Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

In-situ LA–ICP–MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China

REGEOLOGY REVIE

Yu Fu ^{a,b,d}, Xiaoming Sun ^{a,b,c,d,*}, Haoyang Zhou ^{b,c}, Hai Lin ^{a,b}, Tianjian Yang ^{b,c}

^a School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China

^b Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China

^c School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, China

^d South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China

ARTICLE INFO

Article history: Received 20 November 2015 Received in revised form 1 February 2016 Accepted 3 February 2016 Available online 12 February 2016

Keywords: Titanite U–Pb dating Trace elements Beiya Gold deposit SW China

ABSTRACT

The Beiya gold-polymetallic deposit, located in the middle of the Jinshajiang-Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U-Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the orerelated porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO₂ and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0 \pm 5.9 Ma, consistent with the porphyry zircon U–Pb age (36.07 \pm 0.43 Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206 Pb/ 238 U age of 33.1 \pm 1.0 Ma (MSWD = 2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1 Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Titanite (CaTiSiO₅) is a common accessory mineral in magmatic and metamorphic rocks, as well as in hydrothermal alteration products such as skarn. Titanite typically accommodates significant amount of Rare Earth Elements (REEs) and High Field Strength Elements (HFSEs) (Tiepolo et al., 2002; Gao et al., 2012; Deng et al., 2015a), and the titanite generated from different origins exhibit distinct trace element geochemistry (Storey et al., 2007; Horie et al., 2008; Smith et al., 2009; Xie et al., 2010; Gao et al., 2012; Che et al., 2013; Guo et al., 2014;

E-mail address: eessxm@mail.sysu.edu.cn (X. Sun).

Ismail et al., 2014; Cao et al., 2015; Xu et al., 2015). Therefore, trace element geochemistry of titanite can serve as an indicator of its formation environment (Mazdab, 2009; Che et al., 2013; Ismail et al., 2014; Xu et al., 2015). Zirconium content of titanite is temperature- and pressure sensitive, and thus can be used as an important thermobarometer (Hayden et al., 2008). Furthermore, titanite Nd isotope can shed light on its petrogenesis (Gregory et al., 2009; Sun et al., 2010; Cao et al., 2015). Like zircon, titanite can accommodate considerable U and Th (with high closure temperatures of up to 700 °C), but it is more susceptible to high temperature hydrothermal alteration than zircon. This makes titanite suitable for recording complex magmatic, metamorphic and hydrothermal processes (Frost et al., 2000; Tiepolo et al., 2002; Deng et al., 2015a). Thus, titanite U–Pb dating has been widely used on magmatic, hydrothermal and metamorphic events dating in recent years (Corfu and Grunsky, 1987; Pan et al., 1993; Corfu et al., 1994;

^{*} Corresponding author at: School of Earth Sciences and Geological Engineering and School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.

Esssex and Gromet, 2000; Aleinikoff et al., 2002; Storey et al., 2007; Chiaradia et al., 2009; Smith et al., 2009; Li et al., 2010; Sun et al., 2010; Kohn and Corrie, 2011; Fallourd et al., 2014; Sepahi et al., 2014; Bonamici et al., 2015; Chelle-Michou et al., 2015; Deng et al., 2015a). Nevertheless, the issue that titanite commonly incorporates nonnegligible common Pb makes it difficult to yield a concordant age (Frost et al., 2000). Besides, owing to a lack of universal high quality titanite standard for in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) dating, many laboratories use zircon as an external standard and some use raster scan mode instead of spot mode to reduce the matrix effect during laser ablation. The analytical mode, however, may have little effect to the age obtained (Sun et al., 2012), and a number of studies have shown that accurate and precise titanite U-Pb ages can be obtained by using zircon standards, such as 91500 and GJ-1 (Storey et al., 2007; Li et al., 2010; Sun et al., 2010; Fallourd et al., 2014; Deng et al., 2015a).

The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is the largest gold deposit in the region (reserve: 304 t gold) and contains significant amounts of Fe, Cu, Ag, Pb and Zn. Given the close genetic relationship between the Himalayan (Cenezoic) alkaline porphyries and the Beiva ore deposit (Hou et al., 2004; Guo et al., 2005; Xu et al., 2006a, 2006b, 2007a; Xue et al., 2008; He et al., 2012, 2013; Deng et al., 2015b; Liu et al., 2015), understanding the age and genesis of the metallogeny and alkaline porphyries at Beiya is crucial not only for the Beiya mineral district, but also for the entire Jinshajiang-Ailaoshan metallogenic belt. Precise and accurate age constraints on the magmatic-hydrothermal events in porphyry systems are fundamental to understand how such deposits are formed and how the magmatism and mineralization are related (Chiaradia et al., 2013). Previous studies have mainly focused on dating the Beiya alkaline porphyries (ca. 33-37 Ma; Xu et al., 2007b; Xiao et al., 2009; Lu et al., 2012, 2013a, 2013b; Deng et al., 2015b; Liu et al., 2015), whereas direct and accurate dating of the mineralization was very limited (Fu et al., 2015; He et al., 2015). In this study, we report the occurrence of two titanite types at Beiya, i.e., magmatic- and hydrothermal titanite. In-situ geochemical analyses of these two titanite types have been conducted using EPMA and LA-ICP-MS to characterize the Beiya titanite and to elucidate its genesis. We also present new titanite U-Pb ages and compare them with the published zircon U-Pb and molybdenite Re-Os ages, in order to better constrain the magmatic-hydrothermal evolution of the Beiya mineralization.

Fig. 1. Tectonic setting of the Beiya area. Revised after Wang et al. (2001) and Hou et al. (2004).

2.1. Geological setting

The Beiya gold-polymetallic deposit (90 km north of Dali in western Yunnan, SW China) is geologically situated to east of the Jinshajiang suture, the western boundary of the Yangtze Plate (Fig. 1). The deposit has an estimated reserves of 125.6 million tons (Mt) gold (average grade: 2.42 g/t), 138 Mt iron (average grade: 33.3 wt.%), 122.9 Mt copper (average grade: 0.48 wt.%), along with considerable amounts of lead, zinc and silver. The Beiya deposit includes six ore segments, namely the Weiganpo, Bijiashan and Guogaishan ore segments in the east and the Wandongshan, Hongnitang and Jingouba ore segments in the west (Fig. 2a). Among these ore segments, Wandongshan is the major one and contains the majority of the resources. The exposed strata at Beiya mainly comprise the Lower Triassic Qingtianbao Formation (175-350 m thick), containing arkose, hornfelsed greywacke and sandstone with basaltic volcaniclastic rocks: the Middle Triassic Beiva Formation contains dolomitic limestone, ferruginous limestone, bioclastic limestone and argillaceous limestone (ca. 138-531 m thick, the main orebearing rock); and Quaternary sedimentary rocks. The Upper Permian Emeishan Formation basalt occurs in the southeastern part of the Beiya peripheral area. Cenezoic Himalayan alkaline porphyries are abundant, but relatively minor at Beiya. These alkaline rocks include (quartz) syenite porphyry, biotite-K-feldspar porphyry and quartz-albite porphyry (Xu et al., 2006b, 2007b; Xue et al., 2008), and are closely related to the mineralization spatially and temporally. Several faults with different orientation exist in the orefield, among which the N-Sstriking faults are dominant, such as Maanshan fault. It belongs to the secondary fault system of the Jinshajiang-Honghe strike-slip fault (Li et al., 2016). This fault passed through the western area of orefield and the derived secondary fracture controlled the porphyries and orebodies of Wandongshan and Hongnitang ore segments in the Beiya deposit.

2.2. Ore deposit geology

Skarn is the main mineralization type in the Beiya deposit and the skarn ore bodies mostly occur in the contact zones between porphyry intrusions and the carbonate host rocks of the Beiya Formation, which were strictly controlled by the structure and alteration of contact zones. The ore body KT52 around the Wandongshan porphyry is the largest skarn ore body (Fig. 2b) with proven reserves of 87.2 Mt gold (mean grade: 2.35 g/t), along with 90.27 Mt of iron ore (average grade: 34 wt.% Fe), 111.8 Mt of copper ore (average grade: 0.34 wt.% Cu) (Li et al., 2016). The skarn metallogeny comprises four major stages: (1) prograde skarn, (2) retrograde skarn, (3) quartz-sulfide, and (4) supergene stages. Prograde skarn minerals are mainly anhydrous, such as garnet and diopside (Fig. 3a-c), whereas mineral assemblages in retrograde stage are predominantly hydrous, including epidote-group mineral, biotite, chlorite, titanite and Kfeldspar (Fig. 3d, e). Magnetite mineralization mainly occurred during the late retrograde stage. The quartz-sulfide stage is featured by the mineralization of pyrite, chalcopyrite, pyrrhotite and molybdenite (Fig. 3f), and is associated with gold mineralization. The supergene stage is characterized by secondary enriched oxide ore bodies with gold-bearing hematite and limonite, which are regarded as the products of weathering and leaching of the primary sulfides. At Beiya, gold mainly occurs as native gold and electrum, which typically occur in cracks or as vein-filling in pyrite, limonite, quartz and other minerals; it can also be wrapped in sulfides, such as pyrite. The compositions of the Beiya skarn minerals suggest a typical oxidized skarn system (He et al., 2015). Studies of fluid inclusions indicate the characteristics of high temperature (about 300 °C) and high salinity for the Beiya metallogenic fluid, which were origined from magma and probably mixed with some meteoric water in the later period (He, 2014). The ore-forming materials of Beiya deposit were derived from deep-sourced magma according to the isotopic analysis results (He, 2014; Fu et al., 2015; Li et al., 2016).

Fig. 2. Geologic map of the Beiya area (a) and the No.56 prospecting line cross section of the Wandongshan ore segment (b). Revised after Xu et al. (2007b) and Lu et al. (2013a).

Fig. 3. Photomicrographs of samples in the Beiya deposit. (a–e) Skarn assemblages of garnet, diopside, epidote, biotite, allanite, magnetite and K-feldspar (a and c: cross-polarized light; b, d and e: plane-polarized light). Note that the early garnet was replaced by late magnetite, K-feldspar, titanite and allanite in (e). (f) Molybdenite intergrowth with pyrite and magnetite (reflected light). (Abbreviations: Aln–allanite, Bt–biotite, Di–diopside, Ep–epidote, Grt–garnet, Kfs–K-feldspar, Mo–molybdenite, Mt–magnetite, Pl–plagioclase, Py–pyrite, Qz–quartz, Ttn–titanite, Zrc–zircon.)

3. Samples and analytical methods

Titanite samples for in-situ U–Pb dating and element analysis were collected from the Beiya ore-related porphyry and mineralized skarn. Sample W300 (Fig. 4a) was collected from the orerelated quartz syenite porphyry at Wandongshan, whilst sample W364 (Fig. 4b) was from the cores of 84ZK11 drill hole in the retrograde skarn at Wandongshan, and contains pyroxene, feldspar, quartz, magnetite and minor titanite and allanite. All samples were prepared as standard petrographic thin sections. Petrographic study under the optical microscope was followed by Back-Scattered Electron (BSE) of the titanite, using Zeiss SIGMA fieldemission Scanning Electron Microprobe (SEM) at the School of Earth Science and Geological Engineering of Sun Yat-sen University, Guangzhou, China. Prior to LA–ICP–MS analysis, major elements abundance in titanite were determined on thin sections by the JEOL JXA-8800R Electronic Microprobe (EPM) at the Instrumental Analysis & Research Center of Sun Yat-sen University. Operating conditions were 20 kV accelerating voltage and 20 nA beam current with a beam diameter of 2 µm.

Fig. 4. Photographs, photomicrographs and BSE images of porphyry and skarn from the Beiya deposit. (a) titanite-bearing porphyry; (b) titanite-bearing skarn; (c) photomicrographs showing the occurrences of titanite from the Beiya porphyry (cross-polarized light); (d–f) photomicrographs of titanite in skarn (d and e: plane-polarized light; f: cross-polarized light); (g–h) BSE images of titanite in porphyry; (i–j) BSE images of titanite in skarn. (Abbreviations: Di–diopside, Fsp–feldspar, Grt–garnet, Ilm–ilmenite, Mt–magnetite, Pl–plagioclase, Px–pyroxene, Qz–quartz, Rt–rutile, Ttn–titanite, Zrn–zircon.)

Table 1			
Electron microp	robe analysis re	sults (wt.%) of t	the Beiya titanite.

Sample no.	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	F	Total
Magmatic titanite	e W300										
1	30.04	35.63	1.94	2.27	0.11	-	28.80	0.07	0.01	0.37	99.08
2	30.50	35.28	2.12	2.43	0.09	0.02	28.99	0.03	-	0.77	99.90
3	30.56	35.13	2.39	2.14	0.06	0.02	28.66	0.03	0.01	0.29	99.16
4	32.89	35.45	0.78	2.41	0.04	-	28.69	0.03	0.01	0.11	100.36
5	31.89	36.55	1.31	2.37	0.01	-	27.83	0.02	0.02	0.26	100.13
6	30.80	35.28	1.97	2.85	-	0.02	28.60	0.03	0.01	0.94	100.11
7	32.66	35.78	0.57	2.22	0.08	0.02	28.74	0.08	0.02	0.29	100.34
8	30.74	34.61	2.66	3.16	0.09	0.01	28.74	0.02	-	0.47	100.30
Hydrothermal tite	anite W364										
1	30.88	32.54	0.83	5.30	0.06	0.03	28.99	-	0.02	1.48	99.50
2	31.40	31.67	3.54	3.08	0.01	0.03	29.27	-	0.03	0.78	99.49
3	30.63	33.60	0.72	4.33	-	0.02	26.37	0.02	0.03	1.20	96.41
4	30.85	33.63	0.64	5.07	0.02	0.01	29.02	0.01	-	0.81	99.73
5	30.83	33.22	1.80	4.81	0.04	-	28.64	0.01	0.05	1.49	100.25
6	31.01	33.00	2.64	4.31	0.06	0.01	28.30	0.01	0.03	0.58	99.70
7	30.92	33.28	1.86	4.91	0.01	0.02	28.29	0.01	0.03	1.15	100.01
8	31.04	31.01	2.65	5.35	0.03	0.03	28.41	-	0.04	1.13	99.19
9	30.82	30.73	2.48	5.93	0.05	0.04	28.60	0.02	-	1.20	99.35
10	30.75	30.93	1.56	5.46	0.02	0.04	28.17	-	-	0.99	97.49
11	29.49	33.44	1.90	4.36	0.05	-	29.40	0.03	0.02	0.51	98.98
12	30.21	30.03	1.33	5.22	0.01	0.05	27.61	0.01	0.01	1.28	95.23
13	29.33	32.58	2.53	3.76	0.01	0.05	29.35	-	-	1.58	98.53
14	29.27	34.54	0.56	4.58	0.03	0.02	29.04	0.02	-	1.09	98.69
15	28.93	35.23	0.57	4.02	0.01	0.03	29.07	0.04	0.02	0.86	98.42
16	35.20	30.68	0.60	5.09	-	0.02	28.50	0.04	-	1.21	100.82
17	30.35	32.42	1.33	5.68	-	0.06	29.11	0.04	-	0.80	99.44
18	30.46	31.13	1.38	6.41	-	0.03	28.98	0.01	-	0.98	98.98
19	31.07	32.94	3.05	3.44	0.05	0.06	29.52	0.03	-	1.69	101.13
20	31.31	30.40	3.48	4.78	-	0.03	30.20	-	0.01	1.18	100.88
21	30.61	32.07	0.47	4.58	-	0.06	29.31	-	0.01	1.54	98.00
22	31.08	30.44	2.75	5.23	0.01	0.04	26.92	-	0.01	1.37	97.27
23	31.44	28.47	3.66	5.87	0.03	0.05	26.72	0.02	-	2.06	97.45
24	31.43	28.24	3.47	6.87	0.01	0.06	27.07	0.02	0.01	1.94	98.30
25	30.61	31.52	2.04	4.86	0.06	0.04	26.17	0.05	0.02	1.27	96.09
26	30.81	31.46	0.60	5.98	0.02	0.03	26.71	0.04	0.02	1.33	96.42
27	30.48	30.94	2.56	3.98	0.05	0.05	26.29	0.04	-	1.62	95.33
28	31.32	31.72	2.62	4.31	0.03	0.03	26.82	-	-	0.78	97.30

In-situ U–Pb dating and trace element analysis of titanite were performed by LA–ICP–MS at the Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University. Laser sampling was performed using an ArF excimer laser ablation system (GeoLasPro), and ion-signal intensities were acquired using an Agilent $7700 \times ICP$ –MS. A 32 µm spot was used with an energy density of 5 J/cm² and a repetition rate of 5 Hz. The trace element compositions of titanite were calibrated against the National Institute of Standards and Technology Standard Reference Material 610, using the Ca determined by electron microprobe as the internal standard. Zircon 91,500 was used as the external standard for U–Pb dating. Each analysis consisted of a 20 s background measurement (laser-off) followed by 45 s data acquisition. Data reduction was performed using ICPMSDataCal software (Liu et al., 2010). Meanwhile, ISOPLOT 3.0 software (Ludwig, 2003) was used to construct the Tera–Wasserburg diagram and weighted mean calculations.

The ore-related porphyry in Beiya contains abundant titanite. The titanite grains are about 100–600 μ m in length, euhedral and envelope-shaped (Fig. 4c, g, h) with high white interference color (under cross-polarized light). They occur as discrete grains in the interstices of feldspar and quartz, some of which contain inclusions of apatite, zircon, ilmenite and rutile (Fig. 4h). Titanite from the mineralized skarn is mostly subhedral (50–500 μ m), and associates with pyroxene, feldspar, magnetite, epidote, quartz and calcite (Fig. 4d–f, i, j). Mineral inclusions of apatite, pyroxene, garnet, quartz and chlorite occur in some titanite. No titanite displays patchy zoning or overgrowth textures in the BSE images, indicating a single mineral growth phase.

4. Results

4.1. Major and trace elements of titanite

Major element geochemical data of titanite are presented in Table 1. Titanite in the ore-related porphyry has relatively uniform SiO₂ (30.04– 32.89 wt.%), TiO₂ (34.61–36.55 wt.%), CaO (27.83–28.99 wt.%), Al₂O₃ (0.57–2.66 wt.%) and FeO (2.14–3.16 wt.%). The titanite grains in the mineralized skarn also exhibit uniform SiO₂ (28.93–35.20 wt.%), TiO₂ (28.24–35.23 wt.%), CaO (26.17–30.20 wt.%), Al₂O₃ (0.47–3.66 wt.%) and FeO (3.08–6.87 wt.%). Although CaO contents are very similar for the two titanite types, titanite from the mineralized skarn contains higher F (average: 1.21 wt.%) and FeO (average: 4.91 wt.%), and lower TiO₂ (average: 31.85 wt.%) than titanite in the ore-related porphyry (average: 0.44 wt.%, 2.48 wt.% and 35.47 wt.%, respectively).

Our new titanite trace element geochemical data show that the titanite in skarn is significantly more enriched in HFSEs (e.g., Sn, Y, Nb, Ta, Mo, Th, Zr and Hf) than the titanite in porphyry, with total HFSE concentrations of $10,492 \times 10^{-6}$ and 4151×10^{-6} (average values), respectively. The titanite in skarn also has higher U, Lu, Hf and Lu/Hf but lower Th/U (average: 347×10^{-6} , 32.6×10^{-6} , 115.5×10^{-6} , 0.34 and 0.6, respectively) than its porphyry counterpart (average: 43×10^{-6} , 9.4×10^{-6} , 66.8×10^{-6} , 0.18 and 4.6, respectively). In addition, the skarn titanite displays a smaller Light REEs (LREEs) over Heavy REEs (HREEs) enrichment (LREE/HREE ratio values: 1.47-5.59; average: 3.34) and a more prominent negative Eu anomaly (δ Eu: 0.37-0.59; average: 0.46) than its porphyry counterpart (LREE/HREE ratio values:

Fig. 5. Chondrite-normalized REE patterns of titanites from ore-related porphyry and mineralized skarn in the Beiya deposit (a) and comparable typical magmatic (b) and hydrothermal ones (c). The gray, green and yellow areas in (b) represent the REE compositions of titanite from the Ruanjiawan diorite (Deng et al., 2015a), Fangshan granitic pluton (Sun et al., 2010) and Tonglushan diorite (Li et al., 2010), respectively; the pink area in (c) represents the REE compositions of titanite from the Jinshandian skarn (Zhu et al., 2014). (Chondrite value is from Sun and McDonough, 1989.)

3.87–11.82; average: 7.64 and δEu : 0.68–0.94; average: 0.80) (Fig. 5 and Table 2).

4.2. Titanite U-Pb age

Most zircon and some titanite contain negligible common Pb and thus the Stacey and Kramers (1975)'s model for correction of Pb isotopic data is applicable. However, for the titanite with higher common Pb (percentage of common 206 Pb > 10%), use of a model Pb isotopic composition may be inappropriate (Aleinikoff et al., 2002). Moreover, if the titanite is young or has low U and Pb concentrations, the choice of initial Pb isotopic composition will influence the calculated ages significantly (Frost et al., 2000). In this study, our samples are young and have high common Pb, indicating that the ²⁰⁷Pb-correction method, which is more precise for common Pb correction should be adopted (Stern, 1997; Aleinikoff et al., 2002). The uncorrected data are plotted in the Tera-Wasserburg diagram (Fig. 6), and a regression through these analvses yields a lower intercept that represents the approximate titanite age. The y-intercept represents the initial ²⁰⁷Pb/²⁰⁶Pb (Aleinikoff et al.. 2002), which can be used in an algorithm to allow a form of ²⁰⁷Pbcorrection (Stern, 1997; Frost et al., 2000). Subsequently, the individual ²⁰⁷Pb-corrected ²⁰⁶Pb/²³⁸U ages can be calculated for the weighted average age, which represents the real age of titanite. This approach has been shown effective in correcting common-Pb of titanite (Storey et al., 2006).

U–Pb isotope results of titanite in the Beiya mineralized skarn are listed in Table 3. On the Tera–Wasserburg diagram, the common Pbuncorrected data define a linear array, giving a lower-intercept age of 33.7 \pm 1.2 Ma (MSWD = 1.2), and the y-intercept of initial ²⁰⁷Pb/²⁰⁶Pb at 0.8408 (Fig. 6a). With this common Pb composition, common Pb correction was conducted using the ²⁰⁷Pb-based method. All analyses yielded a weighted average ²⁰⁶Pb/²³⁸U age of 33.1 \pm 1.0 Ma (MSWD = 2.0) (Fig. 6a), consistent with the lower-intercept age within the error range. The titanite U–Pb isotope data for the ore-related porphyry are listed in Table 4. They exhibit lower U and Pb with higher common Pb (all data points plot far away from the lower intercept), resulting in greater experimental errors, and thus the lower intercept age (36.0 \pm 5.9 Ma) is used as the titanite age.

5. Discussion

5.1. Origin of titanite

Different origins of titanite can be discriminated by their texture, paragenetic mineral assemblages and geochemistry (Cao et al., 2015). The titanite grains in the Beiya mineralized skarn are mostly subhedral, and commonly coexist with typical retrograde skarn minerals including magnetite, feldspar, pyroxene and quartz, suggesting a hydrothermal origin. In contrast, titanite grains from the Beiya ore-related porphyry are all euhedral envelope-shaped, and occur in the interstices of feldspar and quartz phenocrysts, implying a magmatic origin. This conclusion is further supported by the titanite geochemistry. Both Fig. 7a and b show good negative correlation between TiO_2 and F, TiO_2 and FeO + Al_2O_3 , respectively. Consequently, the dominant substitution mechanism in our data is likely to be: $(AI, Fe)^{3+} + (F, OH)^{-} = Ti^{4+} + O^{2-}$, consistent with previous studies (Cempírek et al., 2008; Horie et al., 2008; Olin and Wolff, 2012; Che et al., 2013; Cao et al., 2015). As demonstrated in Fig. 7, titanite from the Beiya ore-related porphyry shows low F, Al, Fe and high Ti, and all the data points fall on the upper left hand part of the diagram, resembling typical magmatic titanite. In contrast, titanite from the mineralized skarn falls on the lower right hand part of the diagram with high F, Al, Fe and low Ti contents, exhibiting the characteristics of hydrothermal titanite (Broska et al., 2007; Morad et al., 2009; Li et al., 2010; Che et al., 2013).

Th/U ratio in titanite is useful for investigating the origin of titanite. In general, hydrothermal titanite has lower Th/U (mostly <1) than

Sample	Zr	Nb	Мо	Sn	Hf	Та	Th	U	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	HFSE	ΣREE	LREE/	δEu	δCe	Th/U	Y/Ho	Nb/Ta	Lu/Hf
no.																										HREE						
Hydrother	mal titani	te																														
w364-01	3439	1976	59.1	1098	197.9	58.5	129	268	4110	1027	3132	379	1750	530	85.9	624	111.9	720	162	462	72.4	458	53.8	11,067	9567	2.59	0.46	1.23	0.5	25.4	33.8	0.27
w364-02	9089	2080	61.3	3616	385.0	88.5	252	327	3965	1059	3301	391	1890	543	73.6	625	102.4	644	138	371	53.0	333	37.6	19,536	9560	3.15	0.39	1.26	0.8	28.8	23.5	0.10
w364-03	2530	1497	67.6	1948	78.7	46.7	178	183	3623	943	2917	365	1693	491	69.3	560	97.5	605	130	368	53.5	346	39.6	9969	8676	2.95	0.40	1.22	1.0	27.8	32.1	0.50
w364-04	1533	1484	70.7	1732	61.4	37.3	200	245	3178	902	2702	347	1612	471	66.1	509	85.6	541	115	322	47.3	313	36.9	8296	8070	3.10	0.41	1.18	0.8	27.8	39.8	0.60
w364-05	2253	1805	78.3	1873	86.8	63.7	172	188	4687	940	2874	364	1692	520	77.6	647	115.3	777	172	489	71.9	460	50.9	11,018	9250	2.32	0.41	1.20	0.9	27.3	28.3	0.59
w364-06	1850	1609	70.4	672	82.5	45.1	61	345	1355	521	1618	222	1087	329	59.7	325	46.4	248	44	104	14.4	87	10.1	5744	4716	4.36	0.55	1.17	0.2	30.7	35.6	0.12
w364-07	1674	1768	85.8	716	63.1	45.6	39	347	1685	553	1702	239	1145	353	63.2	376	55.1	306	55	132	17.6	115	12.5	6075	5123	3.79	0.53	1.15	0.1	30.8	38.8	0.20
w364-08	2791	1597	69.6	1860	99.3	51.9	148	241	3508	736	2225	295	1422	416	66.4	508	91.0	586	131	367	54.9	369	45.2	10,124	7313	2.40	0.44	1.17	0.6	26.8	30.8	0.45
w364-09	1995	1291	86.8	520	59.5	49.9	51	223	1188	461	1418	190	919	267	51.6	295	42.2	229	41	100	14.2	85	9.5	5241	4121	4.06	0.56	1.17	0.2	29.3	25.9	0.16
w364-10	2060	1888	83.2	626	55.0	34.5	34	329	1721	572	1710	235	1104	339	60.9	364	52.8	306	53	131	18.5	114	12.9	6501	5075	3.82	0.53	1.14	0.1	32.3	54.8	0.23
w364-11	2818	1134	64.7	559	68.4	28.1	24	173	1324	447	1367	189	923	301	52.9	318	46.7	243	40	94	12.1	74	8.6	6021	4117	3.92	0.52	1.15	0.1	32.8	40.3	0.13
w364-12	7653	1714	89.8	897	202.8	73.4	50	242	1741	616	1866	250	1161	338	59.1	385	58.7	325	58	142	18.8	116	13.6	12,421	5406	3.84	0.50	1.17	0.2	30.0	23.3	0.07
w364-13	3527	1622	126.5	992	123.6	55.9	97	380	1684	765	2249	295	1354	364	71.0	365	56.1	320	60	154	22.5	145	16.7	8228	6238	4.47	0.59	1.16	0.3	28.0	29.0	0.14
w364-14	3535	1475	91.3	689	107.9	45.0	36	308	1432	553	1668	228	1126	362	66.0	374	53.2	277	46	105	13.3	84	9.3	7411	4965	4.16	0.54	1.15	0.1	31.0	32.8	0.09
w364-15	3182	1099	71.7	2834	103.4	37.0	241	193	2936	1025	2919	362	1621	409	56.2	451	74.4	480	105	292	47.1	303	37.2	10,504	8180	3.57	0.40	1.17	1.2	28.0	29.7	0.36
w364-16	12,117	2019	55.3	4776	374.7	85.2	353	442	3281	1410	4154	487	2161	532	66.6	556	90.7	559	116	320	47.2	303	35.0	23,061	10,837	4.35	0.37	1.22	0.8	28.3	23.7	0.09
w364-17	3214	1320	76.5	2096	139.8	46.7	180	283	4152	755	2257	305	1473	438	68.0	524	95.7	648	145	436	69.0	452	53.3	11,225	7720	2.18	0.43	1.15	0.6	28.5	28.3	0.38
w364-18	2582	1465	85.2	1447	88.4	33.2	143	333	2642	881	2622	349	1650	478	79.3	511	79.9	475	95	250	36.4	236	27.3	8486	7771	3.54	0.49	1.16	0.4	27.9	44.1	0.31
w364-19	1950	1482	95.0	1422	82.7	40.6	194	283	2916	855	2560	340	1559	454	72.6	496	80.5	492	100	282	41.5	276	31.8	8182	7640	3.24	0.46	1.16	0.7	29.2	36.5	0.38
w364-20	2551	1781	101.7	1818	92.5	43.4	207	473	3310	853	2579	342	1616	475	75.6	526	87.1	560	122	348	52.2	351	39.5	9904	8027	2.85	0.46	1.17	0.4	27.2	41.1	0.43
w364-21	2444	1406	95.8	1695	84.5	32.2	199	417	2774	1002	2947	380	1722	465	77.4	508	81.0	485	101	273	40.4	263	30.4	8731	8374	3.70	0.48	1.17	0.5	27.5	43.7	0.36
w364-22	2611	1683	91.9	1458	92.5	45.1	188	454	4070	801	2370	319	1541	479	77.2	568	100.9	671	148	445	66.5	445	52.6	10,239	8085	2.24	0.45	1.15	0.4	27.4	37.4	0.57
w364-23	3952	1819	104.2	2207	119.5	49.9	294	507	2896	1084	3217	402	1830	478	69.4	501	81.9	483	100	280	40.8	271	30.4	11,440	8869	3.96	0.43	1.19	0.6	28.9	36.5	0.25
w364-24	2977	1784	74.4	901	105.6	56.8	96	356	1300	552	1689	229	1101	331	57.7	325	45.6	245	42	103	13.4	85	9.3	7294	4828	4.56	0.53	1.16	0.3	31.0	31.4	0.09
w364-25	3010	1535	84.7	1154	107.9	67.6	97	387	2131	667	1980	265	1230	342	61.7	391	60.4	359	74	202	30.2	195	22.2	8188	5878	3.41	0.51	1.15	0.3	28.7	22.7	0.21
w364-26	6264	1709	64.9	1051	138.2	39.0	378	286	3560	618	2134	288	1414	403	63.1	502	85.2	543	120	342	53.9	365	46.7	13,204	6977	2.39	0.43	1.24	1.3	29.7	43.9	0.34
w364-27	9606	2176	67.6	1190	209.9	65.4	326	294	3632	685	2276	303	1501	434	67.5	529	89.0	566	120	341	52.1	344	41.4	17,273	7348	2.53	0.43	1.22	1.1	30.2	33.3	0.20
w364-28	1713	1152	76.6	588	43.9	19.6	526	304	3879	539	1875	259	1281	391	62.8	480	84.0	558	125	371	59.4	411	54.6	7998	6551	2.06	0.44	1.23	1.7	31.1	58.9	1.25
w364-29	1432	1319	75.5	544	54.8	40.9	77	206	1473	444	1412	192	930	277	47.7	296	45.0	250	48	122	17.5	115	14.1	5015	4210	3.64	0.51	1.18	0.4	30.5	32.2	0.26
w364-30	2517	2353	98.2	773	72.0	57.2	58	394	1443	604	1841	246	1155	349	61.8	360	49.6	260	44	103	13.3	82	9.1	7371	5177	4.62	0.53	1.17	0.1	32.9	41.1	0.13
w364-31	5239	2001	89.5	760	113.8	46.9	287	536	1651	592	1899	247	1177	325	57.6	342	49.9	277	53	137	20.4	144	20.3	10,188	5342	4.12	0.52	1.22	0.5	31.4	42.7	0.18
w364-32	3845	2252	83.0	3407	96.1	42.1	383	1491	4511	1084	3245	392	1847	557	80.8	657	113.7	728	157	437	65.9	428	49.5	14,619	9841	2.73	0.41	1.22	0.3	28.8	53.5	0.51
w364-33	2708	1357	70.5	1611	96.0	40.3	193	257	3562	860	2695	334	1529	433	59.7	493	85.2	554	118	338	52.6	345	40.2	9638	7936	2.92	0.39	1.23	0.8	30.3	33.7	0.42
w364-34	3246	1624	82.9	973	78.9	24.2	447	392	3566	665	2181	289	1407	407	64.3	485	81.6	531	116	342	53.2	365	45.7	10,043	7032	2.48	0.44	1.22	1.1	30.7	67.2	0.58
w364-35	1969	1754	81.4	596	64.7	40.4	78	336	1246	515	1603	213	1009	286	49.6	290	41.5	220	40	98	13.1	87	9.7	5830	4474	4.60	0.52	1.19	0.2	31.1	43.4	0.15
w364-36	1712	2502	85.5	664	51.4	40.9	63	312	1355	587	1864	234	1118	320	56.7	330	46.5	245	42	97	12.7	81	9.2	6474	5044	4.84	0.53	1.23	0.2	32.3	61.2	0.18
w364-37	8652	2216	55.8	4052	221.8	80.3	313	221	3821	1446	4351	518	2304	584	75.6	646	103.2	632	132	358	52.8	332	39.0	19,412	11,573	4.04	0.37	1.23	1.4	29.0	27.6	0.18
w364-38	11,306	4158	63.1	5545	218.8	129.5	397	1286	3550	1622	4582	530	2291	544	70.3	584	95.5	585	123	346	50.9	333	38.0	25,368	11,794	4.47	0.38	1.21	0.3	28.8	32.1	0.17
w364-39	9254	3387	62.1	4882	181.6	78.2	315	560	3392	1350	4044	482	2085	515	67.9	561	90.0	558	116	323	48.4	311	36.0	21,552	10,588	4.18	0.38	1.23	0.6	29.2	43.3	0.20

Table 2Trace element analysis result ($\times 10^{-6}$) of the Beiya titanite by LA-ICP-MS.

50

4608 1734 91.2 2813 117.1 36.0 385 431 5339 1039 3223 395 1859 566 w364-40 77.7 714 127.7 830 187 546 83.5 554 64.1 15,124 10,268 2.30 0.37 1.23 0.9 28.5 48.1 0 5 5 2395 2544 116.6 1752 82.5 83.7 173 212 5543 813 2728 370 1865 631 88.5 800 141.5 912 193 538 78.2 492 52.8 12,691 9703 2.02 0.38 1.22 0.8 28.8 30.4 0.64 w364-41 w364-42 1336 1487 100.8 976 58.9 59.6 124 217 5426 565 1809 248 1247 449 80.0 609 112.8 763 179 547 87.9 623 78.5 9568 7397 1.47 0.47 1.18 0.6 30.4 25.0 1.33 w364-43 2437 1644 102.6 1279 79.9 28.5 211 277 2993 783 2550 326 1495 430 68.0 483 78.4 475 97 261 37.8 252 29.3 7366 3.30 0.45 1.24 0.8 30.8 57.7 0.37 8774 w364-44 2257 1688 94.9 1549 87.7 31.5 210 373 3395 845 2691 339 1583 462 70.3 548 86.5 545 115 309 47.6 303 36.4 9314 7982 3.01 0.43 1.23 0.6 29.6 53.6 0.41 w364-45 4741 1922 55.2 2842 160.8 54.7 151 217 4118 995 3111 383 1779 520 72.9 610 103.0 660 137 388 57.0 375 43.1 14,045 9234 2.89 0.39 1.23 0.7 30.0 35.1 0.27 w364-46 2856 1391 66.7 1968 100.9 32.8 143 175 3636 856 2620 326 1560 456 65.0 532 90.7 571 119 333 48.8 324 36.6 10,196 7937 2.86 0.40 1.22 0.8 30.6 42.4 0.36 880 2891 89.1 543 110 297 w364-47 3451 1868 118.9 1357 102.7 47.7 198 241 3466 368 1732 497 74.7 542 43.9 289 34.5 10.609 8391 3.31 0.44 1.25 0.8 31.4 39.2 0.34 w364-48 2016 999 73.7 503 59.8 28.6 67 236 1472 433 1349 181 890 303 52.0 322 48.9 268 49 125 17.0 111 12.8 5219 4161 3.36 0.51 1.18 0.3 29.8 34.9 0.21 w364-49 1561 2934 88.5 449 49.7 154.0 77 229 967 515 1559 213 997 282 51.1 263 35.3 183 30 68 9.0 53 6.1 6280 4264 5.59 0.56 1.15 0.3 32.1 19.1 0.12 w364-50 2648 1290 60.0 913 98.8 44.8 76 291 1625 625 1891 255 1207 344 57.1 365 52.6 301 59 156 22.1 150 17.9 6755 5503 3.90 0.49 1.16 0.3 27.6 28.8 0.18 1028 3139 387 1791 89.8 679 w364-51 3091 2204 59.3 777 193.7 64.1 123 233 4482 558 122.1 808 181 518 76.9 491 56.3 10.993 9924 2.38 0.45 1.22 0.5 24.8 34.4 0.29 w364-52 980 1021 51.4 1047 54.3 45.7 99 192 2967 360 1118 159 800 278 47.8 363 67.1 470 105 320 50.8 353 46.0 6266 4538 1.56 0.46 1.14 0.5 28.3 22.3 0.85 w364-53 5207 1428 79.4 1079 170.9 41.1 251 256 3113 658 2117 295 1427 413 67.9 468 79.9 503 108 303 45.6 294 35.7 11,370 6816 2.71 0.47 1.18 1.0 28.8 34.7 0.21 Magmatic titanite W300-01 455 1198 34.8 137 32.0 99.9 242 53 1400 985 3524 502 2219 471 100.9 384 50.7 269 49 121 16.4 102 11.1 3598 8805 7.78 0.70 1.22 4.5 28.5 12.0 0.35 37 1307 W300-02 1380 903 23.2 107 74.2 53.1 147 916 2952 400 1753 368 323 45.6 256 46 16.0 94 10.3 3995 7391 7.11 0.79 1.19 4.0 28.4 17.0 0.14 90.9 120 W300-03 2880 1252 21.3 161 162.0 100.7 222 49 1328 1256 4049 531 2314 450 108.2 368 51.1 276 50 125 15.8 95 10.6 6127 9699 8.80 0.79 1.22 4.5 26.8 12.4 0.07 W300-04 1402 702 7.0 73 60.7 64.1 137 20 1020 623 2081 320 1553 365 100.3 314 43.7 236 41 100 12.7 70 8.7 3466 5871 6.10 0.88 1.13 6.7 24.7 11.0 0.14 W300-05 404 3.5 39.4 49.6 82 704 270 992 171 916 234 182 73 2200 3298 4.32 0.91 1.10 5.1 22.5 864 54 16 256 74.2 34.4 31 9.1 50 5.8 8.1 0.15 W300-06 1221 368 2.7 54 46.4 22.4 89 16 743 224 886 161 902 267 80.5 248 35.6 195 33 73 9.5 51 6.1 2546 3173 3.87 0.94 1.10 5.5 22.3 16.4 0.13 W300-07 710 883 36.5 104 40.0 64.3 173 48 1171 859 3162 434 1964 402 90.3 318 45.1 237 43 107 13.7 86 9.6 3181 7772 8.03 0.74 1.26 3.6 27.0 13.7 0.24 540 994 41 1323 579 2299 417 90.3 341 46.0 256 10,795 W300-08 34.8 124 35.7 64.1 203 1557 4918 48 119 15.7 99 10.9 3318 10.55 0.71 1.27 5.0 27.6 15.5 0.31 523 954 31.7 125 68.0 207 398 53.6 275 94 W300-09 34.3 47 1335 1319 4580 569 2413 483 100.4 50 118 16.4 11.3 3278 10,480 9.31 0.68 1.30 4.4 26.4 14.0 0.33 30.7 61.0 197 47 1227 1137 4002 515 2221 373 261 47 8.76 0.70 1.28 4.2 W300-10 445 844 114 31.7 457 97.9 49.2 117 15.7 91 9.7 2951 9394 26.3 13.8 0.31 W300-11 2280 650 11.7 98 96.4 53.8 139 27 1055 525 1823 287 1428 382 104.7 341 51.2 280 49 114 13.8 78 8.7 4384 5486 4.87 0.87 1.14 5.2 12.1 0.09 21.6 133 1373 W300-12 1411 1028 36.7 130 74.2 67.9 141 947 1710 3683 352 294 72.9 244 34.3 191 36 91 13.0 81 9.2 3837 8186 10.70 0.81 1.10 1.1 26.5 15.1 0.12 W300-13 1074 991 24.4 106 55.8 80.9 237 40 1194 985 3195 458 2134 495 131.9 408 55.7 294 50 118 14.7 84 9.0 3763 8432 7.16 0.87 1.16 5.9 23.7 12.3 0.16 W300-14 625 540 17.3 84 38.5 36.9 125 27 841 710 2268 328 1517 348 93.8 281 38.6 208 36 84 10.2 59 6.2 2308 5989 7.28 0.89 1.15 4.6 23.2 14.6 0.16 554 362 15.5 41 27.1 134 25 599 2189 345 1627 394 109.0 332 103 12.9 73 8.4 2213 0.90 24.2 W300-15 26.2 1054 46.7 246 44 6129 6.08 1.16 5.4 13.4 0.32 W300-16 931 703 5.4 70 39.8 71.2 104 19 733 459 1627 259 1265 328 89.4 272 37.1 191 33 74 9.1 49 5.1 2657 4697 6.01 0.89 1.14 5.6 22.4 9.9 0.13 W300-17 690 1096 31.6 120 35.8 82.0 176 51 1188 856 2937 410 1824 405 91.5 334 45.6 242 42 102 13.9 78 8.7 3420 7390 7.54 0.74 1.21 3.4 28.1 0.24 13.4 W300-18 1451 3378 27.2 219 81.0 182.2 250 95 1337 2029 5424 589 2302 457 100.2 391 52.5 284 51 128 17.8 113 13.1 6925 11,952 10.37 0.71 1.20 26.1 18.5 0.16 2.6 W300-19 11.083 37.4 128 255.7 81.1 230 82 1274 1652 4606 528 2119 402 87.2 337 46.1 248 46 116 16.2 105 12.7 14.229 10.321 10.13 0.70 1.20 27.5 0.05 1140 2.8 14.1 W300-20 1266 713 5.0 80 60.2 76.6 128 18 855 459 1758 264 1336 355 100.5 307 43.4 232 39 90 10.9 62 7.2 3184 5063 5.40 0.91 1.22 7.0 21.8 9.3 0.12 W300-21 1565 984 6.6 98 70.8 108.0 163 25 930 525 1999 299 1493 393 112.6 336 48.8 256 44 98 12.5 69 7.7 3925 5694 5.53 0.92 1.22 6.6 21.3 9.1 0.11 W300-22 1744 939 8.4 97 86.1 83.2 175 28 999 561 2166 323 1616 419 117.3 359 50.6 267 46 105 13.0 74 8.5 4131 6125 5.63 0.90 1.23 6.2 21.7 11.3 0.10 W300-23 2156 687 12.9 75 57.8 46.8 117 23 1270 1554 4768 604 2615 488 124.6 384 50.1 271 51 124 15.9 93 11.0 4424 11,152 10.16 0.85 1.21 5.2 25.1 14.7 0.19 W300-24 802 29.0 118 49.9 64.1 187 1201 1813 5101 578 389 87.2 232 112 15.2 93 10.9 11,095 0.74 1.21 27.4 0.22 946 51 2261 316 41.8 44 3398 11.82 3.7 14.8 W300-25 422 965 31.8 119 29.5 68.5 199 48 1204 1069 3627 465 1981 409 86.5 330 45.6 247 45 112 15.1 88 10.4 3038 8532 8.55 0.70 1.26 4.2 26.5 14.1 0.35 W300-26 1292 1030 27.8 132 52.5 75.6 206 50 1330 913 3412 468 2065 443 94.5 361 49.1 271 50 125 16.6 100 11.7 4146 8380 7.51 0.70 1.27 4.1 26.4 13.6 0.22 W300-27 6142 1197 31.6 140 167.9 98.9 235 64 1356 1018 3762 506 2245 477 100.3 379 51.4 284 52 128 17.2 103 12.4 9368 9135 7.89 0.70 1.28 3.7 25.9 12.1 0.07 W300-28 1408 975 35.5 115 51.0 68.9 196 50 1142 1072 3657 462 1960 394 83.9 323 44.3 237 43 106 14.0 85 10.0 3991 8490 8.85 0.70 1.27 3.9 26.6 14.2 0.20 14 736 349 1352 218 1138 293 83.4 245 35.1 186 2369 22.1 10.0 W300-29 1056 363 5.0 50 51.2 36.3 71 33 75 9.6 55 6.3 4079 5.32 0.92 1.17 5.0 0.12

Note: $\delta Eu = (Eu/Eu^*)_N = Eu_N/2(Sm_N + Gd_N); \delta Ce = (Ce/Ce^*)_N = Ce_N/2(La_N + Pr_N); LREE = La + Ce + Pr + Nd + Sm + Eu; HREE = Gd + Tb + Dy + Ho + Er + Tm + Yb + Lu.$

Fig. 6. Tera-Wasserburg diagram for the titanite in skarn (a) and porphyry (b) from the Beiya deposit.

magmatic titanite (Aleinikoff et al., 2002; Gao et al., 2012; Che et al., 2013; Deng et al., 2015a). In our study, the mineralized-skarn titanite vielded low Th/U (0.1–0.7; average: 0.6), indicating a typical hydrothermal origin and is comparable with the hydrothermal titanite from the Ruanjiawan W-Cu-Mo skarn and Tonglushan Cu-Au-Fe skarn deposits (Th/U ratio values: 0.01-0.29 and 0.03-3.22, respectively) in the Daye district, Eastern China (Li et al., 2010; Deng et al., 2015a). In contrast, Th/U of the Beiya ore-related porphyry titanite is much higher than 1 (1.1–7.0; average: 4.6), suggesting a magmatic origin. The Beiya hydrothermal titanite contains higher Lu/Hf (average: 0.34) than magmatic titanite (average: 0.18), similar with the hydrothermal titanite in scapolite skarn from the Jinshandian Fe skarn deposit (Lu/Hf ratio values: 0.16-0.78; average: 0.42) in Hubei province, Central China (Zhu et al., 2014). These, together with the higher HFSE contents and Nb/Ta of hydrothermal titanite than magmatic titanite, point to a different origin for these two titanite types.

REE characteristics of titanite are good indicator for its origin. Titanite in the Beiva porphyry displays right-dipping REE patterns, high SREE contents and slightly negative Eu anomaly (Fig. 5a), resembling typical magmatic titanite and similar with the magmatic titanite in guartz diorite from the Tonglushan Cu-Au-Fe skarn and Ruanjiawan W-Cu-Mo skarn deposits, as well as with that in the Fangshan granitic pluton in North China Craton (Fig. 5b) (Li et al., 2010; Sun et al., 2010; Deng et al., 2015a). The titanite in the Beiya mineralized skarn, in contrast, shows lower LREE/HREE enrichment and a more distinct Eu anomaly (Fig. 5a). These features are comparable with hydrothermal titanite from the Jinshandian skarn deposit (Fig. 5c) (Zhu et al., 2014). The aqueous solutions are generally depleted in fluid-mobile incompatible trace elements such as LREE relative to hydrous melts (Hermann et al., 2006), which might lead to the growth of hydrothermal titanite with lower LREE/HREE ratios. The negative Eu anomaly of Beiya magmatic titanite may have been caused by the fractionation of plagioclase that preferentially incorporates Eu (Deng et al., 2015a). For the hydrothermal titanite, this is especially important in an oxidizing condition, where Eu²⁺ is oxidized into Eu³⁺ and becomes less incorporated into titanite (Horie et al., 2008), leading to a distinct negative Eu anomaly. Therefore, the prominent negative Eu anomaly of the Beiya hydrothermal titanite indicates that the ore forming fluids are relatively oxidized. As a whole, the similar right-dipping REE pattern and Σ REE of the hydrothermal- and magmatic titanite suggest that the hydrothermal source of mineralized skarn in the Beiya deposit might be magmatic fluids (Li et al., 2010; Cao et al., 2015).

In Fig. 8, it's noted that the trace elements compositions of magmatic and hydrothermal titanites are quite distinct, thus can be also used to identify their origin. Generally speaking, LREE/HREE ratios in the magmatic titanite are higher than those in the hydrothermal titanite, therefore all data points fall on the upper right hand part of the Fig. 8a. While the hydrothermal titanite usually have higher Nb/Ta ratios and HFSEs contents in a larger scope, with all the data points falling on the upper left hand part of the Fig. 8b and d. The Lu/Hf ratio cannot tell the origin of titanite without other evidences, for it varies by different deposits (Fig. 8c).

5.2. Geochronology of the Beiya deposit

Titanite U-Pb dating has been mainly applied to magmatic- and metamorphic rocks but less commonly to hydrothermal mineralization. Dating hydrothermal minerals places direct age constraints on hydrothermal activities and the associated metallogeny, a crucial aspect in ore deposit study. Hence, U-Pb dating of hydrothermal titanite has received increasingly more attention (Chiaradia et al., 2009; Smith et al., 2009; Li et al., 2010; Fallourd et al., 2014; Cao et al., 2015; Chelle-Michou et al., 2015; Deng et al., 2015a). In this study, magmatic titanite yields an intercept age of 36.0 \pm 5.9 Ma, consistent with the Beiya ore-related porphyry (zircon U–Pb: 36.07 ± 0.43 Ma) formation age (Fu et al., 2015). The hydrothermal titanite from Beiya skarn was formed during the retrograde skarn alteration, which was followed by the guartz-sulfide alteration and the gold mineralization. Therefore, the gold mineralization age is not older than the formation time of titanite. That is to say, the ore forming age of the Beiya deposit is around or slightly younger than 33.1 \pm 1.0 Ma (32.1–34.1 Ma). Previous research has indicated that the mineralization in the Beiya deposit took place at 34.7 \pm 1.6 Ma (33.1–36.3 Ma) according to the molybdenite Re–Os dating analysis (Fu et al., 2015), which seems to be older than the formation time of titanite. Since the results were obtained using different experimental subjects and analysis methods, we should take the errors into consideration when calculating the mineralization age (not older than 34.1 Ma and also between 33.1 Ma and 36.3 Ma). As a result, high-precision ages from retrograde skarn (U-Pb, hydrothermal titanite) and later-stage mineralization (Re-Os, molybdenite) in the Beiya deposit all together constrain the Beiya mineralization to between 33.1 and 34.1 Ma, just slightly younger than the porphyry emplacement $(36.07 \pm 0.43 \text{ Ma})$ (Fu et al., 2015). The close temporal relationship between the mineralization and the alkaline porphyry suggests that the Beiya gold-polymetallic metallogeny was likely to be caused by post-magmatic hydrothermal activities in the Himalayan orogenic event.

Table 3
LA–ICP–MS U–Pb isotope data for hydrothermal titanite from the Beiya deposit.

Sample no. W364	Pb	Th	U	Measured isoto	pic ratios		²⁰⁷ Pb-correcte (Ma)	²⁰⁷ Pb-corrected ages (Ma)			
	$\times 10^{-6}$			²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
01	3.8	129	268	0.2623	0.0207	0.2700	0.0193	0.0075	0.0003	35.00	3.32
02	12.4	252	327	0.5127	0.0268	0.9327	0.0481	0.0132	0.0004	35.08	2.40
03	9.3	178	183	0.5759	0.0284	1.2595	0.1142	0.0159	0.0011	34.04	3.13
04	7.7	200	245	0.4725	0.0278	0.7764	0.0493	0.0119	0.0004	35.55	2.72
05	6.5	172	188	0.4708	0.0288	0.7890	0.0457	0.0122	0.0005	36.43	2.93
06	6.1	61	345	0.3100	0.0318	0.3506	0.0291	0.0082	0.0003	35.27	4.05
07	10.3	39	347	0.4374	0.0301	0.6995	0.0730	0.0116	0.0007	37.91	3.66
08	12.6	148	241	0.5943	0.0296	1.4094	0.1028	0.0172	0.0009	34.35	2.77
09	7.1	51	223	0.4992	0.0279	0.8008	0.0612	0.0116	0.0006	32.22	2.77
10	20.6	34	329	0.6234	0.0247	1.7292	0.0985	0.0201	0.0009	35.43	2.43
11	3.7	24	173	0.3995	0.0456	0.4978	0.0470	0.0090	0.0005	32.32	4.25
12	4.4	50	242	0.3051	0.0242	0.3524	0.0242	0.0084	0.0004	36.36	3.55
13	10.6	97	380	0.4423	0.0299	0.7104	0.0651	0.0116	0.0007	37.61	3.58
14	12.4	36	308	0.5842	0.0345	1.0947	0.0722	0.0136	0.0006	28.27	2.31
15	9.8	241	193	0.5908	0.0405	1.3318	0.0861	0.0163	0.0008	33.13	2.98
16	31.1	353	442	0.6689	0.0282	2.0121	0.1069	0.0218	0.0008	30.40	1.99
17	10.5	180	283	0.5515	0.0276	1.0432	0.0624	0.0137	0.0006	32.17	2.41
18	6.0	143	333	0.3461	0.0257	0.3870	0.0317	0.0081	0.0003	32.51	2.97
19	7.5	194	283	0.4741	0.0349	0.6565	0.0440	0.0100	0.0004	29.85	2.74
20	16.5	207	473	0.5344	0.0271	0.9248	0.0586	0.0126	0.0004	31.17	2.23
21	8.6	199	417	0.4141	0.0287	0.5105	0.0363	0.0089	0.0003	30.93	2.64
22	17.0	188	454	0.5719	0.0406	1.2104	0.1591	0.0153	0.0014	33.45	4.04
23	12.0	294	507	0.4450	0.0317	0.5713	0.0787	0.0093	0.0006	29.87	3.12
24	13.8	96	356	0.5169	0.0274	0.9271	0.0776	0.0130	0.0007	34.14	2.89
25	15.8	97	387	0.5466	0.0337	1.1035	0.0896	0.0146	0.0009	34.90	3.30
26	4.3	378	286	0.2867	0.0202	0.2847	0.0201	0.0072	0.0002	32.35	2.70
27	4.5	326	294	0.2837	0.0235	0.2813	0.0201	0.0072	0.0002	32.47	3.08
28	6.9	526	304	0.4082	0.0202	0.5065	0.0279	0.0090	0.0003	31.55	2.23
29	23.7	77	206	0.7128	0.0162	3.3441	0.0845	0.0340	0.0006	35.29	1.63
30	6.7	58	394	0.3129	0.0216	0.3622	0.0237	0.0084	0.0003	35.91	3.00
31	19.1	287	536	0.4852	0.0176	0.9119	0.0314	0.0136	0.0003	39.26	2.22
32	20.4	383	1491	0.2781	0.0103	0.2709	0.0129	0.0071	0.0001	32.21	1.76
33	8.5	193	257	0.5284	0.0209	0.9381	0.0562	0.0129	0.0006	32.59	2.25
34	24.3	447	392	0.6123	0.0193	1.6741	0.0597	0.0198	0.0005	36.71	1.97
35	15.4	78	336	0.5794	0.0183	1.2930	0.0734	0.0162	0.0007	34.28	2.19
36	4.8	63	312	0.3179	0.0152	0.3359	0.0147	0.0077	0.0002	32.48	2.07
37	8.7	313	221	0.5238	0.0225	0.9794	0.0517	0.0136	0.0004	34.84	2.23
38	44.9	397	1286	0.4813	0.0139	0.8545	0.0377	0.0129	0.0003	37.50	1.97
39	22.1	315	560	0.5337	0.0156	1.0833	0.0546	0.0147	0.0005	36.62	2.09
40	/.1	385	431	0.3231	0.0186	0.3569	0.0230	0.0080	0.0003	33.62	2.52
41	6.3	1/3	212	0.4844	0.0235	0.7646	0.0455	0.0114	0.0004	33.06	2.30
42	4.5	124	217	0.3799	0.0215	0.4878	0.0235	0.0093	0.0003	34.78	2.54
45	14.0	211	277	0.0317	0.0294	0.5014	0.0005	0.0176	0.0000	29.65	2.01
44	8.3 C 2	210	3/3	0.4499	0.0293	0.5914	0.0847	0.0095	0.0007	30.21	3.07
45	0.5	1/2	217	0.4450	0.0236	0.0945	0.0550	0.0114	0.0006	25.22	2.10
40	5./ 7.0	143	1/5	0.4003	0.0225	0.0297	0.0412	0.0123	0.0006	22.20	2.02
47	7.9	67	241	0.5251	0.0242	1 /216	0.1015	0.0128	0.0009	24.62	2.00
-10 /0	0.9	07 77	200 220	0.3357	0.0260	0.3663	0.1241	0.0174	0.0012	30.60	2.00
-1.9 50	4.0	76	229	0.3407	0.0225	0.2002	0.0308	0.0077	0.0003	36.61	2.37
51	14.5	210	144	0.7403	0.0309	3 1313	0.4363	0.0075	0.0002	25.00	3.72
52	12.0	90	197	0 7291	0.0303	2 2669	0.1769	0.0225	0.0015	20.43	1.22
53	4.4	251	256	0 3473	0.0293	0 3648	0.0303	0.0076	0.0004	30.47	317
		201	200		0.0205	515010	0.0000	51007.0	0.0001	50.17	5,17

6. Conclusions

Magmatic- and hydrothermal titanite are distinguished in the Beiya deposit, which occurs in the ore-related porphyry and mineralized skarn, respectively. Hydrothermal titanite is characterized by higher FeO, F, HFSEs, Nb/Ta and Lu/Hf, as well as lower TiO₂ and Th/U than magmatic titanite. It also displays a right-dipping REE pattern with lower LREE/HREE and more obvious negative Eu anomaly than its magmatic counterpart. REE characteristics of hydrothermal titanite indicate that the ore forming fluids might have been derived from relatively oxidized magma. Magmatic titanite from the porphyry has yielded a U–Pb age of 36.0 \pm 5.9 Ma (coeval with the porphyry emplacement age), whilst hydrothermal titanite from the skarn has yielded a U–Pb age of 33.1 \pm 1.0 Ma, representing the age of the retrograde skarn alteration. This robust titanite U–Pb age and the published molybdenite Re–Os

age have altogether further constrained the Beiya mineralization to 33.1–34.1 Ma, suggesting that the mineralization was related to the post-magmatic hydrothermal activity in the Himalayan orogenic event.

Acknowledgments

This work was jointly funded by the National Natural Science Foundation of China (Nos. U1302233, 40830425, 40673045, 40873034), China Postdoctoral Science Foundation (No.2015M582457), the National Key Basic Research Program (Nos. 2015CB452604, 2009CB421006; Ministry of Science and Technology of the People's Republic of China), Higher School Specialized Research Fund for the Doctoral Program Funding Issue (No. 200805580031), and the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (No. 2011).

Table 4

Tuble 1	
LA-ICP-MS U-Pb isotope data for magmatic titan	ite from the Beiya deposit.

Sample no. W300	Pb	Th	U	Measured isotopic	ired isotopic ratios					
	×10 ⁻⁶			²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ			
01	3.2	242	53	0.5923	0.0634	0.0166	0.0008			
02	3.6	147	37	0.7455	0.0701	0.0269	0.0016			
03	7.5	222	49	0.7965	0.0518	0.0386	0.0015			
04	2.6	137	20	0.7757	0.3083	0.0312	0.0017			
05	6.3	81.7	16	0.8783	0.0964	0.0934	0.0067			
06	3.3	89.0	16	0.7384	0.2036	0.0555	0.0031			
07	5.2	173	48	0.7463	0.0448	0.0283	0.0010			
08	8.6	141	133	0.6954	0.0381	0.0192	0.0006			
09	5.7	237	40	0.7113	0.0423	0.0389	0.0015			
10	4.6	125	27	0.7930	0.0598	0.0485	0.0028			
11	4.2	134	25	0.7523	0.0512	0.0457	0.0022			
12	4.6	104	19	0.8089	0.0720	0.0630	0.0030			
13	3.0	176	51	0.6580	0.0969	0.0171	0.0008			
14	5.0	139	27	0.7768	0.0774	0.0487	0.0024			
15	5.2	197	47	0.6677	0.0785	0.0314	0.0021			
16	15.0	250	95	0.7125	0.0210	0.0420	0.0014			
17	4.0	230	82	0.6030	0.0320	0.0180	0.0008			
18	3.7	128	18	0.7923	0.0337	0.0512	0.0013			
19	4.2	163	25	0.7722	0.0298	0.0444	0.0010			
20	13.2	175	28	0.8036	0.0263	0.1194	0.0037			
21	3.0	117	23	0.7897	0.0506	0.0356	0.0017			
22	4.0	187	51	0.6961	0.0329	0.0219	0.0008			
23	2.8	206	50	0.6141	0.0348	0.0163	0.0006			
24	2.7	196	50	0.5810	0.0344	0.0161	0.0005			
25	5.1	71.4	14	0.7867	0.0438	0.0947	0.0030			
26	2.6	199	48	0.6267	0.0332	0.0150	0.0004			
27	2.9	235	64	0.5538	0.0306	0.0142	0.0004			
28	2.7	203	41	0.5734	0.0813	0.0186	0.0013			
29	4.8	207	47	0.8097	0.0876	0.0257	0.0017			

Fig. 7. Binary plots of (a) F versus TiO₂ and (b) FeO + Al₂O₃ versus TiO₂ in magmatic and hydrothermal titanites. (The values of other magmatic and hydrothermal titanites are from Broska et al., 2007; Li et al., 2010; Che et al., 2013.)

Fig. 8. Plots of Th/U versus (a) LREE/HREE, (b) Nb/Ta, (c) Lu/Hf, and (d) HFSE showing distinct geochemical characteristics of magmatic and hydrothermal titanites. (The values of other magmatic and hydrothermal titanites are from Li et al., 2010; Che et al., 2013; Deng et al., 2015a, b; Xu et al., 2015.)

References

- Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., Dorais, M.J., 2002. U–Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chem. Geol. 188 (1), 125–147.
- Bonamici, C.E., Fanning, C.M., Kozdon, R., Fournelle, J.H., Valley, J.W., 2015. Combined oxygen-isotope and U–Pb zoning studies of titanite: new criteria for age preservation. Chem. Geol. 398, 70–84.
- Broska, I., Harlov, D., Tropper, P., Siman, P., 2007. Formation of magmatic titanite and titanite–ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia. Lithos 95, 58–71.
- Cao, M.J., Qin, K.Z., Li, G.M., Evans, N.J., Jin, L.Y., 2015. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geol. Rev. 65, 940–954.
- Cempírek, J., Houzar, S., Novák, M., 2008. Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions Al(Nb,Ta)Ti₋₂, Al(F,OH)(TiO)₋₁ and SnTi₋₁. Mineral. Mag. 72 (6), 1293–1305.
- Che, X.D., Linnen, R.L., Wang, R.C., Groat, L.A., Brand, A.A., 2013. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. Can. Mineral. 51 (3), 415–438.
- Chelle-Michou, C., Chiaradia, M., Selby, D., Ovtcharova, M., Spikings, R.A., 2015. High-resolution geochronology of the Coroccohuayco porphyry-skarn deposit, Peru: a rapid product of the Incaic orogeny. Econ. Geol. 110, 423–443.
- Chiaradia, M., Vallance, J., Fontbote, L., Stein, H., Schaltegger, U., Coder, J., Richards, J., Villeneve, M., Gendall, I., 2009. U–Pb, Re–Os, and ⁴⁰Ar/³⁹Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Mineral. Deposita 44 (4), 371–387.
- Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.F., Ovtcharova, M., 2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? an invited paper. Econ. Geol. 108, 565–584.
- Corfu, F., Grunsky, E.C., 1987. Igneous and tectonic evolution of the Batchawana greenstone belt, Superior Province: a U–Pb zircon and titanite study. J. Geol. 95 (1), 87–105.
- Corfu, F., Heaman, L.M., Rogers, G., 1994. Polymetamorphic evolution of the Lewisian complex, NW Scotland, as recorded by U–Pb isotopic compositions of zircon, titanite and rutile. Contrib. Mineral. Petrol. 117 (3), 215–228.
- Deng, X.D., Li, J.W., Zhou, M.F., Zhao, X.F., Yan, D.R., 2015a. In-situ LA-ICPMS trace elements and U–Pb analysis of titanite from the Mesozoic Ruanjiawan W–Cu–Mo skarn deposit, Daye district, China. Ore Geol. Rev. 65, 990–1004.

- Deng, J., Qang, Q.F., Li, G.J., Hou, Z.Q., Jiang, C.Z., Danyushevsky, L., 2015b. Geology and genesis of giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geol. Rev. 70, 457–485.
- Esssex, R.M., Gromet, L.P., 2000. U–Pb dating of prograde and retrograde titanite growth during the Scandian orogeny. Geology 28 (5), 419–422.
- Fallourd, S., Poujol, M., Boulvais, P., Paquette, J.L., Blanquat, M.S., Remy, P., 2014. In situ LA-ICP-MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example. Int. J. Earth Sci. 103 (3), 667–682.Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2000. Sphene (titanite): phase relations
- Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2000. Sphene (titanite): phase relations and role as a geochronometer. Chem. Geol. 172 (1), 131–148.Fu, Y., Sun, X.M., Lin, H., Zhou, H.Y., Li, X., Ouyang, X.Q., Jiang, L.Y., Shi, G.Y., Liang, Y.H.,
- Fu, Y., Sun, X.M., Lin, H., Zhou, H.Y., Li, X., Ouyang, X.Q., Jiang, L.Y., Shi, G.Y., Liang, Y.H., 2015. Geochronology of the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its relationship with the petrogenesis of alkaline porphyry. Ore Geol. Rev. 71, 138–149.
- Gao, X.Y., Zheng, Y.F., Chen, Y.X., Guo, J.L., 2012. Geochemical and U–Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos 136-139, 93–108.
- Gregory, C.J., McFarlane, C.R.M., Hermann, J., Rubatto, D., 2009. Tracing the evolution of calc-alkaline magmas: in-situ Sm–Nd isotope studies of accessory minerals in the Bergell Igneous Complex, Italy. Chem. Geol. 260 (1–2), 73–86.
- Guo, Y.S., Zeng, P.S., Yang, W.G., Zhang, W.H., 2005. Geological characteristics and metallogenic types of Beiya gold-polymetallic deposit, in Yunnan. Eng. Sci. 7, 218–223 (in Chinese with English abstract).
- Guo, J.L., Gao, S., Wu, Y.B., Hu, Z.C., Xu, W.L., Zong, K.Q., Liu, Y.S., Yuan, H.L., 2014. Titanite evidence for Triassic thickened lower crust along southeastern margin of North China Craton. Lithos 206-207, 277–288.
- Hayden, L.A., Watson, E.B., Wark, D.A., 2008. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 155 (4), 529–540.
- He, W.Y., 2014. The Beiya Giant Gold-polymetallic Deposit: Magmatism and Metallogenic Model (Ph.D. thesis) China University of Geosciences (Beijing) Beijing. (in Chinese with English abstract).
- He, W.Y., Yu, X.H., Mo, X.X., He, Z.H., Li, Y., Huang, X.K., Su, G.S., 2012. Genetic type and the relationship between alkali-rich intrusion and mineralization of Beiya goldpolymetallic ore field, western Yunnan Province, China. Acta Petrol. Sin. 28, 1401–1412 (in Chinese with English abstract).
- He, Z.H., Zhou, Y.M., He, W.Y., Su, G.S., Li, W.H., Yang, S.W., 2013. Genetic types and metallogenic regularity of Beiya superlarge gold-polymetallic deposit, northwestern Yunnan. Mineral Deposits 32, 244–258 (in Chinese with English abstract).

- He, W.Y., Mo, X.X., He, Z.H., White, N.C., Chen, J.B., Yang, K.H., Wang, R., Yu, X.H., Dong, G.C., Huang, X.F., 2015. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, Southwest China. Econ. Geol. 110, 1625–1641.
- Hermann, J., Spandler, C., Hack, A., Korsakov, A.V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos 92, 399–417.
- Horie, K., Hidaka, H., Gauthier-Lafaye, F., 2008. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: durability of immobilization mineral phases for actinides. Phys. Chem. Earth 33, 962–968.
- Hou, Z.Q., Zhong, D.L., Deng, W.M., 2004. A tectonic model for porphyry copper-molybdenum-gold metallogenic belt on the eastern margin of the Qinghai-Tibet Plateau. Geol. China 31, 1–14 (in Chinese with English abstract).
- Ismail, R., Ciobanu, C.L., Cook, N.J., Teale, G.S., Giles, D., Mumm, A.S., Wade, B., 2014. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184-187, 456–477.
- Kohn, M.J., Corrie, S.L., 2011. Preserved Zr-temperatures and U–Pb ages in high-grade metamorphic titanite: evidence for a static hot channel in the Himalayan orogen. Earth Planet. Sci. Lett. 311 (1–2), 136–143.
- Li, J.W., Deng, X.D., Zhou, M.F., Liu, Y.S., Zhao, X.F., Guo, J.L., 2010. Laser ablation ICP-MS titanite U–Th–Pb dating of hydrothermal ore deposits: a case study of the Tonglushan Cu–Fe–Au skarn deposit, SE Hubei Province, China. Chem. Geol. 270, 56–67.
- Li, W.C., Wang, J.H., He, Z.H., Dou, S., 2016. Formation of Au-polymetallic ore deposits in alkaline porphyries at Beiya, Yunnan, Southwest China. Ore Geol. Rev. 73, 241–252.
- Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 51, 537–571.
- Liu, B., Liu, H., Zhang, C.Q., Mao, Z.H., Zhou, Y.M., Huang, H., He, Z.H., Su, G.S., 2015. Geochemistry and geochronology of porphyries from the Beiya gold-polymetallic orefield, western Yunnan, China. Ore Geol. Rev. 69, 360–379.
- Lu, Y.J., Kerrich, R., Cawood, P.A., McCuaig, T.C., Hart, C.J.R., Li, Z.X., Hou, Z.Q., Bagas, L., 2012. Zircon SHRIMP U–Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: constraints on the relationship of magmatism to the Jinsha suture. Gondwana Res. 22, 737–747.
- Lu, Y.J., Kerrich, R., Kemp, A.I.S., McCuaig, T.C., Hou, Z.Q., Hart, C.J.R., Li, Z.X., Cawood, P.A., Bagas, L., Yang, Z.M., Cliff, J., Belousova, E.A., Jourdan, F., Evans, N.J., 2013a. Intracontinental Eocene–Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny. Econ. Geol. 108, 1541–1576.
- Lu, Y.J., Kerrich, R., McCuaig, T.C., Li, Z.X., Hart, C.J.R., Cawood, P.A., Hou, Z.Q., Bagas, L., Cliff, J., Belousova, E.A., Tang, S.H., 2013b. Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopic compositions of Eocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications. J. Petrol. 54, 1309–1348.
- Ludwig, K.R., 2003. User's Manual for Isoplot 3.0: a Geochronological Toolkit for Microsoft Excel. Special Publication 4. Berkeley Geochronology Center, pp. 1–70.
- Mazdab, F.K., 2009. Characterization of flux-grown trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG). Can. Mineral. 47 (4), 813–831.
- Morad, S., El-Ghali, M.A.K., Caja, M.A., Al-Ramadan, K., Mansurbeg, H., 2009. Hydrothermal alteration of magmatic titanite: evidence from Proterozoic granitic rocks, Southeastern Sweden. Can. Mineral. 47 (4), 801–811.
- Olin, P.H., Wolff, J.A., 2012. Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128-131, 46–54.
- Pan, Y., Fleet, M.E., MacRae, N.D., 1993. Late alteration in titanite (CaTiSiO₅): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim. Cosmochim. Acta 57 (2), 355–367.
- Sepahi, A.A., Shahbazi, H., Siebel, W., Ranin, A., 2014. Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U–Th–Pb ages for granitoids from the Marivan pluton. Geochronometria 41 (3), 207–215.

- Smith, M.P., Storey, C.D., Jeffries, T.E., Ryan, C., 2009. In situ U–Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. J. Petrol. 50 (11), 2063–2094.
- Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221.
- Stern, R.A., 1997. The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U–Th–Pb age determinations and performance evaluation. Radiogenic age and isotopic studies: report 10. Geol. Surv. Can. Curr. Res. 1997-F, 1–31.
- Storey, C.D., Jeffries, T.E., Smith, M., 2006. Common lead-corrected laser ablation ICP–MS U–Pb systematics and geochronology of titanite. Chem. Geol. 227, 37–52.
- Storey, C.D., Smith, M.P., Jeffries, T.E., 2007. In situ LA-ICP-MS U–Pb dating of metavolcanics of Norrbotten, Sweden: records of extended geological histories in complex titanite grains. Chem. Geol. 240 (1–2), 163–181.
- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345.
- Sun, J.F., Yang, J.H., Wu, F.Y., Li, X.H., Yang, Y.H., Xie, L.W., Wilde, S.A., 2010. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: in situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos 120, 421–438.
- Sun, J.F., Yang, J.H., Wu, F.Y., Xie, L.W., Yang, Y.H., Liu, Z.C., Li, X.H., 2012. In situ U–Pb dating of titanite by LA-ICPMS. Chin. Sci. Bull. 57 (20), 2506–2516.
- Tiepolo, M., Oberti, R., Vannucci, R., 2002. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem. Geol. 191, 105–119.
- Wang, J.H., Yin, A., Harrison, T.M., Grove, M., Zhang, Y.Q., Xie, G.H., 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth Planet. Sci. Lett. 188, 123–133.
- Xiao, X.N., Yu, X.H., Mo, X.X., Yang, G.L., Li, Y., Huang, X.K., 2009. Geochemistry, zircon SHRIMP U–Pb dating and origin of alkali-rich porphyries in Beiya area, north Erhai Lake, western Yunnan, China. Geol. Bull. Chin. 28, 1786–1803 (in Chinese with English abstract).
- Xie, L., Wang, R.C., Chen, J., Zhu, J.C., 2010. Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chem. Geol. 276, 53–68.
- Xu, X.W., Cai, X.P., Song, B.C., Zhang, B.L., Ying, H.L., Xiao, Q.B., Wang, J., 2006a. Petrologic, chronological and geochemistry characteristics and formation mechanism of alkaline porphyries in the Beiya gold district, western Yunnan. Acta Petrol. Sin. 22, 631–643 (in Chinese with English abstract).
- Xu, S.M., Mo, X.X., Zeng, P.S., Zhang, W.H., Zhao, H.B., Zhao, H.D., 2006b. Characteristics and origin of alkali-rich porphyries from Beiya in Western Yunnan. Geoscience 20, 527–535 (in Chinese with English abstract).
- Xu, X.W., Cai, X.P., Zhang, B.L., Liang, G.H., Du, S.J., Wang, J., 2007a. Genetic types and framework model of Beiya gold ore district in western Yunnan. Mineral Deposits 26, 249–264 (in Chinese with English abstract).
- Xu, X.W., Cai, X.P., Xiao, Q.B., Peters, S.G., 2007b. Porphyry Cu–Au and associated polymetallic Fe–Cu–Au deposits in the Beiya Area, western Yunnan Province, south China. Ore Geol. Rev. 31, 224–246.
- Xu, L., Bi, X.W., H, R.Z., Tang, Y.Y., Wang, X.S., Xu, Y., 2015. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang–Red River alkaline igneous belt, SW China. Mineral. Petrol. 109 (2), 181–200.
- Xue, C.D., Hou, Z.Q., Liu, X., Yang, Z.M., Liu, Y.Q., Hao, B.W., 2008. Petrogenesis and metallogenesis of the Beiya gold-polymetallic ore district, northwestern Yunnan province, China: responses to the Indo-Asian collisional processes. Acta Petrol. Sin. 24, 457–472 (in Chinese with English abstract).
- Zhu, Q.Q., Xie, G.Q., Jiang, Z.S., Sun, J.F., Li, W., 2014. Characteristics and in situ U–Pb dating of hydrothermal titanite by LA-ICPMS of the Jingshandian iron skarn deposit, Hubei Province. Acta Petrol. Sin. 30 (5), 1322–1338 (in Chinese with English abstract).