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Fractal/multifractal concepts have facilitated the description and analysis of complex geochemical data in both
mineral exploration and environmental studies. Scaling (1/fβ) noise has been ubiquitously found in geosciences
but lack in-depth studies for geochemical distribution pattern inmineral exploration. In the present paper, the 1/f
scaling natures of geochemical landscapes are investigated using spectral method through geochemical samples
in stream sediments fromNanling Range, China. The results show explicit differences in scaling exponent (β) be-
tween major elements and trace elements, between highly enriched elements (e.g., W, Sn, Mo and Bi) and rela-
tively low enriched elements (e.g., Au, Ag and Cu),whereβmeasures the strength of persistence (or the degree of
roughness) of geochemical landscapes. Furthermore, fractal mapping of geochemical patterns (W and Sn ele-
ment) is undertaken to reveal the spatial association between local fractal dimension and mineralization. The
finding is that most of the W and Sn deposits in study area exhibit rough geochemical patterns with fractal di-
mension ranging from 2.3 and 2.7 (2.6 ≤ β ≤ 3.4). We proposed to recognize the complex geochemical anomalies
containing both stochastic (irregular) and deterministic (regular) components from fractal noise perspective.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Fractal geometry was introduced and popularized by Mandelbrot
(1967, 1989) to describe complex natural objects showing similar
geometries over a variety of scales. This fractal/scaling nature, resulting
from the combination of regular (deterministic) and irregular (stochas-
tic) factors, is commonly characterized with fractal dimension that is
non-integer greater than or less than the integer Euclidian dimension.
The past 40+ years have seen the extensions of fractal theory from
geometries tofields that significantly increase its applicability. Fractality
(self-affinity) generally follows power-law type relations associated
with scale-invariance that can be represented as straight line on a log–
log paper. The scale-invariant processes broadly exist in geosciences
(Turcotte, 1997; Cheng, 2008), such as earthquakes, floods, hurricanes,
volcanoes, rains and clouds. Recent studies suggest that mineralization
in the crust could be considered as one type of scale-invariant geo-
process (Cheng, 2008), and ore deposits resulting from huge accumula-
tion of metal elements often generate singular geochemical distribution
which manifests fractal/multifractal natures.

Geochemical exploration have found with increasingly interests and
benefits of using fractal (power-law)models to characterize geochemical
distribution, including concentration–area (C–A) model (Cheng et al.,
1994; Cheng, 2012), concentration–distance (C–D) model (Li et al.,
ing@yorku.ca (Q. Cheng),
2003), and concentration–volume (C–V) model (Afzal et al., 2011; Afzal
et al., 2013), to name but a few examples. These fractalmodels are partic-
ularly useful for handling geochemical data including the separation and
identification of geochemical anomalies, thereby assisting in mineral ex-
ploration (Cheng et al., 1994; Cheng, 2007). Local singularity analysis
(LSA) is a well-known example of using density-area fractal model for
weak information extraction by mapping the spatial distribution of local
singularity strength (local fractal dimension) for complex geochemical
landscapes (Cheng, 2008, 2012). Several case studies have demonstrated
that the LSA or singularity mappingmethod is a powerful tool for discov-
ering concealed ore deposits as well as other buried geological bodies
(Cheng, 2006, 2007; Zuo et al., 2009; Agterberg, 2014a; Chen et al., 2015).

The scaling (1/f ) noise/process has been widely found in the nature,
depicting that thepower density spectrum, S(f), of self-affine time series
scales as a power-law of the frequency (1/fβ). The spectral analysis is a
commonly used method to study the 1/f scaling nature of geofields in
the Fourier domain (see e.g., Huang and Turcotte, 1989; Malamud and
Turcotte, 1999), and the scaling exponent (β) canmeasure the strength
of persistence, namely, the correlations between adjacent values within
the time or spatial series. Lovejoy and Schertzer (2007) reviewed specif-
ically that geofields (e.g., topography, turbulence, rock density and sus-
ceptibility, magnetic and gravitational fields) possess scale-invariance
over wide range of scales. For instance, spectral analysis of rock suscep-
tibilities showed awide range of β-values ranging from 1 to 5,which en-
lightened the understanding of the fractal nature of magnetic sources
within the crust (Pilkington and Todoeschuck, 1993; Maus and Dimri,
1994; Lovejoy et al., 2001). Although the mechanism of 1/f scaling
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nature ofmagnetization distribution remains unclear, it indeed facilitat-
ed the interpretation of magnetic data such as the depth determination
of magnetic sources (Bouligand et al., 2009; Bansal and Dimri, 2014).

Based on multifractal theory, Cheng et al. (2000) have developed a
spectrum–area (S–A) model to quantify the anisotropic scaling proper-
ties of geochemical and geophysical fields, which depict a generalized
power-law relation between power spectrum and area of power spec-
trum exceeding a threshold. According to the S–A model, the isotropic
1/f scaling behavior in the frequency domain becomes a special case in
which the scaling exponent can quantify some types of spatial associa-
tion indexes (persistence, correlation, and roughness). In applied geo-
chemistry, conventionally, the spatial variation (e.g., spatial correlation
and variability within agent area) is quantified by autocorrelation and
semivariogram, which has beenwidely taken into account in the spatial
statistical methods for handling geochemical data (Cheng, 1999b;
Agterberg, 2012a), such as moving average, kriging and spatial factor
analysis. Accordingly, the scaling exponent (or fractal dimension) ob-
tained from spectral method could provide an alternative approach to
evaluate the spatial variation and quantify the scale invariance of geo-
chemical variables from a fractal perspective.
Fig. 1. Simulated fractal geochemical landscapes by using scaling filtering with d
To date, research intentions have not been given enough to explore
the 1/f scaling natures of geochemical landscapes. This study is devoted
to use scaling noise tomodel geochemical landscapes and to investigate
the implication of scaling exponent (β) especially for geochemical
anomalies associatedwithmineralization.We describe first the spectral
method used to estimate the scaling exponent and fractal dimension of
geochemical landscapes, then simulate fractal geochemical pattern
aiming at understanding its scaling properties from fractal filtering
point of view. Subsequently, a case study from the Nanling Range
(China), which is endowed with abundant W–Sn mineral resources,
help look at the diversity of 1/f scaling natures of real geochemical
data, with a final intention to discuss the spatial association between
fractal dimension and mineralization.

2. Methods

2.1. Fractal analysis

There exist several approaches to estimate the fractal dimension (D)
for self-affine series (Cheng, 1999b; Malamud and Turcotte, 1999),
ifferent β-values: (a) 0, (b) 1, (c) 1.5,(d) 2, (e) 2.5, (f) 3, (g) 3.5 and (h) 4.



Fig. 2. Log–log plots of radially averaged power spectrumversuswavenumber for synthet-
ic geochemical data in Fig. 1.
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including spectral analysis, semivariogram, rescaled-range (R/S) analy-
sis, correlation analysis and so on. Spectral method is the typical way to
study the 1/f scaling law and respects relatively small biased results and
low variance in estimating D (Schepers et al., 1992). We briefly recall
herein themethodology of spectralmethod for estimating scaling expo-
nent and fractal dimension. A two-dimensional (2D) data f(x,y) can be
Fourier transformed as:

F ωx;ωy
� � ¼ XNx−1

x¼0

XNy−1

y¼0

f x; yð Þ exp −
i2πxωx

Nx
−

i2πyωy

Ny

� �
; ð1Þ

where F(ωx,ωy) is the Fourier transformation coefficient of f(x,y),
[Nx, Ny] is the size of f(x,y) matrix, ωx and ωy denote the wavenumber
in x- and y-directions, respectively. The power spectrum F2(ωx,ωy) of
f(x,y) can be written as:

F2 ωr ;φð Þ ¼ F2 ωr cosφ;ωr sinφð Þ; ð2Þ

whereωr ¼ ðωx
2 þωy

2Þ1=2 is the radialwavenumber, andφ denotes
the angle between radial direction and ωx axis. Then the power density
(radially averaged) spectrum S(ωr) can be estimated as:

S ωrð Þ ¼ 1
2π

Z 2π

0
F 2 ωr;φð Þdφ: ð3Þ
Fig. 3. Profile geochemical anomalies extracted from
For a self-affine series, the radially averaged power spectrum has a
power-law dependence on ωr (Voss, 1988; Huang and Turcotte, 1989):

S ωrð Þ ¼ cω−β
r ð4Þ

where c is a constant value, and β is known as isotropic scaling expo-
nent measuring the persistence or correlation between adjacent values
within time series. When β b 0, we have anti-correlated values of
successive points; when β=0, the time series is completely uncorrelat-
ed (e.g., white noise); when β N 0 and becomes more positive, the time
series become more correlated.

The relationship between scaling exponent β and fractal dimension
D given by Voss (1988) can be written as

D ¼ 8−βð Þ=2: ð5Þ

Fractal dimension (D) is ameasure of surface roughness, representing
the capability of the random variables to fill the Euclidean space. Theo-
retically, for a smooth 2D surface, the fractal dimension is D ≈ 2
(β≈ 4), and for a rough surface, 2 b D b 3 (2 b β b 4).

The scaling exponentβ and fractal dimensionD are bothmeasures of
persistence or roughness for self-affine objects. Malamud and Turcotte
(1999) pointed out that semivariogram and R/S analysis are only appli-
cable for measuring limited range of persistence (β), whereas spectral
analysis can quantify all values of β. It must be noted that although
the fractal dimension estimated from spectral method may be less
than 2 or exceeds 3 in the practical 2D data analysis (see e.g., Huang
and Turcotte, 1989; Turcotte, 1997) and the D-value seems to be mean-
ingless for 2D topological space, it indeed acts as a quantification of
persistence or roughness of self-affine objects.

2.2. Scaling filtering

The 1/f noise pattern can be generated synthetically using scaling
(fractal) filtering method, which has been widely employed to model
various scaling geofields such as topography (Turcotte, 1997), magnetic
anomalies and magnetizations (Pilkington and Todoeschuck, 1993).
Here, we propose to use the scalingfilteringmethod tomodel geochem-
ical landscapes with fractal properties. This process is summarized as
follows. (1) The De Wijis cascade process (De Wijs, 1951) is exploited
to produce a 2D dataset of geochemical concentration values which re-
spect log-normal distribution. (2) These values are randomly distribut-
ed into white noise (Fig. 1a). (3) This white noise data are then
transformed into Fourier domain with flat power spectrum (Fig. 2a) as
expected. (4) The Fourier transformation coefficients are further multi-
plied by a scaling filtering function ωr

−β=2

F 0 ωx;ωy
� � ¼ ωr

−β=2 F ωx;ωy
� �

; ð6Þ
the synthetic 2D geochemical landscape in Fig. 1.
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whereβ is the required scaling exponent. (5) The inverse Fourier trans-
formation gives the fractal patterns yielding isotropic scaling (fβ) laws.

Here, the scaling exponents are specified as β= 1, 1.5, 2, 2.5, 3, 3.5,
and 4 to generate fractal geochemical patterns (corresponding to Fig. 1b
to h, respectively). The log–log plots of power density spectrum against
wavenumber in Fig. 2 demonstrate that these patterns have been
endowed with scaling properties, and their slopes are close to the de-
sired β-values. From Fig. 1a to h as β-value increases in the low-pass
scaling filtering function of Eq. (6), the geochemical landscape become
smoother due to the reduction of high-frequency (irregular/stochastic)
components, i.e., the enhancement of low-frequency (regular/deter-
ministic) components. This fact also can be intuitively observed from
Fig. 4. Spatial distribution patterns of geochemical (a)W and (b) Sn elements (log10 (concentra
show the boundaries of granites.
the profile anomalies as illustrated in Fig. 3, where a bigger β-value pro-
duces a smoother geochemical curve with reducing irregularities/
singularities.

In this sense, it can be appreciated the scaling exponent (β) conducts
the fractal filtering by controling the balance of stochastic and deter-
ministic components contained in geochemical patterns thereby deter-
mining the roughness. Specifically, β = 0 indicates a completely
spatially uncorrelated geochemical pattern; 0 b β b 1 indicates a highly
random pattern with weak persistence and uncorrelated profile anom-
alies; and β N 1 indicates a spatially correlated pattern with growing
persistence. As β-value increases to 4, the geochemical landscape
(Fig. 1h) becomes a smooth surface with fractal dimension D ≈ 2.
tion value)). Triangular symbols indicate the locations ofW or Sn deposits, and black lines
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3. Study area and dataset

Nanling Range is geographically located in the intersecting area of
Hunan, Jiangxi, Guangdong, and Guangxi provinces in the South China,
with area over 180,000 km2. Multiple tectonic events since Palaeozoic
lead to the complicated geological settings including widespread
magmatic activities with the outcropping granites area around
50,000 km2. Highly enriched non-ferrous and rare minerals related to
felsic intrusive rocks and low-temperature hydrothermal systems
make this region the most famous and important polymetallic
metallogenic provinces in China. The regional reserves of W and Sn
ores account for approximately 83% and 63% of the total amounts
of identified resources in China, respectively. Numerous world class
W–Sn polymetallic deposits, such as XihuashanWdeposits, Shizhuyuan
W–Sn–Mo–Bi, and Furong W–Sn, occurred alongside the granites dur-
ing the Jurassic and Cretaceous. It is worth mentioning that Chinese
scholar Yu (2011a, b, c) has done a great deal of pioneering studies for
applying the complexity science (e.g., fractals, chaos and self-
organized criticality) to study the formation and distribution of mineral
deposit in the Nanling Range.

The samples used in this study were collected and analyzed during
the Chinese National Geochemical Mapping (CNGM) project. Details of
sampling and analysis of stream sedimentary geochemistry data can
be found in Xie et al. (1997). Fig. 4 is the spatial distribution pattern of
W and Sn elements with resolution of 2 km. In the last century, lognor-
mal distribution is one of the basic assumptions in geochemical abun-
dance models (Harris, 1984; Sinclair, 1991) even once acted as the
first law of geochemical distribution (Ahrens, 1953). However, many
studies suggest that, for trace elements, the large concentration values
(geochemical anomaly) often satisfy extreme-value distributions
(e.g., Pareto or fractal distribution)with a tail that is thicker than lognor-
mal (Cheng et al., 1994; Agterberg, 2014b). Evidently, the Q–Q plots
Fig. 5. Histograms of (a) log-transformed W and (c) log-transformed Sn
(Fig. 5) in this study show thatW and Sn elements do not strictly follow
lognormal distributions since the point dots depart from the lognormal
straight lines. The frequency distribution (histogram in Fig. 5) of these
trace elements (e.g., W and Sn) concentration values often has high-
value tails that are thicker and longer than lognormal tails, suggesting
that the geochemical concentrations ofW and Snmay follow the fractal
statistical distributions, but itmakeno sense to the spatial correlation. In
subsequent sections, a special intention is devoted, from scaling (1/f)
noise point of view, to explore the fractal natures of geochemical pat-
terns concerning with roughness.

4. Scaling natures of geochemical landscape

This section aims to explore the 1/f scaling natures of geochemical
landscapes in Nanling Range, including trace elements (e.g., W, Sn,
Mo, Bi, Pb, Zn, Au, Ag and Cu) and major elements (e.g., K2O, Na2O,
CaO, Fe2O3 and SiO2). Their individual power density spectra at all scales
(wavenumbers) are first calculated. Fig. 6 just shows the log–log plots of
selected elements (viz., W, Sn, Mo, Au, K2O and Fe2O3) well fitted by
straight lines, suggesting that geochemical landscapes exhibit
frequency-independent spectrum, i.e., fractal or at least scaling natures.
Then the global scaling exponent or “structural” fractal dimension can
be estimated from the slope of the fitted straight lines in Fig. 6.

The estimated global scaling exponent of geochemical landscapes
ranges from 1.22 to 2.64 (Table 1). Zn element holds the lowest β-
valuewhile K2O has the highest.Major elements generally possess larg-
er β-value (2.13 ≤ β ≤ 2.82) than that of trace elements (1.22 ≤ β ≤ 1.85),
since the formers generally are distributed relatively homogeneously
within the Earth' crust. In addition, there are explicit differences in β-
values between highly enriched elements and relatively low enriched
elements in the study area (Table 1). The selected enriched elements
(e.g., W, Sn, Mo, Bi and Pb) show scaling exponent β ≈ 1.8 and
. Q–Q plots of (b) log-transformedW and (d) log-transformed Sn.
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(structural) fractal dimensionD≈ 3.1, indicating that their geochemical
patterns contain lots of irregularities/singularities. Those relatively
lowly enriched elements (e.g., Au, Ag and Cu) have smaller scaling ex-
ponent (β≈ 1.5, D≈ 3.3), suggesting that they containmore stochastic
components than the enriched elements. These results demonstrate
that geochemical landscapes manifest diverse scaling (f β) rules, and
the scaling exponent (or fractal dimension) measures the roughness,
i.e., the proportion of irregular and regular components contained in
the geochemical patterns.
Fig. 6. Log–log plots of radially averaged power spectrum versus wavenumber for geochemical
major elements (e) K2O and (f) Fe2O3.
What do fractals come from? Numerous mechanisms (e.g., nesting
and self-organized criticality) have been proposed for leading scale in-
variance but none of them can explain the whole nature (Hergarten,
2002). The simplest mechanism explains fractals as a product of other
fractal/multifractal system. From fractal filtering point of view, the
scaling natures of geochemical landscapes may be roughly seen as the
end products of the complex compeling geo-process (e.g., tectonic
activities, bedrock lithologies, weathering process, topography,
and presence of mineral deposits) that may converts chaotic inputs
data (without log-transform), including trace elements (a) W, (b) Sn, (c) Mo, (d) Au, and



Table 1
Scaling exponents and fractal dimensions estimated from the stream sedimentary
geochemical landscapes in the Nanling Range.

Elements Scaling exponent (β) Fractal dimension (D)

W 1.82 3.09
Sn 1.82 3.09
Mo 1.81 3.10
Bi 1.85 3.08
Pb 1.84 3.07
Zn 1.22 3.39
Au 1.53 3.24
Ag 1.34 3.33
Cu 1.52 3.24
K2O 2.82 2.59
Na2O 2.64 2.68
CaO 2.13 2.94
Fe2O3 2.36 2.82
SiO2 2.44 2.78

Fig. 7. Fractal mapping results of W element in the Nanling Range using window-based metho
mated constant value.
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into 1/f β scaling outputs. Different geo-processes may act as different
fractal filterswith specific scaling exponent (β), which are certainly var-
ious for multiple elements, and result in diverse scaling distributions of
metal elements. In general, the geo-process contains both stochastic
and deterministic factors (Cheng, 1999a), so the geochemical landscape
does (Walther, 2009; Agterberg, 2012a). Both stochastic (irregular)
and deterministic (regular) components in geochemical patterns are
crucial for indicating mineralization. Deterministic components often
describe the trend (background) of geochemical pattern, while stochas-
tic components determine the local discontinuities (anomalies).
The mineral deposits often generate distinct geochemical anomalies
at local scale accompanied by significant geochemical background/
province. Such backgrounds generally correspond to specific geological
settings which could provide abundant sources for the formation of
mineralization. For instance, most of the W and Sn deposits in Nanling
Range are accompanied with local geochemical anomalies (Fig. 4),
d. (a) 2D spatial distribution of local fractal dimensions, (b) 2D spatial distribution of esti-
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while these anomalies are superposed on the background of elevated
geochemical concentrations whose framework indicates granitic intru-
sions. In addtion, we infer that the scaling exponent of geochemical
anomalies pattern mainly ranges from 1 to 4, implying a weak balance
of stochastic and deterministic components.

5. Fractal mapping of geochemical anomaly

Geochemical patterns respect various global scaling natures which
reflect the scale-dependent spatial variations (persistence/correlation/
roughness). This scaling behavior appears to vary spatially in light of
Fig. 8. Fractal mapping result of Sn element in the Nanling Range using window-based meth
estimated constant value.
the widely used singularity mapping (LSA) method, so fractal mapping
is undertaken to look at the regional-dependent variation of local fractal
dimension and to investigate its spatial associationwithmineralization.
A window-based method has already been introduced by Huang and
Turcotte (1989) to estimate the local fractal dimension of topography.
Here, this approach is used to handle 2D geochemical data. The proce-
dure is summarized as: (1) Define a square window A(ε) with window
sizes ε for a given sampling point on themap. (2) Take Fourier transfor-
mation of geochemical data within the window, and calculate the radi-
ally averaged power spectrum S(ωr). (3) The scaling exponent (β) and
constant value (c) can be calculated based on the slope of radial average
od. (a) 2D spatial distribution of local fractal dimensions, (b) 2D spatial distribution of



Fig. 9. Histogram statistic on estimated local fractal dimensions in Figs. 7a and 8a.
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power spectrum in log–log space. (4) Estimate the fractal dimension D
based on Eq. (5). (5) Construct the spatial distribution of local fractal di-
mension (D) and constant value (c) based on a moving window
method.

Since the Nanling Range hosts a number of W–Sn polymetallic de-
posits, W and Sn elements (Fig. 4) are chosen to study fractal mapping
result. It should be emphasized that different window sizes can result
in different spatial resolutions of fractal dimension patterns, and using
small widow size obtains subtle information but increases the errors
in the calculation. We carried out tests of using various window sizes
(e.g., 8 km × 8 km, 16 km × 16 km, 32 km × 32 km and
64 km × 64 km), and chose the production of 16 km × 16 km because
of its rich details and reliable goodness of fitting. Figs. 7 and 8 corre-
spond to fractal dimension (D) and constant (c) map, respectively. The
histogram in Fig. 9a shows that D-value of W element ranges from 0.5
to 3.5, mean = 2.0 and standard deviation = 0.55. Analogously, the
D-value of Sn element ranges from 0.5 to 3.5,mean= 1.9 and standard
deviation = 0.48 (Fig. 9b). W and Sn elements have similar statistic on
fractal dimensions (or scaling exponent) since they are often coexisted
in the W–Sn deposits in Nanling district.

Most of D-values in Figs. 7a and 8a surround the topological dimen-
sion D = 2, indicating that these subregions correspond to smooth
background with few irregularities/singularities, while D N 2 (β b 4)
indicates that irregular/singular components have been superposed on
the regular background field. In some literatures (Agterberg, 2012b,
2012a; Cheng, 2012), special attentions have been paid to such irregu-
larities/singularities arising from themineralizationwhich often assem-
bled huge metals. Such singularity degree can be obtained from LSA for
indicating the enrichment or deficit of elements and show close spatial
Fig. 10. Boxplots of estimated fractal dimensions within t
connections with ore deposits (see e.g. Cheng and Agterberg, 2008; Zuo
et al., 2009). Accordingly, the spatial variation of local fractal dimension
can imply the contribution of irregularities/singularities in geochemical
pattern, which may exhibit potential associations with mineralization.

We superposed the locations of knownW and Sn deposits on Figs. 7
and 8 to reveal the spatial relationship between local fractal dimension
and mineralization. Cursory visual inspection of Figs. 7 and 8 suggests
thatmost of theWand Sndeposits are located in the areaswith relative-
ly high fractal dimension. We extracted the D-values in the subregions
hosting mineral deposits, and their boxplots in Fig. 10 suggest that D-
value forW and Sn deposits ranges from 2.4 to 2.7 and 2.3 to 2.7, respec-
tively. This result suggests that the geochemical anomalies associated
with mineralization exhibit rough signatures which possess scaling
exponent in the range 1 b β b 4. In addition, Figs. 7b and 8b show the
mapping results of constant value and contain regional components of
geochemical field, presenting distinct patterns related to the distribu-
tion of granitic outcrops.

6. Conclusions

The scaling noise was proposed to model and analyze geochemical
landscapes in this contribution. The 1/f scaling natures of geochemical
distribution of multiple elements were explored using a case study of
Nanling Range (China). The results showed that (1) the global scaling
exponent ranges from 1.22 to 2.64 for geochemical distribution; and
(2) most of W–Sn deposits occur in (or near) areas linked to relatively
high dimension value (2.3 ≤D ≤ 2.7). These findings suggested that geo-
chemical landscapes manifest 1/f scaling natures which reflect the spa-
tial variations (persistence and roughness), and we provided a fractal
he subregions of (a) W deposits and (b) Sn deposits.
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point view for recognizing the complexity of geochemical anomalies
related to mineralization containing both regular and irregular
components.

The results in this paper can be regarded as a preliminary inves-
tigation. There is much work to be done both experimentally and theo-
retically before we can really understand the physical processing
driving these 1/f scaling systems. More case studies from various geo-
logical settings would better define the scaling natures of geochemical
landscapes and offer deeper insights into the process statistics of near-
surface variability of metal elements. In addition, the 1/f noise is often
associated with chaos and self-organized criticality (SOC). It may be
promising to integrate the chaos/SOC theories and the 1/f scaling pro-
cess to study whether/how metal elements (self-) organize to form
mineral deposits as the end product of complex geo-process or chaotic
dynamic system containing both deterministic and stochastic factor.
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