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a b s t r a c t

Cross-correlation reverse-time migration is the kernel of two-way wave-equation migration and inver-
sion. However, it more or less tapers the spectrum of receiver data due to a redundant overlay of the
source wavelet, whose amplitude spectrum is usually bandlimited and non-flat. To circumvent this issue,
there are two optional strategies: whitening the source directly, or preconditioning the seismic traces by
divisionwith the amplitude spectrum of the source in the frequency domain. In this paper, we choose the
latter one because the source signature is crucial to illumination compensation and seismic inversion. To
avoid division by zero, a modified stabilized division algorithm based on the Taylor-expansion is de-
veloped. The modified division is easy to complete with computers and can be extend to any order.
Moreover, when simulating 2-D source wavefield, the half-integral effect is also considered. We will
demonstrate our proposed scheme using the Sigsbee2b synthetic data and a real field data.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cross-correlation reverse-time migration (RTM) is widely used
in seismic migration and inversion to map seismic traces from data
domain to image domain. Two-way wave equation is deployed to
accurately describe wavefield propagation even in complex media.
RTM (Whitmore, 1983) promises better imaging of steep dips
compared to ray-tracing and one-way migration. Also, cross-cor-
relation RTM is closely related to wave-equation velocity and re-
flectivity inversion, such as full-waveform inversion (FWI) (Laily,
1983; Tarantola, 1984) and least-squares reverse-time migration
(LSRTM) (Nemeth et al., 1999; Dai and Schuster, 2013). If all wave-
spreading losses are taken in consideration, RTM can be utilized to
develop true-amplitude depth migration (Deng and McMechan,
2007).

Several alternative imaging conditions have been proposed for
RTM to improve the image to approach the accurate reflection
coefficient, though numerically and dimensionless. The ratio of
upgoing and downgoing wavefields at temporal and spatial coin-
cidence (Claerbout, 1971), is the original form of physically defi-
nition of reflection coefficient (Lumley, 1989). A hybrid method of
ray-tracing for the source extrapolation and finite-difference re-
ceiver wavefield exploration (Chang and McMechan, 1986), is
utilized as the excitation-time imaging condition in prestack RTM.
cademy of Sciences, Beijing,
Loewenthal and Hu (1991) use a finite-difference source extra-
polation to calculate the excitation-imaging condition according to
the arrival time of the maximum-amplitude primary-wave energy.
Normalization of the cross-correlated image by source illumina-
tion further improves the physical accuracy of the reflectivity in-
formation towards true amplitude (Kaelin and Guitton, 2006). The
excitation-amplitude imaging condition (Nguyen and McMechan,
2013) divides the propagating receiver wavefield at the imaging
time by the maximum source amplitude at each imaging point.

Although the excitation-time (Loewenthal and Hu, 1991) and
excitation-amplitude (Nguyen and McMechan, 2013) imaging
conditions are cost-effective and partly free of low-wavenumber
artifacts, they cannot handle multi-pathing problem well using a
single-valued traveltime. Multi-pathing is usually associated with
strong lateral velocity variations, which makes more sense for
characterizing the reservoir under complicated structures. Cross-
correlation imaging condition implicitly includes multi-pathing
because all of the propagating energy is preserved through the
accumulation process. Source estimation is an important issue in
wave-equation migration and inversion (Pratt, 1999; Shin et al.,
2007). However, because the amplitude spectrum of the estimated
source is usually bandlimited and non-flat, the imaging resolution
of RTM will be inherently degraded. Moreover, in wave-equation
inversion, the adjoint method (Plessix and Mulder, 2004) indicates
that the gradient can be obtained with the cross-correlation be-
tween the incident and residual wavefields. The cross-correlation
gradients also suffer from this source effect above.

We attempt to design a source-eliminating scheme so that the
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cross-correlation imaging condition becomes independent of the
shape of the source amplitude spectrum. Two strategies are pro-
vided: whitening the source directly or preconditioning the re-
ceiver traces by division with the source amplitude. We eventually
choose the latter one because the first strategy results in an arti-
ficial source signature. The estimated source plays important roles
in illumination compensation and wave-equation inversion. The
source illumination approximates the diagonal of the Hessian
(Plessix and Mulder, 2004). In wave-equation inversion, the source
wavefield propagating in the forward operator can be used directly
to reconstruct the source wavefield in the adjoint operator (Vir-
ieux and Operto, 2009). Besides, when propagating source wave-
field in 2-D case, it is important to take the half-integral effect into
account, because this effect can distort the final imaging
waveform.

In the preconditioning step, a division in the frequency domain
is performed. To alleviate the introduction of the error caused by a
stability factor or the loss of frequency components by the low-cut
form (Guitton et al., 2007; Schleicher et al., 2008), we develop a
modified stabilized division based on the Taylor-expansion to
handle the division-by-zero issue. Specially, our algorithm turns
the division issue into a geometrical series which can be easily
performed with computers. The order of our Taylor series is flex-
ible, depending on the signal to noise ratio (SNR) of the seismic
data. A higher order corresponds to a higher SNR, and vice versa.

The paper is arranged as following: Firstly, we briefly review
the conventional cross-correlation imaging condition. Then, we
introduce our preconditioner to eliminate the redundant source
effects, alternatively, including the half-integral effect in the 2-D
source wavefield. Afterward, a modified division algorithm is dis-
cussed. Finally, we demonstrate our scheme using the 2D Sigs-
bee2b synthetic dataset and a real field data.
2. Methods

In this section, we first briefly review the conventional zero-lag
cross-correlation imaging condition of RTM; and then propose a
preconditioner to enable the imaging condition being independent
of the shape of the source amplitude spectrum; alternatively, the
half-integral effect implicitly contained in the 2-D wave-equation
is discussed. Finally, a modified stabilized division algorithm based
on the Taylor-expansion algorithm is used in our preconditioner.

2.1. Conventional cross-correlated RTM imaging condition

The conventional zero-lag cross-correlation RTM imaging con-
dition reads

∬ ( ) ( )( ) = ( )I p t p t dtdx x x x x x, ; , ; , 1S s R s S

where ( )p tx x, ;S s denotes the forward propagation of source wa-
vefield, and ( )p tx x, ;R s denotes the backward propagation of re-
ceiver wavefield, with the shot at xs. Eq. (1) is governed by the
following system:
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with ( )v x the migration velocity, ( )s t x; S the source signature at xS,
( )D tx x, ;R R S the observed receiver data at xR, and ∇2 the Laplacian

operator. Note that ( )D tx x, ;R R S are imposed as boundary
conditions. In our scheme, we assume the knowledge of the source
signature.

If the Green's function is defined as
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The imaging condition in Eq. (1) can be rewritten as

∭ [ ] ( )ω ω ω ω ω( ) = ( ) ( ) ( ) ( ) * 4I G W G D d d dx x x x x x x x x, ; , ; , ; ,S S S R R R R S R S

where the superscript * denotes the conjugate transpose, ω is the
angular frequency, ω( )WS denotes the spectrum of the source,

ω( )D x x, ;R R S denote the spectra of the receiver data, ω( )G x x, ;S S

and ω( )G x x, ;R R denote the Green's functions of the source and
receiver wavefields, respectively. The backward propagation in the
time domain is indicated by the conjugate operator in the fre-
quency domain. The phase of ω( )WS can be assumed to be either
zero phase or minimum phase, or even mixed phase, depending
on the wavelet embedded in the receiver data ω( )D x x, ;R R S . Be-
cause of the conjugate operator *, the cross-correlation imaging
condition will produce an image where each reflector is re-
presented as zero-phase bandlimited singular functions with the
peak positioned at the reflector. For simplicity, we assume that
both the source wavelet and the wavelet embedded in seismic
data are rotated to zero-phase.

The estimated source wavelet may behave better than an ar-
bitrary artificial source in RTM and seismic waveform inversion
(Pratt, 1999; Shin et al., 2007). In practice, even after being pro-
cessed carefully, the seismic traces are still slightly mixed-phase.
The amplitude spectrum of the estimated source ω( )WS is usually
non-flat and band-limited. In this case, ω( )WS may act as a filter,
tapering the spectra of ω( )D x x, ;R R S . A deal of valid frequency in-
formation is suppressed. The level of suppression depends on the
shape of the source amplitude spectrum. Assuming the same
signature of the source and receiver wavelets, for example, a
Ricker wavelet, the cross correlation of source and receiver wa-
vefields has a cross-reflector width of approximately double the
wavelength of each, as shown in Fig. 2c and d, and is a function of
incident angle (Tygel et al., 1994). The simplified versions of RTM,
such as the excitation-time imaging condition assuming a spike
source wavelet (Chang and McMechan, 1986) and excitation-am-
plitude imaging condition assuming a deconvolution condition
(Nguyen and McMechan, 2013), cannot handle the multi-pathing
problem well. Even the source-normalized imaging condition
(Kaelin and Guitton, 2006), which just corrects for the amplitude
scale, has the same resolution as that of the cross-correlated
image.

2.2. A preconditioner for source elimination

Now we attempt to eliminate the tapering effect of the ban-
dlimited source from the cross-correlated RTM. There are two
options: whitening the source directly or preconditioning the
seismic traces by division with the source amplitude spectrum. If
we chose the first strategy, regardless of the phase spectrum, the
processed source signature approaches some specified wavelets,
such as the Ormsby or Klauder wavelet. As a result, the source
illumination (Kaelin and Guitton, 2006), which approximates the
diagonal of the Hessian (Plessix and Mulder, 2004) to compensate
for the wave-spreading loss, is produced by an artificial source.
Moreover, because the cross-correlation RTM can be considered as
the adjoint operator in wave-equation inversion (Virieux and
Operto, 2009), the source wavefield propagated in the Born op-
erator can be directly used to crosscorrelate with the receiver
wavefield to produce a gradient. Finally, we choose the second
strategy. In this way, the cross-correlation imaging condition can



Fig. 1. Comparison of results of ω ω ω ω( ) = ( ( ) ( ) )⋅ ( )W W W W/ using three different
stabilized division algorithms. The solid and dash lines indicate the true and the
reconstructed wavelets, respectively, in the time domain. Parts (a) and
(b) correspond to Eqs. (7) and (8), respectively. Both parts (c) and (d) use our
modified stabilized division in Eq. (10), except that =m 2 in (c) while =m 6 in (d).

Q. Liu et al. / Computers & Geosciences 92 (2016) 49–57 51
be independent of the shape of the source amplitude spectrum.
As long as the source ω( )WS is in phase with the embedded

wavelet in receiver traces ω( )D x x, ;R R , the cross-correlated ima-
ging condition will produce a singular zero-phase reflector whose
peak is centered on the discontinuity of the media. If we prepare
the data ω( )D x x, ;R R with an additional inverse of ω( )WS as fol-
lowing:
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The amplitude spectra of the reflectors mainly determined by
ω( )D x x, ;R R S are produced where ω( )G x x, ;R R and ω( )G x x, ;S S are

coincident in time and space.
For numerical implementation, the seismic traces are firstly

transformed into the frequency domain, and then prepared as Eq.
(5) before wavefield simulation. In 2-D case, by the way, we need
to correct for the half-integral filter ω( )−i 1 of the source Green's
function ω( )G x x, ;S S , as proven by Eq. (A.4) in Appendix A. This is
carried out by multiplying ω( )WS by ωi before the source wa-
vefield propagation. Of note, there is no half-integral effect in the
receiver Green's function ω( )G x x, ;R R , which is constructed by
imposing receiver traces as boundary conditions. Yet, no such filter
exists in 3-D media when handling the wave-equation carefully.
Besides, when discretizing the wave-equation with staggered grid,
an additional first-order time derivative is added to the mono-
source term, resulting in a dipole response of an additional ωi
(Virieux, 1986). Finally, the processed traces are transformed back
to time domain and prepared for the backward receiver wavefield
propagation. Then, the system governing RTM can be rewritten as
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where ( )p tx x, ;R S is the receiver wavefield reconstructed by

ω( )D x x, ;R R S . There is no other changing in the conventional
imaging condition Eq. (1) except that ( )p tx x, ;R S is replaced with

( )p tx x, ;R S . In wave-equation inversion, the source-elimination
preconditioner is implemented before residual wavefield propa-
gation per iteration. Since we do not change the frequency band-
width of ω( )D x x, ;R R S , no numerical dispersion arises for the re-
ceiver wavefield propagation using the original finite-difference
stencil.

As we will show by a complexity estimate, the proposed
scheme is computationally efficient. In 2-D case, let nx and nz be
the number of grid points along two axes. The number of receivers
is nr; the number of frequencies of observed data is nf ; the number
of discretized time points is nt . For a common-shot gather, the
source-elimination in the third formula of Eq. (6) needs to be done
for each frequency of all receiver traces, so we get a total cost of

( )O n nr f ; while a wavefield simulation needs a considerable cost of
( )O n n nx z t . In practice, nr is less than nx, nf is much less than nt . It

concludes that the computational cost of the source-elimination
preconditioner is negligible compared to that of the wavefield
simulation.
2.3. A modified stabilized division

For the third formula in Eq. (6), when the denominator is re-
tained, some stabilization is required to avoid division by zero. The
source-elimination algorithm can be performed by

ω
ω

ω
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where ε is an additive stability factor chosen empirically. In
practice, the results of Eq. (7) may be quite sensitive to the stability
factor which replaces the small values of ω( )WS . Assuming being
sufficiently stable, an improper value of ε may lead to too strong
smoothing. To avoid the introduction of amplitude error caused by
ε, Schleicher et al. (2008) tests a low-cut form, where stabilization
is achieved by zeroing all values of ω( )D x x, ;R R S in case that the
denominator ω( )WS is smaller than ε, i.e.,



Fig. 2. (a) The two-layer velocity model. A shot is located in the center of the surface. Assuming the synthetic data is rotated to zero phase, the following parts depict,
progressively, (b) the original RTM image, (c) the images after half-integral correction, and (d) after source-elimination preconditioning.
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However, the low-cut form is not recommended because it may
suffer from the loss of frequency component. Alternatively, ε could
be selected with a technique known as cross-validation, where
different ε are selected to deliver very satisfying results. However,
robustness and reliability are more important than mathematical
accuracy for seismic exploration (Guitton et al., 2007).

In our scheme, based on the Taylor-expansion, we attempt to
turn a division problem into a geometrical series. We defined a
data-adaptive ε as
Fig. 3. The 2D Sigsbee2b velocity model.

Fig. 4. (a) A common-shot Sigsbee2b synthetic dataset. (b) The traces after source-elimination by Eq. (10).

Fig. 5. (a) RTM image without source elimination. (b) RTM image with source
elimination. The half-integral effect is considered in both them. No artificial noise is
introduced to part (b).



Fig. 6. Zoomed views of the areas enclosed by white boxes in Fig. 5a and b. Compared with (a) and (b), (c) and (d) promise higher resolution, as indicated by the arrows.

Fig. 7. The migration velocity of a real field data.
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where ϕ0 denotes the average value of the source amplitude
spectrum ω( )WS , and α< <0 1. As proved in Eq. (B.3) in Appendix
B, Eq. (8) can be represented as
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m denotes the number of terms we collect up to. It is very easy to
perform Eq. (10) with computers. For each frequency component,
when ω αϕ< ( ) ≤W0 S 0, we need to calculate ω αϕ− ( )W1 /S 0 only
once. The sum formula is completed with the “for” loops. Of note,
we do not recommend taking the sum formula of the series di-
rectly, because it may risk again division by zero. Theoretically, for
a defined αϕ0, a higher value of m promises a better approximation
to the truth-value of the division. In practice, we recommend that
a higher value corresponds to a higher SNR, and vice versa. In
case of being stable, the division becomes smarter and the out-
put is more reliable compared to Eqs. (7) and (8). Thus, the
division-by-zero issue can be partly alleviated. Similar idea is
found in Zhang and Zhang (2013).

To verify the behavior of our modified stabilized division, we
will test it on a simple division problem as following:

ω ω ω ω( ) = ( ( ) ( ) )⋅ ( )W W W W/ , where ω( )W denotes the spectrum
of a 20 Hz Ricker wavelet and ω( )W is its amplitude. We first
divide ω( )W by ω( )W , and then multiply the quotient with ω( )W .
The division will be tested using the three stabilized division al-
gorithms above. While being stable, the reconstructed result ω( )W
obtained via a good stabilized division should approach ω( )W well.
For illustration, we set a relative higher value of the stability fac-
tor: ε ϕ ω ω= = (∑ ( ) )ω W n0.5 0.5 /n S0 . Fig. 1 displays a comparison of

four results of ω( )W , with the true ω( )W for reference. All of them
are illustrated in the time domain. The first two is obtained using
Eqs. (7) and (8), respectively. The last two is obtained using our
modified division algorithm in Eq. (10), except that =m 2 in Fig. 1c
while =m 6 in Fig. 1d. The results in Fig. 1c and d indicate that our
modified stabilized division behaves better than the former two
algorithms. Furthermore, the comparison between Fig. 1c and d
demonstrates that in our algorithm, the lower-order terms con-
tribute to the principal value of the division result, and the higher-
order terms provide the corrections.
3. Numerical examples

3.1. Two-layer model

A simple 2-D two-layer model is considered for demonstration.
The velocity model contains two layers with velocities of 2000 m/s
and 2500 m/s, respectively, as shown in Fig. 2a. We generate
synthetic data with a single-acquisition geometry where one
source is located in the center of the acquisition section and 501
receivers located on the surface of model. A Ricker wavelet with a
peak-frequency of 20 Hz is deployed as the source function. The
receiver interval is 10 m. The seismic traces are rotated to zero-
phase.

The following figures in Fig. 2b–d depict, progressively, the
original RTM image, the images after half-integral correction, and
after source-elimination preconditioning. As we will see below, in
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all figures, reflectors are produced at the corresponding depth. An
ideal reflector response should be a zero-phase wavelet. In Fig. 2b,
the phase of the reflector is distorted due to the half-integral filter
of the 2-D source-wavefield Green's function. After correcting for
this filter, in Fig. 2c, a zero-phase wavelet is located where the
reflector lies, except the degraded resolution caused by a re-
dundant overlay of the source wavelet. Then, after our source-
elimination preconditioning, Fig. 2d shows a zero-phase reflector
of the very waveform. No additional artificial noise is introduced.

3.2. Sigsbee2b model

To validate the robustness of our source-eliminating pre-
conditioner, we will performs it on the 2D Sigsbee2b (Paffenholz
et al., 2002) synthetic dataset. As shown in Fig. 3, the model
contains a sedimentary sequence with a number of normal and
thrust faults around the salt body. Due to the strong velocity
Fig. 8. (a) A common-shot real dataset with shot location 400 CDP number. (b) The
black and gray lines represent the amplitude spectra of our estimated source and of
the seismic data, respectively.

Fig. 9. (a) The conventional RTM image. (b) RTM image with source-elimination
preconditioner and half-integral correction. Note that in our scheme, (a) and
(b) share the same source illumination.

Fig. 10. Zoomed views of the areas enclosed by white boxes in Fig. 9a and b. In part
(b), the reflectors are better resolved.
gradient and the rugose geometry of salt body, the model exhibits
the illumination problems and significant multi-paths (Paffenholz
et al., 2002). The velocity model composed of 3201 (in X) by 1201
(in Z) points, has an even grid interval 7.62 m (25 ft). The synthetic
dataset is generated using the finite-difference stencil with a
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fixed-spread acquisition geometry where 500 shots, distributed
from X¼3330 m (10,925 ft) to X¼26144.2 m (85,775 ft), are ex-
cited with an even interval of 45.72 m (150 ft). 348 receivers are
deployed with a 22.86 m (75 ft) interval for each shot to produce
the synthetic seismic record. The record length is 12 s with a
sample rate 8 ms.

The no-free-surface synthetic dataset with a 20 Hz dominant
frequency is used in our RTM. Assuming the knowledge of source
signature, we first use Eq. (10) to precondition the seismic traces
with α = 0.05, =m 6. Because the data is clean, no band-pass filter
is required. The original data and the processed data using our
modified stabilized division are shown in Fig. 4a and b, respec-
tively. Then, we cross-correlate the source-eliminated receiver
wavefield with the source wavefield to produce a RTM image. In
comparison with Fig. 5a by conventional RTM, our result in Fig. 5b
achieves the similar structural image, where the vertical dips and
the overhanging salt are clearly imaged, without extra artifacts,
and both they are normalized by the same source illumination.
However, the comparison of two zoom-view groups in Fig. 6 de-
monstrates that our scheme helps to promise a higher-resolution
image, where seismic events with short wavelength are expected
and more subtle reflectors are clear revealed, as indicated by the
arrows. It concludes that even with complex media, our source-
eliminating preconditioner performs well.

3.3. Real data set

We finally test our scheme on a real marine data set. The data
set is acquired by a single cable. The cable has 460 receiver groups
at interval 12.5 m. The offset ranges from 100 m to 5750 m. 240
shots at 37.5 m interval are used. Fig. 7 shows the migration ve-
locity. The record length is 8 s with a sample rate 2 ms. Fig. 8a and
b shows, respectively, a typical common-shot-gather dataset and
the amplitude of an estimated source wavelet obtained using the
method in Claerbout (1992).

In this test, we eliminate the source amplitude from the seismic
traces using Eq. (10) with α = 0.08, =m 3. A [2,4,45,50] band-pass
filter is followed because the data is somewhat noisy. Also, the
half-integral filter embedded in the 2-D Green's function of source
wavefield is considered. For comparison, Fig. 9a depicts the con-
ventional RTM image obtained by cross-correlation the source and
receiver wavefields directly. Fig. 9b depicts the RTM image ob-
tained by taking the source-elimination preconditioner and the
half-integral correction in consideration. The two images share the
same source illumination. As shown by the zoomed views in
Fig. 10, some features of the image using our schemes are superior
to the conventional image. Reflectors appear to be better resolved.
4. Conclusions

Cross-correlation RTM is the kernel of wave-equation migra-
tion and inversion. If possible, the imaging reflectors should be
independent of the shape of the estimated source amplitude
spectrum. We choose to precondition the seismic traces rather
than employ an artificial source, since the estimated source is
important for illumination compensation and seismic inversion. A
modified stabilized division algorithm is used to produce reliable
results. Numerical test indicates that our stabilized division per-
forms better than the damping-factor and low-cut forms. Also, the
phase rotation is considered when modeling the source wavefield.
Numerical examples indicate that our scheme yields
shaper seismic events and reveal more subtle details. While
eliminate the redundant effects from cross-correlation RTM, other
wavefield characteristics related to estimated source are pre-
served. Furthermore, it is also adaptable to be a useful
preconditioner in wave-equation inversion, leading to a cross-
correlation gradient of broader spectrum.
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Appendix A. Green's functions of forward source wavefield

The 3-D forward propagating Green's function of a point source
reads

ω ω
π

( ) = (− )
( )G

i R c
R

x x, ,
exp /

4
, A.1D S3

where c denotes the velocity, = ( )x y zx , , , = ( )x y zx , ,S S S S ,
= ‖ − ‖R x xS . To obtain the 2-D Green's function, we assume a line

source parallel to the y-axis instead of a point source. The 2-D
Green's function can be derived by integrating the 3-D forward
Green's function as following
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2 is the
Hankel function. We employ the asymptotic formula for the
Hankel function at far field, i.e. → ∞r . The asymptotic form of the
Green's function Eq. (A.2) is thus given by
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Because of π(− ) = −i iexp /2 and π( ) =i iexp /4 , we have the
final form of Eq. (A.3) as following:

ω
ω π

ω( ) = (− )
( )

G
i

c
r

i r c
x x, ,

1 2 exp /
4

.
A.4D S2

Its amplitude decays with the inverse square root of the radial
distance. In RTM, we can normalize the imaging profile by source
illumination to compensate for the amplitude decaying (Kaelin
and Guitton, 2006). Note that in 2-D media, the far field expression
of the wave equation contains an extra half-integral term ω( )−i 1.
We should correct for the unexpected 2-D half-integral filter.
There is no such filter existing in 3-D media when handling the
wave-equation carefully. Besides, when discretizing the wave-
equation with staggered grid, an additional first-order time deri-
vative is added to the mono-source term, resulting in a dipole
response of an additional ωi (Virieux, 1986). Those additional ef-
fects only exist in the source wavefield, because we usually impose
receiver traces as boundary conditions in RTM.
Appendix B. A modified stabilized division base on the Taylor
expansion

Firstly, we consider a typical division issue
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ε( ) = ( < < ) ( )f x
x
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where ε is a given positive fraction. The Taylor series of Eq. (B.1) at
ε=x can be expressed as
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where m denotes how many terms we collect up to. This ap-
proximation converge to the true function in the region of

ε− <x1 / 1, including ε< <x0 . Within this region, the higher-
degree Taylor polynomial better approximates the truth-value of
function ( )f x .

Following the idea of Eq. (B.2), similarly, in case of
ω αϕ< ( ) <W0 S 0, the sophisticated form of Eq. (10) can be written

as
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with αϕ α ω ω= (∑ ( ) )ω W n/n S0 , the adaptive threshold value.
ω αϕ< ( ) <W0 S 0 lies within the convergence region. The Taylor

series of higher order are better approximations. In this way, a
practical and robust division algorithm is obtained. Since the right-
hand-side of Eq. (B.3) is a geometric series, it is very easy to
compute the series with computers. Of note, we do not re-
commend taking the sum formula of the series directly, because it
may risk again division by zero.
Appendix C. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2016.04.001.
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