopyrite
Fig. 1. Simplifiedmap of regional tectonics, magmatic rocks and alteration districts in the north
formation; C1b = Baogutu formation).
mineralisation. The main mineral assemblage is arsenopyrite-pyrite-
native gold-native arsenic-native antimony-stibnite. Arsenopyrite is the
ore mineral of this gold deposit, and its element association is Au, As
and Sb (Zhu et al., 2013).

China’s National Geochemical Mapping Project (Regional Geochem-
istry National Reconnaissance) was initiated in 1979 (Xie et al., 1997),
and the project covered more than 6 million km2 (Xie et al., 2008b).
This project mainly collected stream sediment samples. In this study,
the density was one sample per km2. To reduce the laboratory load,
four samples were composited into one sample for analysis representing
4 km2 (Fig. 2). For the purposes of this study, four elementswere selected
from the 39 elements thatwere determined (Wang et al., 2011; Xie et al.,
2008b), which are closely related to the mineralisation, namely, Ag, As,
Au and Sb. Silver was determined using emission spectrometry (ES)
with a detection limit of 0.1 mg/kg. Arsenic and Sb were determined
by hydride generation–atomic fluorescence spectrometry (HG-AFS),
and their detection limits were 0.005 and 0.1 mg/kg respectively. Gold
was determined by graphite furnace–atomic absorption spectrometry
(GF-AAS) with a detection limit of 0.1 mg/kg. Details on the quality con-
trol procedures are reported by Xie et al. (1996), Cheng et al. (1997) and
Liu et al. (2015–in this issue).

Many research projects on geochemical anomaly recognition were
conducted on the basis of China’s National Geochemical Mapping Pro-
ject, and these projects used methods such as the C-A fractal model
(Cheng et al., 1994), the concentration–distance fractal model (Li
et al., 2003), the spectrum–area (S-A) model (Cheng, 2000), and the
SM technique (Cheng, 2007a; Wang et al., 2013b; Xiao et al., 2012;
Zuo et al., 2009, 2012, 2013), which involved both the frequency distri-
butions and the spatial self-similar properties of geochemical variables.
These models are effective tools for decomposing complex and mixed
geochemical populations, and for identifying weak geochemical anom-
alies hidden within a strong geochemical background (Cheng, 2007a;
Cheng and Agterberg, 2009; Cheng et al., 2010). In the present paper,
the effectiveness of EDA and SM techniques to identify geochemical
anomalies related to gold deposits are compared using the stream
sediment geochemical data from the Karamay area.
western Xinjiang Autonomous Region, China (C1x=Xibeikula formation; C1t= Tailegula



Fig. 2. Simplified map of stream sediment geochemical sample locations.
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3. Methodology

3.1. EDA

The principles of the EDA (Tukey, 1977) are unlike those of conven-
tional statistical techniques because EDA does not require a data set to
follow normal or log-normal distribution. A boxplot is plotted by first
ordering data values from minimum to maximum, or vice versa (Kürzl,
1988). The median value is determined by counting halfway through
the data values, thereby dividing the univariate data set into two equal
parts. Subsequently, by counting halfway from the minimum to the
median and from the maximum to the median, the lower hinge (LH)
and the upper hinge (UH) values are estimated, respectively. With the
lower hinge, median and upper hinge, a data set is thus divided into
four approximately equal parts known as quartiles. A box is then
drawn between the lower and upper hinges. The box is usually divided
by a line at themedian value. The absolute difference between the values
at the lower and upper hinges represents the inter-quartile range (IQR)
or hinge width:

hinge width ¼ IQR ¼ lower hinge–upper hingej j ð1Þ

A lower inner fence (LIF) and an upper inner fence (UIF) are defined
at 1½ × IQR away from the lower hinge towards the minimum value
and the upper hinge toward the maximum, respectively. Algebraically,
values (X) at the LIF and the UIF are estimated as:

XLI F ¼ XLH– 1:5� IQRð Þ ð2Þ

XUIF ¼ XUH þ 1:5 � IQRð Þ ð3Þ

The data values beyond the inner fences are considered as outliers.
In this paper, the outliers corresponded with the geochemical
anomalies, and the values beyond the upper hinge (XUIF), rather than
those of XLIF, were taken into consideration only.
3.2. Singularity mapping technique

Formation of an ore deposit can be a complex, nonlinear process.
The mineralisation process may occur repeatedly at different periods,
and a deposit may be transformed many times by geological activities.
The key conceptual issue supported by many studies is that the intensi-
ty, geometricalmorphology and frequency distribution of anomalies re-
lated tomineralisation almost certainlywill be different fromanomalies
that are related to a regional geological process (Cheng et al., 2007).
Research on and application of nonlinear fractal theory and associated
methods have proven that anomaly patterns, produced by different
geological processes, have different scaling properties, anisotropy and
general self-similarity characteristics (Cheng, 2007b). Thus, both
anomaly and background information are present in geochemical
sample data sets. Sampling may also be affected by other factors, such
as sedimentation of aeolian sandy soil, landform, rainwash and vegeta-
tion. Because of these complex mechanisms, conventional statistical
methodsmay be not effective in the treatment of geochemical data sets.

The local singularity index model was proposed by Cheng (1999),
based on nonlinear fractal theory and was considered to be an effective
method to characterise special phenomena accompanied by energy re-
lease or material accumulation within narrow spatial–temporal inter-
vals. This singularity property has been observed in geochemical data
sets (Ali et al., 2007; Cheng and Agterberg, 2009; Sun et al., 2010; Xiao
et al., 2012; Zuo et al., 2009, 2013). This technique can advantageously
be used to discriminate geochemical anomalies from regional or local
backgrounds. For a two-dimensional situation, the principle of the
singularity model can be quantitatively described by the following
power–law relationships (Cheng, 2007a):

μ Aið Þ∝ A
α
2
i ð4Þ

ρ Aið Þ∝ A
α
2−1
i ð5Þ

where μ(Ai) and ρ(Ai) denote the amount and density of a certain phys-
ical quantity in an area (Ai), respectively.∝ denotes proportionality and
α is the estimated singularity index. When applied to a geochemical
map, α N 2 or α b 2 represent enrichment and depletion of element



Fig. 3. Frequency distributions of Ag (A), As (B), Au (C) and Sb (D) concentration data from
stream sediment samples.
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concentrations, respectively (Cheng, 2007a; Zuo et al., 2013). At
locationswhere the singularity index α≈ 2, neither positive nor negative
geochemical singularity is observed. Thus, singularities on a geochemical
map can provide significant information for identifying geochemical
anomalies associated withmineralisation (Xiao et al., 2012). More details
associated with this method are available in other papers (Cheng, 2007a,
2011; Xiao et al., 2012; Zuo and Cheng, 2008; Zuo et al., 2013).

To estimate the local singularity from a geochemical map, in the
present study, a window-based approach was used as follows:

Step 1 A spatial interpolation method was used to obtain raster maps
fromdata sets, based on inverse distanceweighted interpolation.
All such raster maps were resampled with an appropriate spatial
resolution (the spatial resolution is approximately 2 km), and
four raster maps (Ag, As, Au and Sb) were produced in this step.

Step 2 Given a location on the map, a set of sliding windows A(ri)
(square windows) with variable edge sizes, ri × ri (ri = 3, 5, 7,
…, 15 − ri represent the number of cells along the edge of the
sliding window) was used. For each window, the average con-
centration value Mj[A(ri)] (j = 1, 2, 3, …, n) [n represents the
total number of the grid in the raster map produced in Step 1]
was calculated.

Step 3 TheMj[A(ri)] values for every location (j) showa linear trendwith
linear size ri on log-log plot, or logM[A(r)] = c + (α−2)log(r).
The points were fitted with a straight line by using the least
squares method, and the slope of the linear relationship was
assumed as the estimate of (α − 2), where α represented the
singularity of location (j).

3.3. Principal component analysis

Principal component analysis (PCA) is a widely used multivariate
statistical method in the treatment of geochemical data and mineral
exploration studies (Cheng, 2008; Wang et al., 2012; Xiao et al., 2012;
Zhao et al., 2012a; Zuo, 2011). Interrelated variables with high
dimensionality can be transformed into several uncorrelated principal
components (PCs) based on a covariance or correlation matrix using
the PCA technique. A reduced number of PCs provides a more compre-
hensive and oftenmore interpretable information for specific objectives.

4. Analysis of mono-element data distributions

A total of 1,444 stream sediment samples in the present data set were
used in this study, which covered approximately 11,600 km2. Silver, As,
Au and Sb were selected. These analytical results of each element
contained some extremes (Fig. 3). The frequency distributions of As
(Fig. 3-B) and Au (Fig. 3-C) were clearly positively skewed distributions.
While the frequency distributions of Ag (Fig. 3-A) and Sb (Fig. 3-D)
tended to follow a normal distribution without consideration of the
outliers. However, based on their quantile-quantile (Q-Q) plots, Ag, As,
Au and Sb were not normally distributed (Fig. 4).

Formore insight as to the distribution of single element, thedata sets
of Ag, As, Au and Sbwere transformedby applying the natural logarithm
method, and the frequency distribution plot (Fig. 5) and Q-Q plot
(Fig. 6) were plotted. The four logarithmically transformed data sets
appeared much more to follow a normal distribution. However, the
Q-Q plot (Fig. 6) and the results of normality testing showed that the
concentration data sets of the four elements still did not follow a normal
distribution. Thus, the exploratory geochemical data set did not follow a
log-normal distribution.

Two conventions were used in the ensuing data treatment:

1) A known gold deposit/occurrence is taken to be consistent with an
anomaly if the distance of the deposit and the anomaly is shorter
than 2 km (namely, the length of one grid on the raster map).
2) The known gold deposits or gold occurrences are both called gold
deposits, regardless of their size and scales.
5. Identification of geochemical anomalies using EDA

Interpolated geochemical raster maps were produced using the in-
verse distance weighting (IDW) for Ag, As, Au and Sb before the hard,
global anomaly threshold was calculated by EDA. The maximum
neighbours were 15 and minimum neighbours 10, and the cell size of
these maps was approximately 2 km after resampling. The resulting
thresholds for Ag, As, Au and Sb were 121.31 μg/kg, 20.55 mg/kg 6.71
μg/kg and 1.35 mg/kg respectively. The geochemical anomaly maps of
Ag, As, Au and Sb are shown in Fig. 7-A to D.

The known gold deposits were closely related to the resulting Au
anomalies (Fig. 7-C). The Au anomalies covered 12.11% of the study
area, and 23 known gold deposits were consistent with Au anomalies,
which accounted for 85.19% of the total known gold deposits. The
known gold deposits are mainly located at the north and southwest
districts of the study area, and the Au anomalies were also distributed
over these twodistricts. The knowngold depositswere not closely related
to Ag, As and Sb anomalies (Fig. 7-A, B and D). The percentage of As, Cu
and Zn anomalies in the study area were 2.92%, 5.39% and 3.26%, respec-
tively, and only 33.3% (9), 40.74% (11) and 40.74% (11) known gold de-
posits were consistent with the Ag, As and Sb anomalies, respectively.
The Ag, As and Sb anomalies were scattered over the study area and did
not show a clear pattern.

6. Identification of geochemical anomalies using the singularity
mapping technique

The singularitymaps of Ag, As, Au and Sbwere plotted (Fig. 8), and the
singularity indexes were reclassified (natural breaks (Jenks) method was
used) for quantitatively measuring the significance of spatial correlation
between the areas with singularity b 2 and the locations of known gold
deposits. The spatial distribution of Ag, As, Au and Sb anomalies relatively
differed but showed that the known gold deposits were closely related to
the lower singularity indices (andwhich are also less than two) of Ag, As,
Au and Sb (Fig. 8). The lowest two classes of the singularity indices of Ag,
As, Au and Sb (red and yellow coloured) accounted for 23.5%, 13.38%,
37.29% and 25.87% of the study area, respectively. In addition, 70.37%
(19), 59.26% (16), 81.48% (22) and 66.67% (18) of known gold deposits
were consistent with the anomalies of Ag, As, Au and Sb, respectively,
whichmeans that Ag, As, Au and Sb were appropriate indicator elements
in the present study area, and the SM technique can identify gold deposit–
related anomalies efficiently.



Fig. 4. Q-Q plots for the Ag (A), As (B), Au (C) and Sb (D) concentration data from stream
sediment samples. Fig. 6.Q-Qplots for the lnAg (A), lnAs (B), ln Au (C) and ln Sb (D) concentration data from

stream sediment samples.
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To reduce the uncertainty of a single element, and to obtain amore re-
liable results, PCA was used to delineate the comprehensive anomalous
areas with the combined elements Ag, As, Au and Sb. Ordinary PCA uses
a linear correlation matrix. A scree plot (Fig. 9a) shows the distribution
of eigenvalues representing the relative importance of each component.
The first principal component (PC1) accounted for 40.7% of the total var-
iancewhile PC2, PC3 and PC4modelled additional 23.1%, 21.0% and 15.2%
of total variance, respectively. Positive loadings (Fig. 9b) indicated that
PC1 mainly reflected the singular association of Ag, As, Au and Sb. Com-
pared with the singularity maps of individual ore-forming elements,
areas with the lower PC1 scores had stronger coincidence with known
mineral occurrences (Fig. 10).

Furthermore, a noticeable spatial correlation exists between granite
rocks, altered zones and fault traces with low PC1 scores, implying that
these geological variables played an important role in the formation of
known hydrothermal mineral deposits (Fig. 10; i.e., granite rocks may
be the sources of energy and hydrothermal fluids, regional faults confine
magmatic activities to certain scales and ranges, hydrothermal fluids per-
meate rocks through local faults, metasomatism andmineralisation occur
within fault zones).
7. Results and discussion

Conventional statistical techniques that assume a data set follows
normal or log-normal distribution may, therefore, not be suitable for
geochemical data analysis, as the geochemical data sets in this study
Fig. 5. Frequency distributions of ln Ag (A), ln As (B), ln Au (C) and ln Sb (D) concentration
data from stream sediment samples.
follow neither a normal nor a log-normal distributions, as shown in
Section 3.

Neither EDA nor the SM technique requires that the data set follows
normal or log-normal distributions, and these two techniques were com-
pared in detail in this study. The anomaly threshold definition is not seri-
ously affected by outliers when EDA is applied, provided a robust
approach is used, for example, MMDA. The EDA techniques have proven
to be quite effective (Bounessah and Atkin, 2003) in the statistical treat-
ment of single element stream sediment analytical results in areas
where the data variability may be expected to be affected by lithological,
sampling, analytical, climatic and physiographical factors. Using median
and median absolute deviation instead of mean and the standard
deviation, respectively, may be preferable when working with complex
geochemical data (Templ et al., 2008). However, EDA is not suitable
for identifying geochemical anomalies in the present study for the
following reasons: (1) the present thresholds for Ag, As and Sb are all
very high and only few anomalies exist on the corresponding map
(Fig. 7-A, B, D). Although the known gold deposits are consistent with
Au anomalies, the results may be unreliable because only few Au anoma-
lies exist outside the areas of known gold deposits. Thus, the Aumap pro-
vides only limited information for further mineral exploration; and
(2) only one global threshold is obtained for each variable using EDA,
which is not suitable for mineral exploration target prediction because
this global level tends to overlook significantly weak anomalies, which
mainly, or only, express themselves locally. These are effectively
‘swamped’ by a singular, high threshold levels. Such cases are obvious in
study areas with complex geological backgrounds.

With the SM technique, singularity indices are used to identify anom-
alies. These indiceswill differwithin the total spatial study area because of
the sliding window approach. This has the effect that the SM technique
does not overlook such local-scale weak anomalies, making it suitable
for identifying geochemical anomalies. The results of this study show
that PCA can be used to analyse the SM results of Ag, As, Au and Sb, and
to obtain a more comprehensive and hopefully more meaningful end re-
sult. In this study, these results are exceedingly interpretable, when com-
paredwith the geologicalmap of the study area. In some districts (Fig. 10;
R1 and R2), the comprehensive geochemical anomalies are obvious, al-
though no gold deposits have been found in those districts yet. R1 and
R2 may thus be valuable potential districts for mineral exploration be-
cause telltale granite rocks, alteration zones and faults are indeed present.

8. Conclusions

1) The regional stream sediment geochemical data sets in this study
neither follow a normal nor a log-normal distribution. EDA was not



Fig. 7. Anomaly maps of Ag (A), As (B), Au (C) and Sb (D) generated from the EDA data treatment.
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Fig. 8. Anomaly maps of Ag (A), As (B), Au (C) and Sb (D) generated by the singularity mapping technique.
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Fig. 9. PCA results on the geochemical data set. The geochemical data were processed
using the local singularity analysis. Details are given in the text. (a) Scree plot of eigen-
values of principal components (PC1–PC4) of singularity indices of ore-forming elements;
(b) loadings on the first component (PC1).
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found suitable for identifying feasible anomalies in this study
because it did not produce a clear, geologically interpretable
geochemical anomaly pattern. By contrast, the SM technique was
found exceptionally suitable for identifying geochemical anomalies,
and when integrated with PCA, was shown to indeed be a powerful
tool for identifying relevant anomalies in the Karamay geochemical
data sets.
Fig. 10. Raster map showing the scores of samp
2) Silver, As, Au and Sb are appropriate indicator elements in the
present study area, and in some parts (districts R1 and R2 in
Fig. 10) where geochemical anomalies, rather than gold deposits
are present, are identified using SM technique. Theymay be valuable
for mineral exploration because of the merits of SM techniques, and
geologically speaking, the identified comprehensive geochemical
anomalies are explainable.
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