
Comput Geosci
DOI 10.1007/s10596-016-9595-y

ORIGINAL PAPER

Joint hydrogeophysical inversion: state estimation
for seawater intrusion models in 3D

Klara Steklova1 ·Eldad Haber1,2

Received: 30 October 2015 / Accepted: 29 September 2016
© Springer International Publishing Switzerland 2016

Abstract Seawater intrusion (SWI) is a complex process,
where 3D modeling is often necessary in order to moni-
tor and manage the affected aquifers. Here, we present a
synthetic study to test a joint hydrogeophysical inversion
approach aimed at solving the inverse problem of estimat-
ing initial and current saltwater distribution. First, we use a
3D groundwater model for variable density flow based on
discretized flow and solute mass balance equations. In addi-
tion to the groundwater model, a 3D geophysical model was
developed for direct current resistivity imaging and inver-
sion. The objective function of the coupled problem consists
of data misfit and regularization terms as well as a coupling
term that relates groundwater and geophysical states. We
present a novel approach to solve the inverse problem using
an alternating direction method of multipliers (ADMM) to
minimize this coupled objective function. ADMM enables
to treat the groundwater and geophysical part separately
and thus use the existing software with minor changes. To
further reduce the computational cost, the sensitivities are
derived analytically for the discretized system of equations,
which allows us to efficiently compute the gradients in the
minimization procedure. The method was tested on different
synthetic scenarios with groundwater and geophysical data
represented by solute mass fraction data and direct current
resistivity data. With the ADMM approach, we were able to
obtain better estimates for the solute distribution compared
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to just considering each data separately, solving the problem
with a simple coupled approach or by a direct substitution
of the coupling constraint.

Keywords Inverse problem · Joint inversion · Seawater
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1 Introduction

Seawater intrusion (SWI) is a complex process that occurs
naturally due to small differences in density between fresh-
water and saltwater. Depending on the hydrogeological
setting, seawater can enter the coastal aquifers through pref-
erential flow pathways reaching far into the interior, or
remain in close proximity to the coast [4]. Increased ground-
water (GW) extraction, reduced recharge into aquifers, and
other human activities can cause the SWI to propagate
further inland. To monitor the SWI and manage coastal
aquifers, representative groundwater models need to be
developed. Such models can then provide explanations for
saltwater origin in the area, and can be used to validate
different pumping scenarios to manage the saltwater front
propagation and future freshwater demands [17, 32, 37] and
[52].

For the affected areas, we can usually expect some mon-
itoring wells providing direct samples of fluid conductivity
and thus indicating the salinity. However, for understand-
ing the complexity of SWI advance, this data might be
too scarce to calibrate GW models and monitor the SWI
progress. Geophysical methods offer an attractive option to
map this process [43]. Saltwater in the pore spaces increases
the soil bulk electrical conductivity, making it an ideal tar-
get for direct current (DC) resistivity or electromagnetic
methods. Hence, these geophysical methods have become
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standard tools for monitoring SWI in the last two decades
[5, 6, 19, 39, 42, 55] but have also many other environmental
applications. Their popularity is mainly due to their abil-
ity to map the 3D subsurface non-intrusively and at a lower
cost.

One disadvantage of geophysical data is that they provide
only indirect measurements; mapping the electrical conduc-
tivity of the subsurface which can be dependent on other
geological characteristics such as lithology rather than the
amount of solute in groundwater alone. Furthermore, when
collecting data, the choice of method and survey design has
an effect on the depth resolution, and the area most sensi-
tive to collected data. In contrast, groundwater well samples
can provide the actual fluid conductivity, which in coastal
areas is usually directly related to saltwater content. How-
ever, GW data may represent only a small space around the
well or might not capture the difference between flow and
resident concentration, see [9] for more details.

Combining both the geophysical and hydrological data
offers an attractive option to increase the amount of data
for model calibration and to improve the estimates of GW
states, which is also subject of this study. There are many
different approaches in hydrogeophysical studies, often
dependent on available data and software. In the uncou-
pled framework, geophysical and hydrogeological compu-
tations are independent. The advantage of this approach is
that hydrogeological and geophysical models run indepen-
dently; however, this also means that the a priori information
from the hydrology is not integrated into the geophysical
inversion. Since geophysical inverse problems are ill-posed
and require a regularization term, or a prior stochastic model
(if Bayesian methods are used), ignoring hydrogeology data
can severely deteriorate the quality of the geophysical inver-
sion estimates. In contrast, in the coupled approach, the
geophysical and groundwater models are linked together
during the inversion. The hydrological state estimates are
then guaranteed to be physically realistic and less a priori
assumptions are needed for the geophysical inversion. Due
to this fact, coupled approaches were repeatedly found to
give better results ([27, 30] or [29]), however, at a cost of
being computationally more intensive.

The computational cost is high also due to the GW
flow governing equations, which for variable density flow,
require solving a system of two strongly coupled nonlinear
partial differential equations. Any 3D simulation is there-
fore costly when solving the inverse problem, where mul-
tiple GW forward simulations are necessary. To decrease
the amount of estimated parameters and make the inverse
problem solvable, usually some a priori information based
on geology is considered. For example by applying some
geostatistical constraints when estimating the GW parame-
ters [28, 31, 48] or adding regularization terms to enhance
smooth fields for estimated parameters or states. The actual

minimization is then often directed by some general inverse
software as PEST [16] or UCODE [46] where the sensitivi-
ties are derived by perturbation approach.

In the salt tracer experiments, the time and spatial scale
enables to consider only solute transport, when modeling
the GW flow, and thus simplify the GW inverse problem
in terms of the computation cost. Examples can be found
in work of Fowler and Moysey [20], where they inves-
tigated the non-uniqueness of GW parameter estimation
using a single electrode and evaluating only the geophysi-
cal data misfit. A stochastic approach to coupled inversion
was applied in Jardani et al. [31] or Irving and Singha [30]
by jointly inverting geophysical and groundwater concen-
tration data during the tracer test to determine the hydraulic
conductivity fields in 2D. In Monego et al. [40], they esti-
mated mean groundwater velocity and aquifer dispersivity
(both assumed to be uniform) from the ERT mapped tracer
test in a shallow heterogeneous aquifer.

For the SWI, the situation is usually more complex in
terms of time scale and heterogeneity compared to solute
tracer experiments. Many field studies were performed to
delineate the SWI extent by use of geophysical data to indi-
cate the saltwater intrusion progress [13, 19, 39, 42, 55].
Less work has been done in conjunction with GW data and
estimating the GW parameters and states in the coupled
approach.

In the work of Herckenrath et al. [27], the authors
compared two approaches for calibration of SWI model
with the addition of TDEM data sets collected in Santa
Cruz County, California. In the sequential approach, the
geophysical inversion for 1D TDEM soundings are run
independently and geophysical estimates served as an extra
observation for the GWmodel (after transforming via petro-
physical relationship–Archie’s law). Both data misfits were
then minimized in the GW model inversion process. In the
coupled approach, the GW model is used to interpret the
data and guide the geophysical inversion. Saltwater con-
centrations based on the 2D SEAWAT model [36] were
converted to electrical resistivity and 1D TDEM sounding
forward responses were then calculated and compared with
observed data. In total, six parameters were estimated for
both the groundwater and TDEM model using the PEST
optimization system. The authors concluded that the cou-
pled approach provided a significant improvement in spatial
resolution which would be hard to obtain with standard geo-
physical regularization techniques as was the case for the
sequential approach.

A different way of transforming the information from
geophysical estimates was introduced in Beaujean et al.
[7]. The ERT-derived conductivities were transformed via
Archie’s law to salt mass fraction estimates. These estimates
were then filtered using a cumulative sensitivity based on
squared Jacobians and served as extra data for hydrological
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inversion next to groundwater salt mass fraction data. The
inversion was performed with PEST using a gradient-based
method.

The approaches above are somewhat limited to a small
number of parameters because of the direct computations
of sensitivities. A more general framework was developed
by Commer et al. [12] that can be applied to larger scale
hydrologeophysical problems for a wide range of pro-
cesses in multiphase flow and solute transport. The authors
improved the inversion framework of iTOUGH2 to enable
parallel computing and merge it with parallel geophys-
ical simulator for electromagnetic data. The sensitivities
were evaluated by taking a perturbation approach. The high
computational burden of this approach was balanced by
the fact that the perturbed model simulation could be run
independently.

While the work in [12] enables larger scale problems, it
can be inefficient due to the finite difference evaluation of
derivatives and hydrogeophysical coupling. Our goal here
is to improve on this work such that we can solve large-
scale problems. To this end, we present a new approach for
the joint recovery of electrical conductivity and salinity. We
solve the inverse problem by minimizing both types of data,
where the petrophysical relationship provides a constraint
in the minimization. The estimation of initial conditions for
solute distribution is particularly important because if we
have a good estimate of the current situation, we can better
predict the future states, which is necessary for managing
salt water intrusions.

We developed both geophysical and groundwater mod-
els, which are based on discretized systems of equations,
in the same computational environment. Although similar
models exist, we have developed our own flow and geophys-
ical model to simplify the coupling implementation between
physically different models. More importantly, it enables us
to analytically derive the sensitivities necessary for solving
the inverse problem. This allows us to deal with a large num-
ber of parameters at a cost that is cheaper than computing
sensitivities using finite differences.

For the actual minimization of the coupled problem, we
have multiple options. We can use the knowledge of the
petrophysical constraint and minimize both the data misfits
simultaneously, for example by substituting the constraint
and applying the Gauss Newton method for one variable
only. This would result in a smaller problem; however, in
such case, we have to deal with many regularization param-
eters to weight the different contributions to the coupled
objective function by both data misfits. Furthermore, since
the relation between the different physical models is often
empirical, forcing it may lead to artifacts (see [22] for
further details).

Therefore, we introduce alternating direction method of
multipliers (ADMM) to solve the coupled problem, which

allows us to efficiently split the objective function into GW
and geophysical parts and minimize each of them separately.
The main advantage to this is that by separating the mini-
mization of the coupled problem onto GW and geophysical
parts, only one regularization parameter is set during each
iteration, and inversion codes stay relatively independent
enabling for efficient parallelization. Furthermore, since the
petrophysics is enforced as a constraint, it is not applied
exactly throughout the path of optimization which yields
additional degrees of freedom to the optimization algorithm.

ADMM has been introduced back in early 70s and has
recently gained popularity for many inverse problems. It is
a natural choice for multiphysics problems [8], also due to
the strong convergence properties [21]. It can be used in
cases where the constraint (here the petrophysical relation-
ship) can be considered as exact, in practice rather having
low uncertainty. A successful hydrological application can
be found in Wohlberg et al. [57], where ADMMwas applied
to solve the inverse problem of estimating the piece-wise
smooth hydraulic conductivity fields from sparse data for
hydraulic head and conductivity; many more applications
can be found in machine learning or statistical modeling.

The joint inversion scheme outlined above is expected to
converge toward a solution that will fit both data sets. Diffi-
culty converging may reveal discrepancies between the two
sources of data, or between the petrophysical model that is
used to link the parameters. In our inverse problem setup, we
use synthetic groundwater and geophysical data (well salin-
ity data end electrical potentials) generated only once. The
unknown current and initial solute distribution are then esti-
mated from this data. The fact that we solve for the solute
content-electrical conductivity only, with the assumption of
at least an approximate knowledge of other GW parameters
can be regarded as naive, however, the same framework can
be established for GW parameters such as hydraulic perme-
ability, external fluxes, and other GW variables as long as
appropriate sensitivities are derived. We do not try here to
estimate all of these parameters at once, since despite having
two different sets of data, the inverse problem is essentially
highly ill-posed, and most of these parameters vary over the
entire domain. Our work is based on a frequentist approach
to inverse problems [53] that is suited for large-scale prob-
lems. Alternatively, if prior densities are known, one can use
the Maximum A-Postriori estimate when considering the
Bayesian framework and use similar techniques to the ones
developed here.

In the Sections 2 and 3, we describe the groundwa-
ter model and geophysical model including the discretized
form of governing equations. The authors are aware that
these models are already well described in other literature
but they are of a key importance in this study in order to
follow the sensitivities derivation. In Section 4, we formu-
late the coupled inverse problem and introduced the new
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ADMM approach for this type of coupled hydrogeophysi-
cal inverse problems. The results for the joint inversion by
ADMM versus a simple coupled approach are shown in
Section 5. We examined different synthetic cases of a pump-
ing experiment in a coastal aquifer with homogeneous and
heterogeneous permeability field and compared the joint
approach (using ADMM) with a simpler coupled approach
based on a reference model. Additionally, we looked at how
the error of estimates changes if the GW model parame-
ters used in the inversion deviate from the “true” parameters
which served to create the synthetic data. Section 6 follows
with discussion and finally, in Section 7, we summarize the
paper and suggest future work.

2 Groundwater model

In this section, we briefly introduce the groundwater model
used in this study, its discretization using finite volumes,
and the solution of the discrete equations. Our method uses
some specific properties of variable density flow (VDF) to
develop a highly efficient operator splitting method.

2.1 Governing equations

The system of governing equations for VDF couples two
processes: groundwater flow and solute transport, each rep-
resented by a partial differential equation in time and space.
The system can be written as:

∇ · (ρq) = ρQgw (1)
∂(φ ρω)

∂t
+ ∇ · (φ ρD∇ω) − ∇ · (ρω q) = Qsω (2)

where

q(ρ) = − k

μ
(∇p − ρg∇z). (3)

The system above is a pressure–solute mass fraction for-
mulation [14], where ρ is the fluid density, ω is the fraction
of solute (saltwater) in the fluid, φ porosity, D represents
the hydrodynamic dispersion and Qsω and Qgw the exter-
nal fluxes of solute and groundwater, and t stands for time.
q is the groundwater velocity based on Darcy’s law [6],
where p is the pressure, k the permeability of porous media,
μ the fluid viscosity, g the gravitational constant, and z

is a downward coordinate direction. To complete the sys-
tem, a number of physical relationships and parameters are
required. We assume that the mass fraction ω is connected
to the density by the linear relation

ρ = ρF (1 + γω) with γ = ρS − ρF

ρF

, (4)

where ρ represents the fluid density, ρF freshwater density,
and ρS saltwater density.

In our model, we used a number of simplifications that
can be relaxed, but are justified for our application. First, we
assume a steady state for groundwater flow Eq. 1, which still
has to be resolved throughout each time step computation
to update the pressure and velocity field as a result of solute
content dynamics. Next, the hydrodynamic dispersion ten-
sor D is kept fixed in our model. Using a full variable
density flow model, as for example in [14], would not
change the approaches described in the following sections
regarding coupling and solving the inverse problem.

2.2 Discretization and solution of the groundwater
model

In this subsection, we briefly discuss the discretization used
for each of the governing equations. Even though the fol-
lowing text is not necessary to understand the idea behind
the hydrogeophysical coupled approach in Section 4, it is
an important part in our study, since we derive the sensitiv-
ities analytically based on the discretized equations, which
are later needed for the Gauss-Newton method. We use a
cell-centered finite volume method for the flow Eq. 1, and
an operator splitting method for the solute transport Eq. 2.
In particular, when integrating the solute transport, we use a
Semi-Lagrangian method for the advection part and add the
dispersion part implicitly.

2.2.1 Fluid mass balance equation

Our groundwater model discretizes Eqs. 1 and 2 in 3D on a
staggered grid. The solute fraction ω, and the pressure p are
placed in the cell centers and the fluxes, q, on the cell faces.
The parameters φ and D are discretized at the cell centers
and harmonically averaged onto cell faces when needed.
For a complete description on the discretization of systems
of the form (1) and (3) using finite volumes see [23]. The
discrete pressure equation reads

Div RKM
(
Grad pn + (

Avρ
n) � g

) = ρn � Qgw (5)

where RKM = diag (Av(
μ
ρk ))

−1 and the division is done
pointwise, Div,Grad are divergence and gradient matrix
operators. Av is the arithmetic averaging operator and g =
−g Grad z is a gravity acceleration vector. We use the
Hadamard product a � b for the element wise product of
two vectors. The ad-script n stands for the corresponding
hydrological state at the nth time step.

Assuming that we know the density at the nth time step,
the unknown pressure pn can be solved directly

pn = (−Div RKMGrad)−1

(Div RKM
(
Avρ

n) � g − ρn � Qgw), (6)

where the matrix Div RKMGrad is inverted using either
Cholesky (for small to medium scale problems) or by the
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preconditioned conjugate gradient method. Given the pres-
sure pn, we can compute the groundwater linear velocity qn

at the cell faces:

qn = −diag

(
1

Av(
μφ
k )

)
(
Grad pn + (

Avρ
n) � g

)
. (7)

2.2.2 Solute mass balance equation

For the solution of Eq. 2, we use operator splitting. The sys-
tem is split into an advection and a dispersion part and then
integrated sequentially from time tn to tn+1:

∂(φ ρω)

∂t
− ∇ · (ρω q) = 0 (8a)

∂(φ ρω)

∂t
+ ∇ · (φ ρD∇ω) = Qsω (8b)

In operator splitting methods, the advection equation is
typically solved first, using some explicit method starting at
ωn to obtain the temporary variable ω∗. The diffusion equa-
tion is solved next using an implicit method and obtaining
ωn+1 from ω∗.

For the problems in this work, the advection equation
is solved using a Semi-Lagrangian approach and disper-
sion is solved with an Eulerian step. Our method belongs to
the family of modified methods of characteristics (MMOC)
first introduced in [50]. The main advantages are in the
alleviation of the Courant number restriction due to the
Lagrangian advection step [10] and mass conservation. The
Eulerian–Lagrangian scheme is also effective in overcom-
ing numerical dispersion for advection dominated problems
[54].

Similar approaches are for example taken by codes
such as MOC3D model for solute transport [34], or later
MT3DMS for variable density flow in connection with
Modflow [35, 36]. In the context of review on Eulerian-
Lagrangian localized adjoint methods (ELLAM) [51], our
approach is a finite difference Eulerian-Lagrangian type,
where we do not solve the solute transport equation using
an integral equation but with a projection matrix.

In our implementation, particles are placed at the mesh
centers at each time step and tracked forward. The mass
of each transported particle is interpolated to its neighbors
yielding the solution at the next time step (Fig. 1).

Rather than transporting solute mass fraction ω, we
transport solute mass ωρ at each time step, and since the
Lagrangian method is conservative, ωρ is conserved. The
discretization of the advection equation can be written as

(ρ � ω)∗ = Sn(ρ � ω)n (9)

where Sn is an interpolation matrix that contains the inter-
polation weights and is a function of the velocity field qn.

Fig. 1 Particle and cell discretization of the transport equation: The
exact trajectory of the particle is followed based on the known velocity,
and the mass of the particle is the distributed among neighboring cell
centers by linear interpolation

Using the condition (4), we can solve a local quadratic equa-
tion for ω∗, noting that only one root of the equation makes
physical sense.

Having the solution ω∗, we can now integrate the dif-
fusion dominated part, starting from ω∗. With an implicit
Euler method, the equation reads

(ρ � ω)n+1 − Sn(ρ � ω)n

�t

= Div diag

(
Av

1

D � ρ(ωn+1)

)−1

Grad ωn+1 + Qsω.

The implicit diffusion is nonlinear and it is solved using
a Picard iteration [2], updating also the velocity field and
corresponding ω∗. For VDF with seawater, the density dif-
ference between the two fluids is fairly small, decreasing the
nonlinearity of the coupled system and the number of Picard
iterations. Even though the time step can be large given the
stability of the Semi-Lagrangian method, care must be taken
with respect to the coupling with the flow equation [49].
A step too large would lead to a weak coupling and the
possibility of erroneous calculations.

2.3 Groundwater model sensitivities

In order to proceed with Gauss–Newton minimization when
solving the inverse problem, we need to know the sensitivi-
ties of the collected data with respect to the unknown initial
solute content. In our inverse problem, the data are repre-
sented by the final solute mass fraction. At each time step
of the groundwater forward model simulation, we solve the
system of two partial differential equations, where at the end
of each time step the pressure pn is given by the solute distri-
bution and boundary conditions. The groundwater velocity
qn can be then expressed as a function of ωn and pn only and
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the system reduces to the second equation for solute trans-
port. The solute mass balance Eq. 2 is time dependent, and
the velocity dependence is stored in interpolation matrix Sn,
which is a function of flux qn and solute mass (ρω)n.

Since the sensitivities do not need to be known exactly,
we can assume that for their calculation the density does not
vary much and proceed with using the solute mass fraction
formulation alone, for which the time stepping process of
Eq. 2 can be written as:

(I − �tMdis)ω
n − Sn−1ωn−1 − �t qn−1

BC,ex = 0 (10)

Since we are using the operator splitting approach, we
can explicitly derive the sensitivity of the mass ωn+1 at each
time step with respect to the solute fraction at the previous
time step. This is a two-step calculation, step 1 being the
advection part and step 2 being the diffusion part. The sensi-
tivity of the final solute fraction can therefore be calculated
recursively during the forward GW model run.

More generally, if we consider all time steps together (see
in Fig. 2), we can write the forward model in a compact
form as

AT Sω − B0ω0 − q̂ = 0, (11)

where AT S is the time stepping matrix that is block bidiag-
onal and B0 is the matrix that multiplies ω0. The vector q̂

involves the boundary conditions and sources and vector ω

is set here as ω = [ω�
1 , . . . , ω�

n ]�.
Differentiating F with respect to ω0, we obtain that

∂F (ω, ω0)

∂ω

∂ω

∂ω0
+ ∂F (ω, ω0)

∂ω0
= 0, (12)

and therefore

∂ω

∂ω0
= −∂F (ω, ω0)

∂ω

−1 ∂F (ω, ω0)

∂ω0
. (13)

Using Eq. 11, we see that

∂ω

∂ω0
= A−1

T SB0 (14)

and later on, this is referred to as the sensitivity J . In par-
ticular, if we wish to compute the sensitivity of data that are
measured for ω in a small number of locations/times with
respect to ω0, we extract these points from Eq. 14. Let the
matrix Qf be the matrix that extracts ω for the time steps
and locations that the data are measured in

df = Qf ω. (15)

Then, the sensitivity of the last time step is simply

∂df

∂ω0
= Qf A−1

T SB0. (16)

It is important to note that in order to compute the sen-
sitivity times a vector, one does not need to compute the
sensitivity explicitly in a matrix form. Instead, one needs
to multiply B0 times a vector and then solve a time step-

ping problem forward. For the multiplication of
(

∂df

∂ω0

)�

times a vector, one multiplies by Q�
f and then solves a

backward time stepping process. For more details about the
implementation, see [23].

3 Geophysical imaging method

In order to estimate the physical properties of the media,
we choose direct current (DC) resistivity, also referred to
as electrical resistance tomography (ERT). DC resistivity
is sensitive to the electrical conductivity of the media and
since the conductivity of salt water is a few orders of magni-
tude larger than that of freshwater, the DC resistivity method
is a natural choice. Other electrical methods can be used;
however, DC has several advantages, i.e., data acquisition is
relatively easy, computational effort is minimal, and cost is
low.

In DC experiments, a current is injected into the ground
creating an electrical potential, which is then measured
using pairs of electrodes placed on or under the surface.
To model this process, we used the steady state form of
Maxwell’s electromagnetic equations:

∇ · (−σ∇ϕ) = I(δ(r − rs+) − δ(r − rs−)) (17)

n · ∇ϕ = 0 on �nc

where σ represents the media’s electrical conductivity, ϕ

is the electric potential, I is the current source, δ Dirac
delta function, and rs+,s− stands for location of positive and
negative electrodes. The boundary conditions were set as
no flux across the boundaries, �nc. When solving the for-
ward problem, the electrical conductivity field, σ , is known
and potentials everywhere can be calculated using a finite
volume approach on a 3D grid. Since the discretized DC
equation is essentially the same type of equation (Pois-
son equation) as the flow equation (5), we follow the same

Fig. 2 Full forward GW model for all time step at once
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procedure to solve it as has already been described in
the previous section and use a cell-centered finite volume
approach for the discretization of the problem leading to a
linear system of equations:

A(σ )u = q (18)

where

A(σ ) = −Div diag

(
1

(Avσ−1)

)
Grad. (19)

The electrical conductivity σ is averaged harmonically
from the cell centers onto cell faces, q is the source term, and
u represents the potentials. The forward model solves the
potential values everywhere for a given conductivity field,
and using the data projection matrix Qe, the observed data
are

de = Qeu, (20)

measured at the receivers.

3.1 Sensitivities

We can write the forward geophysical model G(m, u) in
simple matrix vector notation as:

G(m, u) = A(m)u − q = 0, (21)

where m is commonly chosen to be the logarithm of elec-
trical conductivity, i.e., m = log(σ ) and A(m) is just

A(m) = −Div diag
(
(Avexp(m)−1)−1)Grad. (22)

Following the basic rules of sensitivity calculation, the
derivative of the forward geophysical model with respect to
m is equal to zero:

∂G(m, u)

∂m
+ ∂G(m, u)

∂u
∂u
∂m

= 0. (23)

The sensitivity of potential u with respect to m is then

∂u
∂m

= −
(

∂G(m, u)

∂u

)−1
∂G(m, u)

∂m

= −A(m)−1 ∂G(m, u)

∂m
. (24)

We can then substitute into Eq. 20 and obtain the sensi-
tivity of measured data with respect to log conductivity m
as

∂de

∂m
= Qe

∂u
∂m

. (25)

The matrix ∂G(m,u)
∂m is a sparse matrix and its calculation

is discussed in [47]. Again, the sensitivity matrix does not

need to be evaluated explicitly, only matrix vector products
are used in the Gauss-Newton minimization procedure.

3.2 Salt mass fraction and electrical conductivity
relationship

The electrical conductivity of a porous media is dependent
on fluid conductivity, rock/soil porosity, permeability, satu-
ration, temperature, and also mineral composition [33]. In
the saturated sediments of coastal aquifers, fluid conductiv-
ity is usually the main factor due to salinity of the fluid, but
in other cases surface conductivity of fluid-grain interface,
porosity, or amount of saturation can be the main factors
influencing the overall electrical conductivity. Empirical
petrophysical relationships, such as Archie’s law [3], were
therefore developed to relate these properties. For fully
saturated sediments Archie’s law can be written as:

σb = 1

α
σwφn (26)

where σb is the bulk electrical conductivity, σw is the fluid
electrical conductivity, and φ porosity. α and n are empiri-
cal parameters related to rock type which can be calibrated
based on soil core samples, field survey, or estimated by
recommended values based on geological characterization.

The fluid electrical conductivity in natural waters
increases with the amount of dissolved solids and ions [25].
Linear relationships can be found for a fixed temperature
between total dissolved solids (TDS) and fluid electrical
conductivity. Since the seawater is usually dominated by
sodium chloride ions, we can assume a linear relationship
between salt mass fraction and fluid conductivity:

σw = c ω + σF , (27)

where σF is the conductivity of freshwater, c a constant, and
ω is the salt mass fraction. The electrical conductivity of
seawater is approximately two orders of magnitude higher
than that of freshwater. After substituting into Archie’s law,
we have

σb = 1

α
(cω + σF )φn. (28)

In this petrophysical relationship, one assumes that the
bulk conductivity is affected only by the electrical conduc-
tivity of the fluid in the porous matrix, the variations in
temperature are small, and that the surface conductivity of
porous material is negligible. This would not be valid for
example, in environments with a high clay content [33]; in
many cases though, the differences in conductivity due to
the variation in geological material are negligible compared
to the increase in conductivity due to saltwater ions.

Equation 28 was used to generate electrical conductivity
models based on the salt mass fraction from groundwater
model simulations.
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In this study, we refer to groundwater data as solute
mass fraction data, ω, even though in the field applications
it is more common to record the fluid conductivity σw of
GW samples, and only later by using a linear relationship
to transform it to an actual solute mass fraction. However,
this linear relationship is different from the general petro-
physical relationship, having a different error and lower
uncertainty. Also, the groundwater model is defined for
solute mass fraction, and this way it is easier to distinguish
in the following context the groundwater and geophysical
origin of data.

4 Solving the inverse problem

Assume now that we have obtained DC resistivity and
groundwater well samples data at a single time, that is we
have

de = Qeu + εe (29)

df = Qf ω + εf (30)

where Qe and Qf are projection matrices that project the
electrical potential field, u, and the solute fraction field, ω

onto their measurement locations, respectively. Let εe and
εf be vectors with the errors associated with each mea-
surement, which are assumed to be Gaussian, independent,
and identically distributed with covariance matrices �e and
�f . The ω represents the solute fraction at the end of sim-
ulation, i.e., at the same time as the geophysical data were
collected.

The goal is to jointly invert the different data in order
to better recover the flow path and in particular, to bet-
ter predict the flow. Clearly, the electric data is affected
mainly by the electrical conductivity of the porous media
in SWI and the groundwater data is affected by the initial
solute distribution, ω0, the porosity, φ, the dispersion, D,
the permeability k, and the fluid viscosity, μ. If all GW
model parameters are unknown, then the indirect data or
scarce direct data will not suffice to accurately estimate
them. However, well-studied aquifers are typically observed
for many years and therefore, for now we assume that all
parameters, other than solute fraction, are at least approxi-
mately known. For example, some of these parameters could
be estimated by first solving the GW inverse problem using
pressure or hydraulic head data, which are not considered in
the coupled problem here. Thus, we write ω(ω0) and solve
for the initial conditions only, and to also recover the current
solute fraction distribution.

We now develop a procedure to estimate the initial
solute fraction distribution ω0 and the electrical conduc-
tivity σ by the regularized maximum likelihood estimate

[18, 23, 38]. This leads to the following constrained opti-
mization problem

min
σ ,ω0

αe

1

2
‖de − Qeu(σ )‖2

�−1
e

+ βeR(σ )

+αf

1

2
‖df − Qf ω(ω0)‖2

�−1
f

+ R(ω0) (31)

s.t σ = ηω + σ f b = p(ω)

Here,R is a regularization operator (to be discussed next)
and αe, αf and βe are regularization parameters. The con-
straint (32) represents Archie’s law and is obtained from
Eq. 28 by lumping a few parameters into η = c

α
φn, and σ f b

being the background soil bulk conductivity, which is equal
to σ f b = 1

α
φnσF and corresponds to to the conductivity for

porous media with freshwater only.
A number of different approaches may be taken to solve

this constrained optimization problem outlined in Eq. 31.
One possibility is to eliminate σ and to work with ω0

alone. The objective function (where we omit the extra
regularization term for σ ) is then

�(ω0) = αe

1

2
‖de − Qeu (σ (ω(ω0))) ‖2

�−1
e

+αf

1

2
‖df − Qf ω(ω0)‖2

�−1
f

+ R(ω0) (32)

This approach has the advantage of solving a smaller
problem; however, it complicates other aspects of the inver-
sion. First, we are required to choose two regularization
parameters, αe and αf for the different data misfits with
respect to the regularization term at each iteration. Despite
abundant research on choosing one regularization parame-
ter, there are almost no criteria for setting two parameters
during the iterative minimization process where each data
misfit has a different speed of convergence. A more detailed
discussion can be found in [11] where the authors used mag-
netotelluric data together with controlled source EM data.
Even though both data sets can be modeled by changes in
conductivity, non-trivial weighting was needed in order to
jointly invert them. Second, the multiplication of Jacobians
and data misfit calculations can have very different com-
putational cost for each data misfit, which can make each
iteration very unbalanced and does not favor parallelization.
Finally, if the relationship between σ and ω0 are inexact,
forcing them may lead to inversion artifacts.

Therefore, we opt to use the alternating direction method
of multipliers (ADMM) to minimize this coupled objective
function. The main advantage of ADMM is that the GW
and geophysical parts can be solved separately, that is, we
do not need to weight the two different data misfits in one
objective function, but instead we split the minimization
into two subproblems. This enables using existing inversion
methodologies and even software packages only with minor
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changes. It also takes the advantage of the existing paral-
lelization for a single problem and therefore substantially
increase the efficiency when solving large-scale problems.

Following the ADMM approach, the augmented
Lagrangian for Eq. 31 is

L(σ , ω, y) = 1

2
‖de − Qeu(σ )‖2

�−1
e

+ βeR(σ )

+1

2
‖df − Qf ω(ω0)‖2

�−1
f

+ βf R(ω0)

+y�(σ − p(ω)) + ρ

2
‖σ − p(ω)‖2 (33)

Here, y is a Lagrange multiplier and ρ is a parameter
that can be chosen somewhat arbitrarily. The kth iteration of
ADMM is summarized in Algorithm 1.

Algorithm 1 ADMM

• Approximately minimize the augmented Lagrangian
with respect to σ .
• Approximately minimize the augmented Lagrangian
with respect to ω0.
• Update the Lagrange multiplier yk+1 = yk + ρ(σ k+1 −
p(ωk+1)).

We now discuss the solution of each subproblem and
show that by using small modifications to existing inversion
codes, the ADMM iteration can be carried out efficiently.

4.1 Geophysical imaging block descent

At each step of minimizing the augmented Lagrangian with
respect to σ , we approximately solve:

min
σ

�(σ ) = 1

2
‖de − Qeu(σ )‖2

�−1
e

+ βeR(σ )

+y�(σ − p(ω)) + ρ

2
‖σ − p(ω)‖2 (34)

The objective function consists of a data misfit and a reg-
ularization part, as in usual inverse problems, and coupling
terms involving also ω, the groundwater variable. We can
proceed using the Gauss-Newton method to minimize (34)
with respect to σ . Compared to a standard inverse prob-
lem, we need to know also the derivatives of the coupling
terms with respect to σ ; however, these are, in this case,
straightforward since ω is fixed.

Here, we consider a quadratic regularization of the form

R(σ ) = 1

2
βe ‖L(σ − σ ref)‖2 , (35)

where L is the gradient operator and σ ref can be either
set to the background conductivity reference model, or
derived using Archie’s law from the last estimate via the

groundwater descent step. If we set Je = ∂u(σ )
∂σ

and assume
for simplicity that �e = I , the derivative ∂�

∂σ
is

∂�

∂σ
= J T

e QT
e (Qeu(σ ) − de)

+βeL
T L(σ − σ ref) + y + ρ(σ − p(ω)) (36)

and the search direction at each time step is:

�σ = −
(
J T

e QT
e Qe Je + βLT L + ρI

)−1 ∂�

∂σ
(37)

The model is then updated by a “soft” Armijo line search
[45], σ k+1 = σ k +μ�σ , where the parameter μ is adjusted
to ensure sufficient decrease of �, where k refers to kth
iteration of the geophysical descent. We take a small fixed
number of Gauss-Newton steps (see the numerical exper-
iment section), and as has been already mentioned, rather
than searching directly for the electrical conductivity σ , we
search for a log of conductivitym = log(σ ).

4.2 Groundwater model block descent

Similarly, the objective function for the augmented
Lagrangian with respect to ωo, the initial solute mass frac-
tion, can be written as:

min
ω0

�(ω) = 1

2
‖df − Qf ω(ω0)‖2

�−1
f

+ βf R(ω0)

+y�(σ − p(ω)) + ρ

2
‖σ − p(ω)‖2 (38)

Now, the geophysical variable σ is fixed and the deriva-
tives of the coupling terms with respect to ω0 involve the
sensitivity Jf = ∂ω

∂ω0
, as discussed in Section 2.3.

Assuming a quadratic regularization for ω0 of the form

R(ω0) = 1

2
‖L(ω0 − ωref)‖2, (39)

with ωref being a reference solute fraction model (an initial
guess or estimate from the previous step), the gradient of
�(ω) is then

∂�

∂ω0
= J T

f QT
f

(
df − Qf ω(ω0)

) + βf LT L(ω0 − ωref)

−ηJ T
f y + ρηJ T

f (σ − p(ω)), (40)

where p(ω) represents the petrophysical constraint (Eq. 32).
The groundwater model minimization follows the same
Gauss-Newton approach as has been described above for
geophysical imaging.

4.3 ADMM stopping criteria

The ADMM algorithm is stopped when the norm of the
residual rk , i.e., the constraint given by the petrophysi-
cal relationship rk = σ − p(ω), is sufficiently small or
the changes in ‖rk‖ between the last few iterations are
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bellow some threshold value. At this point, we have the
capability of fitting both the geophysical and groundwater
data such that the electrical conductivity and solute fraction
agree.

It has been shown that ADMMhas a linear rate of conver-
gence,1 where for some applications the desired precision
can be reached in a relatively small amount of steps/descents
[8]. The penalty term ρ has an effect on the speed of conver-
gence [15, 21]; however, it has been shown that under mild
conditions any positive value of ρ will lead to convergence
[21], both in terms of the residual rk → 0 and finding an
optimal solution for both models. In our study, we set up ρ

by a trial and error procedure, where ρ ∈ [0.1, 1] provided
similar results. In some cases, better rate of convergence can
be achieved by so called Over-relaxed ADMM, or by adding
a scaling parameter for the Lagrangian multiplier, the work
of [44] provides actual rate bounds based on the parameter
choices.

5 Results

First, we tested our GW model on the Henry problem [26],
which is a classical benchmark problem for the VDF in 2D
representing a simplified seawater intrusion case. We used
the dimensionless parameters a = 0.3214 and b = 0.1, as
in [1], and obtained similar results as in their study for a
diffusive case of the Henry problem, i.e., when only molec-
ular diffusion is consider with a fixed value for D and
transverse and longitudinal dispersivities being zero (see in
Fig. 3).

5.1 Parametrization for the synthetic scenarios

To test our method, we created different model problems
in 3D representing more complex cases of seawater intru-
sion. We set up two cases for GW model parametrization,
one with a homogeneous permeability field (case 1) and
one with heterogeneous permeability field (case 2). The het-
erogeneous case is based on the field study at the Kidd2
site in the Fraser River Delta in Richmond, BC [41], where
the delta slope deposits confine the sandy deltaic deposits
and a seawater wedge enters from the river (Fig. 4). In
both cases, the boundary conditions followed the Henry’s
benchmark problem with hydrostatic pressure for the sea-
ward boundary and freshwater inflow rate for the inland
boundary. The actual parameter values are presented in
the Table 1 including the external fluxes representing the
pumping rates.

1Note that Gauss-Newton has a linear rate of convergence as well
although the constant in Gauss-Newton may be better than the ADMM
constant.

Fig. 3 Contour plots of solute mass fraction for two cases of testing
the Henry’s benchmark problem; left: the dimensionless parameters
a = 0.33, b = 0.01; right: a = 0.33, b = 0.1

For the initial “unknown” solute mass fraction distribu-
tion at time t0, we let the GWmodel run forward up to a cer-
tain time. During this simulation, a pumping well is placed
in the southwest part of the area. Afterward, we altered the
external fluxes, and a single pumping well was placed in
the north-east area while the freshwater inflow flux was
decreased. The GW simulation then ran from the initial state
at t0 up to time t1 for 300 days, with a time step 15 days.
The “true” initial and final solute distributions for both cases
can be seen in the Fig. 5. The external fluxes are changed
at time t0 so that the GW model, used in the coupled inver-
sion, could not simulate the initial solute content from a zero
distribution. Moreover, changes to external fluxes (such as
different pumping schemes or reduced discharge) are also
likely to happen in real conditions.

We collect both types of data only at time t1. For the
GW sampling, we have two transects of wells (with spac-
ing of 7 m) and three depth samples are collected (depth
= 4, 7, and 11 m) in case 1, and two depth samples (z =
5 and 9 m) for the heterogeneous case 2. The position of
the transects was altered for different simulations; however,
here, we present in detail the case with west-east locations
x = 16 m and x = 24 m, see in Fig. 6. Gaussian random
noise with standard deviation 0.05 was added to all mea-
sured solute fraction values. No hydraulic head or pressure
GW data were used in the coupled inversion.
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Fig. 4 The geological layers for the heterogeneous case based on
Kidd2 site in Fraser River delta [41], schema for kz field

For the geophysical data, the simulated solute fraction at
time t1 was converted through Archie’s law into bulk elec-
trical conductivity, and potentials were solved through the
DC forward model described in Section 3. There are many
different options for the electrode layout and measurement
scheme; the following one was chosen based on the sensitiv-
ities of measured data, while trying to maximize the depth
resolution for data collected only at the surface. The elec-
trode layout corresponds to a regular grid with spacing 3 m
in x direction and 4 m in y direction, giving in total 72 elec-
trodes. A positive electrode was fixed close to the seaward
boundary (west) and the negative charge was moving along
the x profile, toward east. For each source pair (72 in total),
potential differences were measured on all receivers, where
one of the receiver couples was always fixed and placed in
the north west corner (see Fig. 7). Three percent Gaussian
random noise was added to the measured potentials.

5.2 Coupled inversion

The ADMM minimization starts with the GW model
descent and continues as long as the constraint residual
rk decreases (or up to five runs of GW and geophys-
ical descent). The residual rk represents the difference
between bulk electrical conductivity and electrical conduc-
tivity derived from the GW model via Archie’s law. Since
this is a synthetic example, we can record the actual initial
and final errors next to the data misfits for both the GW
and geophysical data during the minimization. By actual
error, we mean the norm ε(ωk) = ‖ωk − ωtrue‖. Due to the
ADMM approach, we do not need to weight two different
data misfits; however, weights still need to be assigned for
the regularization term β and the so called penalty term, ρ.
The choice of the regularization parameter β has already
been largely discussed in the literature (see [24, 56] and ref-
erence within), and can be determined either based on initial
values for φD, φS , and φR , or by a trial and error proce-
dure. The choice of the penalty parameter ρ was discussed
in the Section 4.3. A particular set of weights were applied
to obtain all results presented here in; βe = 10−3, βf =
5 × 10−3 and ρ = 0.4. The number of Gauss-Newton iter-
ations (within each ADMM descent) was 3–4 for the GW
block descent, and between 6 to 10 for the geophysical block
descent.

In Fig. 8, the actual errors scaled against the error of ini-
tial estimates are plotted together with the residual rk . Initial

Table 1 Parametrization for the test cases

GW model Heterogeneous case Homogeneous case

Grid 44x32x12 cells 44x32x12 cells

Cell size 1 x 1 x 1 m 1 x 1 x 1 m

Permeability k

Silty sand kx = 2 × 10−12 m2, ky = 4.4 × 10−11, kz = 2 × 10−14 m2 kx = 4.4 × 10−11 m2,

Fine and medium sand kx = 4.4 × 10−11 m2, ky = 4.4 × 10−11, kz = 4.4 × 10−12 m2 ky = 2.4 × 10−11,

Silty clay (Fig. 4) kx = 10−14 m2, ky = 4.4 × 10−11, kz = 10−17 m2 kz = 1 × 10−12 m2

Porosity φ 0.35 0.35

Dispersion D 0.0032 m2/year 0.0032 m2/year

Viscosity 0.001 Ns/m2 0.001

Freshwater density 1000 kg/m3 1000 kg/m3

Saltwater density 1025 kg/m3 1025 kg/m3

QGW , pumping rate up to t0 [x,y] = [8,14], 0.16 day−1 [x,y] = [8,14], 0.16 day−1

QGW , pumping rate up to t1 [x,y] = [26,26], 0.13 day−1 [x,y] = [26,32], 0.13 day−1

Geophysical model

Grid 50 x 38 x 12 cells

Cell size 1 to 4 m

Arhie’s law m 1.7

Background σ 0.0065 S/m
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Fig. 5 Upper left and right: Initial and final solute distribution for Case 1, Bottom left and right: Initial and final solute distribution for case 2.
Isosurfaces at ω = 0.25, 0.5 and 0.75 are plotted

estimates are based on a forward simulation starting with
the GW reference model. Both rk and εk decrease during
the ADMM minimization. The estimates of ω0 can be seen

Fig. 6 GW well sampling, eight wells in total are placed along two
transects at x = 16 m and x = 24 m distance, later labeled as b and c

in the contour profiles in Fig. 9, resp. Figure 10 for x = 10
and x = 20 m or their 3D plots in Fig. 11.

For comparison, we also solved the inverse problem with
a simpler coupled approach and by a Gauss-Newton method
with a direct substitution approach (Eq. 32). In the simple
coupled approach, both models can run more independently.
We first solve the inverse problem for GW data only and
then apply Archie’s law to transform the estimate to elec-
trical conductivity at t1. This estimate then constrains the
geophysical inversion as a reference and initial model, and
as such it is computationally easier to implement with no
extra coupling terms in the objective function. The actual
errors of solute mass fraction at t0 and t1 and final data mis-
fits for the ADMM and the coupled approach are presented
in Table 2. For Table 2, we considered the lower error from
GW or geophysical inversion for the coupled approach.

The Gauss-Newton minimization with a direct substi-
tution for σ uses the constraint from the Eq. 32. We run
the Gauss-Newton minimization applying three different
strategies of adjusting the weights, and the results for the
case 1 are summarized in the Table 3. In the first option,
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Fig. 7 Experimental design for
DC survey: Dark blue points
represent the electrodes on the
surface placed on a regular grid,
saltwater is coming in from the
west boundary

we fixed both αe and αf to make the initial data misfit
magnitudes equal. In the second option, we fixed the geo-
physical data misfit weight αe, and adjust the groundwater
data misfit weight αf at each iteration as αf = φD,e

φD,f
. In the

third option, we were adjusting the geophysical weight αe

instead, at each iteration as αe = φD,f

φD,e
. Since the estimates

by substitution approach were worse than computationally
much simpler coupled approach described above, we left the
substitution approach out of further comparison.

Additionally, we tested the ADMM and the coupled
approach for different locations of GWwells without chang-
ing the DC survey design. The scaled errors are plotted
for all simulations in Fig. 12. The different transects of
wells are plotted in Fig. 13. We did not use the same
combinations of transects for case 1 and 2, as the final
SWI front reached further in the case 2 compared to
case 1.

5.3 Coupled inversion with inexact GW parameters

In order to test our method for the case where the reservoir
parameters are not known exactly or only approximately, we
solve the problem for an inaccurate permeability field and
dispersion. In the first test, we used the original GW model
parameters, but decreased the homogeneous permeability
field and dispersion to 70 % when running the ADMM and
coupled approach. The ADMM joint approach converged,
but the actual errors were higher then when the correct GW
parameters are used. In Fig. 14, you can see the error evo-
lutions for both the ADMM with correct and incorrect GW
parameters, also the error ε(ωf ) from the coupled approach
(a single value), Table 4 provides the summary of errors for
both methods.

In the second test, we used the homogeneous case 1
and altered the permeability field by adding a 3D random

Fig. 8 Green triangles represent the scaled error decrease for the final solute fraction ωf , orange stars correspond to updated rk values, where
rk = σf (k) − p(ωf (k)). The GW wells for this case were placed along x = 16 m and x = 24 m
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Fig. 9 Case1: Contour profiles at y = 10 and y = 20. The dashed lines are estimates from the joint inversion (ADMM), and the full contour
lines are the actual locations corresponding to ω = 0.25 (blue), ω = 0.5 (green), and ω = 0.75 (red)

Gaussian field to the original (see in Fig. 15). The addi-
tion of the Gaussian random field thus changed the original
anisotropic homogenous permeability field to a heteroge-
nous field, which then generates a differing solute distri-
bution. The ratio of change in the observed solute fraction
data due to different permeability compared to original data
was 18 %. GW data based on this simulation where used in
ADMM inversion, but leaving the permeability field homo-
geneous as in the previous calculations for case 1. The
scaled errors and residual rk are plotted in Fig. 16. For com-
parison, we again ran the coupled approach with the same
input as used in ADMM.

6 Discussion

Based on the results of the synthetic examples in Section 5,
the ADMM approach proved to be advantageous compared
with simple coupled approach, direct substitution of the
constraint, or separate groundwater and geophysical inver-
sions. The splitting of the minimization procedure into
the augmented Lagrangians resulted into separation of the
GW and geophysical model. This separation is advanta-
geous as the two different data misfits do not need to
be weighted in one objective function, and we can still
proceed with joint minimization. Moreover, if different

Fig. 10 Case 2: Contour profiles at x = 10 and x = 20. The dashed lines are the estimates from the joint inversion (ADMM), and the full contour
lines are for true locations corresponding to ω = 0.25 (blue), ω = 0.5 (green), and ω = 0.75(red)
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Fig. 11 Upper left and right: Estimates for initial and final solute distribution for case 1, Bottom left and right: Estimates for initial and final
solute distribution for case 2. Isosurfaces at ω = 0.25, 0.5, and 0.75 are plotted. The true models are plotted in Fig. 5

geophysical survey was applied, the same ADMM method
can still be applied with small adjustments to the current
codes.

The joint inversion with ADMM achieved a lower error
for both the initial and final solute fraction distributions in

Table 2 Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time
t0 and t1 of the two different reconstructions

ε(ωf ) ε(ω0) φGW (ρω) φDC(u(σ ))

Case 1

Initially 14.2 22.6 974 1046

Coupled 6.28 13.56 4.6 1.6

ADMM 3.1 10 1.1 1.4

Case 2

Initially 9.3 16.8 12.4 1940

Coupled 6.6 13.8 3.4 1.0

ADMM 2.8 11.5 0.8 0.9

Note that the ADMM provides lowest error estimation

all tested examples compared to simple coupled approach.
In the example presented above in detail in Section 5.2, the
error for ωf estimate by ADMM was roughly 50 % of the
error by a coupled approach in homogeneous case, and 60 %
for the heterogeneous case. For the initial solute fraction ω0,
the improvement by ADMMwas 60 and 70 %, respectively.

The estimates for the final solute distribution were gener-
ally better than for the initial solute mass fraction due to the

Table 3 Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time
t0 and t1 for Gauss-Newton method with the substitution of ω0

Case 1 ε(ωf ) ε(ω0) φGW φDC

Initially 14.2 22.6 974 1046

Fixed αe.αf 10.8 27.4 7.97 43.74

Adjusted αf 8.49 21.3 1.78 144.24

Adjusted αe 7.07 20.6 3.2 71.12

1. The weights were fixed based on initial data misfits; 2. αf was

adjusted as αf = φD,e

φD,f
; 3. αe was adjusted as αe = φD,f

φD,e
at each

iteration. Inversion run up to ten iterations
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Fig. 12 The error decrease for different GW sampling designs; the dotted line is for the ω0 relative error, the full line for the ωf relative error
decrease. In all cases, the error decrease slows down with further iterations. The plotted results are based on different transcet of wells plotted in
Fig. 13

fact that the DC data were collected at this time, and also
the coupling constraint between ωf , solute fraction, and σ f ,
electrical conductivity was enforced for the final time t1.
In all cases, the ADMM converged to minimum, though it
shows some of its typical aspects: a relatively quick drop
during the first few iterations and a slow decrease toward the
end. However, for the case of groundwater modeling appli-
cations, the initial decrease in error might be sufficient. Our
synthetic study confirmed the theoretical results about the
convergence of this method.

When applying Gauss-Newton method, in both joint or
single inversion, we avoided using perturbation methods
to calculate the sensitivities, as it is usually the case in
other studies. Instead, we opted for deriving these sensitivi-
ties analytically in our codes to speed up the minimization.
The calculation of exact sensitivities based on discretized
equations allows us to work on large-scale problems,

avoiding expensive finite difference sensitivity calculations
and Jacobian storage. 3D inversions are well known to be
computationally intensive, where stochastic approaches, or
minimization codes with the sensitivities calculated using
perturbation methods, can require time frame of weeks
[12, 30]. In contrast, our approach of computing the sensi-
tivities allows us to solve 3D problems in the time frame of
minutes to hours.

Of course, the ADMM comes at a higher computation
cost compared to a simple coupled approach, which is due
to the repeated computation of the GW and geophysical
descent, for four or five times. For example, using the sim-
ple coupled approach for the case 1, we ran the forward
GWmodel 10 times, while the ADMM required 57 forward
model runs. Similarly, the coupled approach required 7 DC
forward model runs as opposed to 32 runs by ADMM. In
Table 5, we summarized the computation cost in terms of

Fig. 13 The transects along x

and y axis in plan view. For the
homogeneous case1, the
sampling depths were
z = [3, 7, 11], and for the
heterogeneous Case 2 z = [5, 9]
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Fig. 14 Errors decrease for ωf

estimate and residual rk when
correct and altered GW
parameters are used in ADMM.
The errors for ωf for the
coupled approach are plotted
with a dashed line, as it is just a
single value

forward geophysical and groundwater model runs and the
actual running time; we also included the time scale of the
Gauss-Newton method with a direct substitution.

Note that, when the relative weighting and regularization
parameters are unknown, the ADMM can be easily faster
than the Gauss-Newton optimization (with substitution for
ω0), which also needs to be solved a number of times
due to testing different regularization parameters; however,
unlike ADMM, where each iteration consists of solving
a single physical model, the fully coupled Gauss-Newton
method requires solving both problems for each weighting
and regularization parameters.

For the first set of simulations with case 1 and case 2, we
assumed the GW model parameters were known, exclud-
ing initial and actual solute content. This can be regarded as
an overly simplifying approach, but is justified for testing
the feasibility of the joint inversion strategy. To demonstrate
the robustness of the ADMM method with respect to vari-
ations in GW parameter values, we altered the GW model

Table 4 Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time
t0 and t1 when different form true GW parameters are used in the
ADMM inversion or coupled approach

ε(ωf ) ε(ω0) φGW (ρω) φDC(u(σ ))

Test 1

Initially 12.2 20.7 63 1150

Coupled 7.35 16.2 3.64 2.18

ADMM 3.85 10.4 2.04 1.57

Test 2

Initially 17 22.6 17.2 1140

Coupled 6.92 13.1 4.0 1.95

ADMM 4.32 9.26 1.7 1.48

Test 1—change in permeability field, Test 2—70 % reduction in
permeability and dispersion values

parameters in the inversion process. As expected, this led to
estimates with higher error compared to solving the problem
with the correct parameters. Nevertheless, the ADMM con-
verged to estimates with lower error than the simple coupled
approach (see in Fig. 14), as it could be partially “corrected”
by information from geophysical data. We are aware that
further increasing of the error in the GWmodel parametriza-
tion would also lead to worse estimates, but in that case
any coupled approach will not be able to provide a more
accurate estimates.

The goodness of estimates with low data misfits is largely
determined by the quality and amount of data available,
which plays a key role in success of solving any inverse
problem. It is apparent from Fig. 12 that different data sam-
pling locations result in differing final model errors, even
though the ADMM method followed the same pattern of
error decrease. Due to the inverse problem setup, where

Fig. 15 The true permeability field in x direction kx , when solving the
inverse problem a fixed value kx = 4.4−11 was used. ky and kz were
also heterogeneous when creating GW data



Comput Geosci

Fig. 16 Errors decrease for ωf

estimate and residual rk when
correct and altered GW
parameters are used in ADMM.
The errors for ωf for the
coupled approach are plotted
with a dashed line

the other GW model parameters and boundary conditions
are known, increasing the amount of GW data led to lit-
tle improvement of the ADMM approach compared to the
coupled approach. In contrast if the amount of GW data
samples was reduced, the ADMM method was still able
to give reasonable estimates with lower errors. The exper-
imental design and locations of GW samples are crucial
when solving the inverse problem. For example, if some
of the intruding seawater wedges are not captured by GW
wells, the success of the joint approach is entirely dependent
on the geophysical data. The uncertainty and credibility of
both groundwater and geophysical data also implies there
is uncertainty in the derived estimates of the hydrological
states, which will remain regardless of the method applied
to solve the inverse problem. The coupled approach has the
advantage of revealing possible discrepancies between the
two sources of information.

The ADMM method can only be applied to constrained
optimization problems. For the hydrogeophysical appli-
cations, this implies that the petrophysical relationship

Table 5 Computational cost overview for the forward model (f.m.)
runs and actual run time of the inversion, all results displayed are for
a desktop with Intel(R) Core(TM)i7-2860 QM processor and 16 GB
RAM

Method GW f.m. DC f.m. t (min)

Substitution 20 18 59

(8 iters. )

Coupled 10 7 27

(4 and 7 iters. )

ADMM 57 32 113

(5 x 3 and 6 iters.)

Parameters for line search procedure were the same for all methods,
amount of iteration counts is in the brackets next to each method

constraint should have a low uncertainty as it is “enforced”
during the minimization. Therefore, in environments where
we expect varying electrical conductivity of geological
material, it would not be a recommended approach. If we
still want to follow the methods described above, the cou-
pling term based on the petrophysical relationship would
stay as a part of the objective function, but not as a con-
straint, and a block coordinate descent method could be
used for minimization. However, the sensitivities derived
for ADMM approach would not change. An alternate
option would be to use similarity measures based on gra-
dient fields supporting a similar structure of two different
models, without forcing a perfect matching relationship.
Some of the proposed methods will be subject of future
research.

7 Summary

In this paper, we have developed a hydrogeophysical inver-
sion framework which improves estimates of hydrological
states by jointly inverting both types of data. To allevi-
ate computational costs in the inverse problem, sensitivities
were analytically derived as opposed to using perturbation
methods. An alternating direction method of multipliers
was applied to keep the codes for each inverse subproblem
relatively separate, with only a few changes necessary to
proceed with a joint inversion. The ADMM approach pre-
sented here enabled us to invert both the geophysical and
groundwater data at once.

Based on the synthetic cases tested, the new approach
improves the estimates of the initial and current solute
content when compared with a simple coupled or direct
substitution approach. Moreover, the results from the syn-
thetic experiments suggest that even if the GW parameters
used in the inversion deviate from the true parameter set,
the ADMM still manages to converge while improving the
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estimates of solute fraction for both the initial and final time.
Not surprisingly, the efficiency and gain of the ADMM joint
inversion compared to inverting GW data alone is dependent
on the quality of both data sets.
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putational and conceptual issues in the calibration of seawater
intrusion models. Hydrogeol. J. 18(1), 131–145 (2010)

10. Celia, M.A.: An Eulerian-Lagrangian localized adjoint method for
the advection-diffusion equation. Adv. Water Resour. 13(4), 187–
206 (1990)

11. Commer, M., Newman, G.A.: Three-dimensional controlled-
source electromagnetic and magnetotelluric joint inversion. Geo-
phys. J. Int. 178(3), 1305–1316 (2009)

12. Commer, M., Kowalsky, M.B., Doetsch, J., Newman, G.A.,
Finsterle, S.: MPiTOUGH2: a parallel parameter estimation
framework for hydrological and hydrogeophysical applications.
Comput. Geosci. 65, 127–135 (2014)

13. Comte, J.C., Banton, O.: Cross–validation of geo–electrical and
hydrogeological models to evaluate seawater intrusion in coastal
aquifers. Geophys. Res. Lett. 34(10) (2007)

14. Kolditz, O., Ratke, R., Diersch, H.J.G., Zielke, W.: Coupled
groundwater flow and transport: 1. Verification of variable den-
sity flow and transport models. Adv. Water Resour. 21(1), 27–46
(1998)

15. Deng, W., Yin, W.: On the global and linear convergence of the
generalized alternating direction method of multipliers. J. Sci.
Comput. 1–28 (2012)

16. Doherty, J.E., Hunt, R.J., Tonkin, M.J.: Approaches to highly
parameterized inversion: a guide to using PEST for model-
parameter and predictive-uncertainty analysis. US Department of
the Interior, US Geological Survey (2011)

17. Essink, G.O.: Modeling three-dimensional density dependent
groundwater flow at the island of Texel, The Netherlands. Coastal
Aquifer Management-Monitoring, Modeling, and Case Studies
(2003)

18. Farquharson, C.G., Oldenburg, D.W.: A comparison of auto-
matic techniques for estimating the regularization parameter in
non-linear inverse problems. Geophys. J. Int. 156(3), 411–425
(2004)

19. Fitterman, D.W.: Mapping saltwater intrusion in the Biscayne
Aquifer, Miami-Dade County, Florida using transient electro-
magnetic sounding. J. Environ. Eng. Geophys. 19(1), 33–43
(2014)

20. Fowler, D.E., Moysey, S.M.J.: Estimation of aquifer transport
parameters from resistivity monitoring data within a coupled
inversion framework. J. Hydrol. 409(1), 545–554 (2011)

21. Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal
parameter selection for the alternating direction method of multi-
pliers (ADMM): quadratic problems. IEEE Trans. Autom. Control
60(3), 644–658 (2015)

22. Haber, E., Gazit, M.H.: Model fusion and joint inversion. Surv.
Geophys. 34(5), 675–695 (2013)

23. Haber, E.: Computational methods in geophysical electromagnet-
ics, p. 1. SIAM (2014)

24. Hansen, P.C.: Discrete inverse problems: insight and algorithms,
p. 7. SIAM (2010)

25. Hem, J.D.: Study and interpretation of the chemical characteristics
of natural water. Department of the Interior, US Geological Survey
(1985)

26. Henry, H.R.: Interfaces between salt water and fresh water in
coastal aquifers. US Geological Survey Water-Supply Paper, Sea
Water in Coastal Aquifers, pp. C35–C70 (1964)

27. Herckenrath, D., Odlum, N., Nenna, V., Knight, R., Auken, E.,
Bauer-Gottwein, P.: Calibrating a salt water intrusion model with
time-domain electromagnetic data. Groundwater 51(3), 385–397
(2013)

28. Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna,
A., Beaujean, J., Nguyen, F.: Imaging artificial salt water infil-
tration using electrical resistivity tomography constrained by
geostatistical data. J. Hydrol. 438, 168–180 (2012)
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