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Abstract Equilibrium chemistry computations and reactive
transport modelling require the intensive use of a linear
solver under very specific conditions. The systems to be
solved are small or very small (4 × 4 to 20 × 20, occasion-
ally larger) and are very ill-conditioned (condition number
up to 10100). These specific conditions have never been
investigated in terms of the robustness, accuracy, and effi-
ciency of the linear solver. In this work, we present the
specificity of the linear system to be solved. Several direct
and iterative solvers are compared using a panel of chemi-
cal systems, including or excluding the formation of mineral
species. We show that direct and iterative solvers can be
used for these problems and propose computational keys to
improve the chemical solvers.
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1 Introduction

The problem of groundwater management is receiving
increasing attention, and many tools have been developed
to address this issue. One of these tools, reactive trans-
port models, was first limited to laboratory experiments
and was then extended to field problem comprehension. In
recent decades, reactive transport models have increased in
complexity and efficiency, and they are now used in many
fields. Reactive transport models have been used to study
the transport of contaminants, such as heavy metals [1, 2]
and radioelements [3–5]. Because of the increasing inter-
est in questions related to climate change, many studies
on reactive transport have been conducted to examine the
possibility of geologic CO2 sequestration [6–10].

Under the wide variety of models and cases lies a com-
mon mathematical description [11–13]. Transport is usually
described by an advection-dispersion equation, and the
chemistry is formulated under thermodynamic equilibrium.
A widely used approach to solve these reactive transport
problems is the operator splitting approach [14]. Using this
approach, the transport and chemical operators are solved
separately at each time step and iteratively for some for-
mulations. As a consequence, the chemistry operator has to
be solved at least once per mesh cell per time step. This
is one reason for the high computational cost of reactive
transport modelling. Some authors have reported that 80
to 90 % of the computation time is dedicated to chemical
computation. Many studies have been conducted to reduce
the computation time required by reactive transport mod-
elling [15]. Some works have explored parallelization [16],
while others have focused on the methods used to solve
the transport operator. Nevertheless, improving the resolu-
tion of the chemistry operator has been identified as a key
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point. Some authors have attempted to improve the clas-
sic Newton-Raphson method [17], while others have tested
other methods, such as Newton-Krylov [16, 18].

In this work, we focus on a specific element of the
problem, improving the resolution of the linearized sys-
tem provided by the Newton-Raphson method. Looking to
numerical methods to solve linear systems is not currently
a common practice. Indeed, these methods are actually well
known [19–23], and all mathematical packages for scien-
tific computation propose several routines for this task. The
motivation of this work comes from the specificity of lin-
ear systems that have to be solved for equilibrium chemistry
computations. Classic tests for the resolution of linear sys-
tems [24–30] are performed using systems provided by
finite element or finite volume discretization, leading to
matrices that are large (at least 10,000 unknowns) and
sparse. Moreover, even when ill-conditioned systems have
been studied [25, 30, 31], the conditioning of the matrix
coming from the chemical system is specific, as under-
lined by Hoffmann et al. [32]. For example, Soleymani [33]
worked with an ill-conditioned system constructed from
10 × 10 to 20 × 20 Hilbert matrices. The condition num-
bers then range from 3.5 × 1013 to 6.2 × 1028. In this work,
we present chemical tests leading to a 7 × 7 matrix with a
condition number of approximately 10180.

We expect to find a method to increase the efficiency of a
speciation or reactive transport code. Several properties are
required for such a method:

(i) This method should be fast, as the linear system will
be solved very often. In the case of reactive transport
modelling, the system will be solved at least once per
mesh cell per time step.

(ii) The method should be very robust. It should be able to
solve the linear system even if it is very poorly condi-
tioned. Because the resolution of the linear system is
only part of an iterative Newton step, an accurate solu-
tion is not absolutely needed. Thus, some advanced
codes (e.g. Linear Algebra PACKage (LAPACK) rou-
tine) that check the accuracy of the solution and return
an error flag instead of an inaccurate solution are, in
this work, less robust than the more rustic routines.

(iii) The method should be able to detect failure and return
an error flag to the main program so that a recov-
ery procedure can be initiated. In the case of reac-
tive transport modelling, this procedure could involve
rejecting the current time step and recomputing with
a smaller one.

(iv) In the initial analysis, the precision of the method is
not the key point. Because the linear system resolution
is only a part of the Newton-Raphson iterative proce-
dure, reasonable error is acceptable for the linear sys-
tem inversion. If this error is too large, it will slow the

convergence speed for the Newton-Raphson method
and decrease the efficiency of the reactive transport
code. In this work, errors are estimated by comparing
the calculated solution to a reference solution.

Because we utilize a markedly small matrix, we did not test
parallelization. All the computations were performed on a
PC running Windows with 64-bit Fortran 95. Real variables
are defined as double-precision real. We prefer double-
precision computations because all the chemical codes are,
to the best of our knowledge, written as double-precision
real and because quadruple-precision computation is much
more time consuming. Nevertheless, we have tested one
method using quadruple-precision real to determine whether
this development could be useful. Reference solutions are
also computed using quadruple precision.

We first present the formulation of the equations describ-
ing equilibrium reactions and how they are solved using the
Newton-Raphson method. This point defines the Jacobian
linear system, which is the object of this work. A second
part is devoted to the presentation of the chemical tests and
the numerical procedures used to perform the tests. Next,
we propose a detailed analysis of the structure and proper-
ties of the Jacobian matrix. The selected linear solvers are
then presented and tested, and the results are compared and
discussed. Based on this analysis, we propose an algorithm
to optimize the chemical computation in terms of robust-
ness, accuracy, and efficiency. This algorithm is evaluated
on the most selective test. By expanding the limits of the
currently used methods, we believe that our new algorithm
will contribute to enlarging the field of application of reac-
tive transport modelling. As a conclusion, we underline the
main advances of this work, the new perspectives and the
remaining obstacles.

2 Material and methods

2.1 Geochemical modelling

One efficient formulation for the computation of thermody-
namic equilibrium is based on the tableau concept, referred
to as Morel’s table [34, 35]. NX components (Xj) are cho-
sen from the NC species (Ci) and are used to write the
formation of each species as a combination of the com-
ponents. The mass action law for the formation of the Ci

species is written with the equilibrium constant (Ki) and the
stoichiometric coefficients (ai,k) for each component (Xk)

{Ci} = Ki

Nx∏

k=1

{Xk}ai,k (1)
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where {Ci} and {Xk} are the activities of species Ci and
component Xk , respectively. In this work, we define Xj as a
subset of Ci ; then, NX is NC minus the number of reactions.

If NCP -precipitated species (Cpi ) are taken into account,
the mass action law for the precipitation of Cpi is written
with the precipitation constant (Kpi ) and the stoichiomet-
ric coefficients (api,k). The saturation index (SIi ) of Cpi is
equal to its activity, which is unity for a pure solid phase

SIi = Kpi

Nx∏

k=1

{Xk}api,k = 1 (2)

The conservation of the total concentration [Tj ] of the j th
component in the system is then written as

[
Tj

] =
NC∑

i=1

ai,j · [Ci] +
NCP∑

i=1

api,j · [Cpi] (3)

where [Ci] is the concentration of species (Ci) and [Cpi] is
the amount of precipitated species (Cpi ) per liquid volume
unit.

A classic algorithm [17, 36–41] to describe mineral pre-
cipitation or dissolution makes an a priori hypothesis about

the existence or non-existence of minerals. In this work, we
assume that this hypothesis is proposed. The relationships
between the activity and concentration are given by activity
coefficients (γi) calculated using specific models (Davies,
Debye-Hückel, etc.)

{Ci} = γi [Ci] and
{
Xj

} = γj

[
Xj

]
(4)

By substituting the mass action law (1) into the mass conser-
vation equation (3), the following relationship, which only
depends on the components and the precipitated species
concentrations, is obtained:

[
Tj

]=
NC∑

i=1

ai,j ·
(

Ki

γi

·
NX∏

k=1

(γk [Xk])
ai,k

)
+

NCP∑

i=1

api,j ·[Cpi]

(5)

Combining Eqs. 2 and 5 leads to a set of (NX + NCP ) non-
linear algebraic equations, which can be numerically solved
through iterative methods. The concentrations of component
[Xk] and precipitated species [Cpi] at equilibrium are then
determined when the (NX + NCP ) objective functions (Yj )

are zero

Yj = − [
Tj

] +
NC∑
i=1

ai,j ·
(

Ki

γi
·

NX∏
k=1

(γk [Xk])ai,k

)
+

NCP∑
i=1

api,j · [Cpi] for j = 1 to NX

Yj=NX+i = −1 + Kpi ·
NX∏
k=1

(γk [Xk])api,k for i = 1 to NCP

(6)

Using this method, it is possible to include many chemi-
cal phenomena, including activity corrections, sorption on a
surface using different means (such as ion exchange or sur-
face complexation), and dissolution of gaseous compounds.

According to the criteria typically used for this method
[17, 34, 40, 42], the convergence of the Newton-Raphson
method is not checked with respect to the norm of the
objective function ||Y ||, but the relative error defined as

NRrelative error = max

⎡

⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

∣∣Yj

∣∣
∣∣Tj

∣∣ +
Nc∑
i=1

∣∣ai,j [Ci]
∣∣

⎞

⎟⎟⎟⎠

j=1,Nx

,
(∣∣Yj

∣∣)
j=Nx+1,Nx+NcP

⎤

⎥⎥⎥⎥⎦
≤ εN−R with εN−R = 10−12 (7)

The value of the convergence criterion (εN−R = 10−12) is
set according to usual practice.

2.2 The Newton-Raphson method

The historical approach [12, 34, 37, 40, 42–47] involves
the resolution of the system (6) with the Newton-Raphson
method using [Xk] and [Cpi] as primary unknowns. This

formulation has some weaknesses that are explained later
(see Section 3.1).

However, many authors [18, 32, 38, 39, 48] have pro-
posed an alternative approach. Instead of using the com-
ponent concentrations

[
Xj

]
as the primary variables, they

use the logarithm of the component activities (ξj =
ln

{
Xj

}
). According to this convention, the objective func-

tions defined by Eq. 8 become conservation equations

Yj = − [
Tj

] +
NC∑

i=1

ai,j · Ki

γi

· exp
(

Nx∑

k=1

ai,k · ξk

)
+

NCP∑

i=1

api,j · [Cpi] for j = 1 to NX (8)
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In the case of the objective function describing precipitation,
it is more interesting to rewrite the mass action law (2) in
log form and then define the objective function

YNx+i = ln (SIi )= ln (Kpi)+
Nx∑

k=1

api,k · ξkfor i =1to NCP

(9)

Equations 8 and 9 are solved at the nth iteration with the
Jacobian matrix (Zn) of the objective functions

Zn
j,k

∣∣∣
j = 1, NX + NCP

k = 1, NX

= ∂Yn
j

∂[ξk]n

Zn
j,k

∣∣∣
j = 1, NX + NCP

k = NX + 1, NX + NCP

= ∂Yn
j

∂
[
Cpk−NX

]n
(10)

Using an analytical computation, we obtain the (NX +
NCP ) × (NX + NCP ) values of Zn by

Zn
j,k

∣∣∣
j = 1, NX

k = 1, NX

=
NC∑
i=1

ai,j · ai,k · [Ci]n

Zn
j,k

∣∣∣
j = 1, NX

k = NX + 1, NX + NCP

= apk−NX,j

Zn
j,k

∣∣∣
j = NX + 1, NX + NCP

k = 1, NX

= apk,j−NX

Zn
j,k

∣∣∣
j = NX + 1, NX + NCP

k = NX + 1, NX + NCP

= 0

(11)

Even if the activity coefficients depend on the compo-
nent concentrations, they are assumed to be constant during
the Newton-Raphson procedure. These activity coefficients
are usually actualized by a fixed-point algorithm at each
Newton-Raphson loop.

The progress step of the method (�ξn, �Cpn) is
achieved by assuming that the objective function Yn+1 in
Eq. 12 is equal to zero at the (n + 1)th iteration. This pro-
duces the key equation of this article, the linear system (12),
which must be solved to obtain the progress step

Zn · (
�ξn, �Cpn

) = Yn+1 − Yn = −Yn (12)

This system yields the values of the component activities
and precipitate concentrations at the (n + 1)th iteration

ξn+1 = ξn + �ξn

[Cp]n+1 = [Cp]n + �Cpn (13)

To simplify the notations, ξ is used to denote the full vector
of unknowns, including mineral Cp if present.

2.3 Chemical test cases

We choose chemical test cases with various numbers of
components. Some of these chemical systems allow the for-
mation of mineral species. Although it is not realistic from
a chemical point of view, we test them without minerals and
with the maximal possible number of minerals to obtain the
largest matrix size. Appendix 1 presents the stoichiometric
coefficients, equilibrium constants, and concentrations for
these tests.

Appendices are avialable online.

(i) The gallic acid test case was presented by Brassard
and Bodurtha [49]. It has been recognized as a chal-
lenging test for speciation computation [17] (see
Appendix 1 (A-1)).

(ii) The Valocchi test is from Valocchi et al. [11]. It
involves calcium and magnesium ion exchange (see
Appendix 1 (A-2)).

(iii) The pyrite test case describes the dissolution of a
pyrite rock in pure water. It has been used to test spe-
ciation algorithms [17]. Because it involves redox
reactions, the stoichiometric coefficients cover a
wide range, and the equilibrium constants vary over
several orders of magnitude. This test is used under
the assumption that no mineral phase is present (see
Appendix 1 (A-3)).

(iv) The MoMaS easy test is the chemical system used
for the reactive transport benchmark of MoMaS at
the easy level [50]. It has been specifically developed
to magnify numerical difficulties in a small system
(see Appendix 1 (A-4)).

(v) The Morel-Morgan test is the first large chemical
system reported in the computational literature. It
was used by F. Morel and M. Morgan in 1972 to
present the capacities of the computational method
they had just developed (and which we still use
today). This test includes 52 components (H+, 20
metals, and 31 ligands), leading to 781 aqueous
species (see Appendix 1 (A-5)).

(vi) The MoMaS medium test is the chemical system for
the medium level of the MoMaS reactive transport
benchmark [50] (see Appendix 1 (A-6)).

(vii) The Fe-Cr test is an additional redox test that
describes the redox reactions between iron and
chromium. These types of reactions occur when
iron reactive barriers are used to treat chromium-
contaminated sites [51, 52]. In this case, we con-
sider only the aqueous phase without minerals (see
Appendix 1 (A-7)).

(viii) The pyrite mineral test describes the dissolution of a
pyrite rock in purewater.Weassume that three possible
mineral phases are present (see Appendix 1 (A-8)).
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(ix) The MoMaS hard test is the equilibrium part of the
chemical system described in the hard level of the
MoMaS reactive transport benchmark. It allows for
the formation of two mineral species (see Appendix 1
(A-9)).

(x) The Fe-Cr mineral test describes the redox reaction
between iron and chromium. We assume the forma-
tion of three different mineral phases (see Appendix 1
(A-10)).

2.4 Test procedure

Equation 11 shows that we can obtain multiple linear sys-
tems from one chemical problem by changing the activity
values of the components. For each chemical system, we
select three components and vary their values over a wide
range. The concentrations of all minerals are arbitrarily set
to 10−3 mol L−1. The activity of component H+ is varied
from 10−12 to 10−2 mol L−1 (pH = 12 to pH = 2), while
that of component e− is varied from 10−19 to 1012, corre-
sponding to Eh = −0.7 to 1.1 V computed using Eq. 14 at
25 ◦C

Eh = ln
{
e−} RT

F
(14)

where T is the temperature (Kelvin), R is the gas constant
(8.314 J K mol−1), and F is the Faraday constant (96,487
C mol−1). This range of electrical potential corresponds to
the stability of water at pH values between 2 and 12. For the
O2 component, it is not possible to cover the same poten-
tial range as e− because of the computation of the reference
solution. The activity is varied from 10−70 to 104, as com-
puted using Eq. 15 at 25 ◦C with E0 = 1.23 V and pH
varying from 2 to 12. The potential is then varied from −0.5
to 1.1 V

Eh = E0 + 1

4

RT

F
× ln

{O2}
{
H+}4

{H2O} (15)

The activities of the other components vary from 10−12 to
10−1 mol L−1. For each of the three selected components,
we compute 30 values equally distributed on a log scale over
the chosen range, leading to 29,791 different linear systems
for each chemical test case. For each of these 29,791 tests,
we make only one linear solver (or one Newton step) (except
in the last section, Section 4, where the iterative Newton
method is performed to solve the non-linear system given
by Eqs. 8 and 9).

The matrix norm used in this work is the ||−||1 norm,
defined as [23]

‖Z‖1 = max
1≤j≤n

(
n∑

i=1

∣∣Zi,j

∣∣
)

(16)

The condition number of Z is defined [23] as the product of
the norm of the matrix per the norm of the inverse matrix
(17)

cond (Z) = ‖Z‖1 ×
∥∥∥Z−1

∥∥∥
1

(17)

To test the numerical methods, we first evaluate the compu-
tation time (CPU time) required to solve the linear system.
Because we work with a very small matrix, the computa-
tions are very fast and we run the same calculation several
times to obtain a total computing time of approximately 1 s.
The CPU time is given in this work in units of seconds
per computation (by dividing the total computing time by
the number of runs). According to this method, the global
computing time for one test case is approximately 6 days.

Many numerical methods, including a failure indicator,
which indicates the success or failure of the resolution, have
been developed. If needed, we include a failure indicator.
As failure, we include the crash of the method, underflow
or overflow, non-convergence within the maximum number
of iterations (for iterative methods), or excessive inaccu-
racy for some advanced methods (LAPACK routines) that
estimate the accuracy of the proposed solution.

Solving a linear system (13) using a numerical method
produces an approximate solution (dξmethod), and the ref-
erence method gives (dξref) with accuracy on the same
order as the roundoff error. To evaluate the accuracy of the
approximate solution, two quantities can be calculated:

1. The relative error on the norm, ErrNorm, is obtained by
computing the norm of the approximate and reference
solution (18)

ErrNorm = |‖dξmethod‖ − ‖dξref‖|
‖dξref‖ (18)

1. The error on the direction is given by anglemethod , the
angle (degrees) between the reference and the approx-
imate solution calculated using the scalar product of
these two vectors

anglemethod = 360

2π
Arc cos

(
dξmethod · dξref

‖dξmethod‖ · ‖dξref‖
)

(19)

All of these quantities, namely the failure indicator, relative
error on the norm, anglemethod, and CPU time, are calculated
for the 29,791 linear systems built from each chemical test
case for all the tested methods. This enormous amount of
data is aggregated in two ways:

(i) For each chemical system and each method, we com-
pute the mean of each quantity.

(ii) For each chemical system and each method, the inter-
val of the condition number is discretized into 100
regular subintervals. For each subinterval, we compute
the mean of each quantity.
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2.5 Reference solution

Because of the very high condition numbers, it is not pos-
sible to directly obtain an exact solution. We equilibrate the
rows and columns of the Jacobian matrices to reduce their
condition number using the iterative algorithm proposed by
Knight et al. [53] because it preserves the symmetry of the
Jacobian matrix.

Let Z̃
k
be the equilibrated Jacobian matrix at iteration k,

with Z̃
0 = Z.

These authors defined rk
i as the vector formed by the ith

row of Z̃
k
and ck

i as the vector formed by the ith column.
The preconditioning matricesRk andCk are then defined by

Rk = diag

⎛

⎜⎝
1

√∥∥rk
i

∥∥∞

⎞

⎟⎠

i=1,Nx+NcP

and Ck = diag

⎛

⎜⎝
1

√∥∥ck
i

∥∥∞

⎞

⎟⎠

i=1,Nx+NcP

(20)

The equilibrated matrix is defined at iteration k + 1 by

Z̃
k+1 = Rk · Z̃k · Ck (21)

This procedure is repeated until all
∥∥rk

i

∥∥∞ and
∥∥ck

i

∥∥∞ are
equal to 1 or after 50 iterations. Let R and C be the result-
ing preconditioning matrices and Z̃ the equilibrated matrix.
Instead of solving the linear system (12), we solve

Z̃ · x̃ = −Ỹ (22)

where x̃ = C−1 · (�ξ, �Cp) and Ỹ = R · Y . These proce-
dures are coded using quadruple-precision reals. The linear
system (22) is solved by LU decomposition coded with
quadruple-precision real.

Even if the condition numbers of the Jacobian matrices
(Z) are very high (10213.9 for the Fe-Cr mineral test case),
the condition numbers of the equilibrated matrices (Z̃) are
much lower: the maximum condition number obtained after
equilibration is 1013.4. According to Golub and van Loan
[54], if the unit roundoff is approximately 10−d and the
condition number is approximately 10q , then the Gaussian
elimination gives a solution with approximately d − q cor-
rect digits. Because we use quadruple precision, we obtain
d = 32, leading to 32− 14= 18 correct digits. One can then
assume that the reference solution is exact if we compare it
to the solutions produced by the tested methods (computed
using double-precision real).

2.6 Selected numerical methods for solving linear
systems

Studies on linear algebra [19, 23] present methods for
solving linear systems as direct or iterative methods. Histor-
ically, speciation codes solved linear systems using direct

methods, such as Gaussian elimination [34] or LU decom-
position [17, 40, 42]. In its actual form, the speciation code
SPECY [48] uses unsymmetric multifrontal (UMF) [55] as
the linear solver. To the best of our knowledge, no speciation
code uses iterative methods to solve linear systems. This
point is in accordance with the existing literature, which
reports the use of iterative methods for solving large, sparse
linear systems [20–22, 24, 26, 28, 29, 56, 57]. Nevertheless,
actual developments in speciation codes involve the use of
large chemical databases [39, 58, 59], leading to an increase
in the size of the chemical systems. The use of iterative
methods is also studied in this work.

We select some direct and iterative solvers according
to the properties of the linear systems and the speciation
computation methods currently in use (Table 1).

For the direct method, we select LU decomposition [60]
because it was originally used for speciation computa-
tions by Westall [40] and Westall et al. [42]. The UMF
method [55] has been implemented in the speciation code
SPECY [48] in place of the LU approach [17]. After show-
ing that the Jacobian matrix is symmetric, we test the
DSYTRS subroutine from LAPACK [61], which is based
on a UDU decomposition. Because the Jacobian matrix is
often positive definite, as shown in Table 3, we test the
DPOTRS subroutine [61] based on the Cholesky method.
Some authors [32] have used iterative QMRCGStab to solve
reactive transport under a global approach. Here, we test QR
decomposition using the DGELS routine [61].

For the iterative methods, we test the Jacobi [23,
62], Gauss-Seidel [23, 62], and successive over-relaxation
(SOR) [23, 62] methods. Barrett et al. [21] proposed an
algorithm to select an iterative solver depending on the
matrix properties. GMRES was presented as the least selec-
tive algorithm. We use a GMRES method developed by
HSL [63]. If the matrix is symmetric, Barrett et al. [21] rec-
ommend the use of conjugate gradient squared (CGS) or
biconjugate gradient stabilized (BiCGStab) methods. CGS
and BiCGStab subroutines have been developed by HSL.
We test two additional methods devoted to symmetric matri-
ces: SYMMBK [63] and an incomplete Cholesky (Inc.
CHOLESKY) factorization [63].

We use the same parameters for all iterative methods: a
maximum of 500 iterations and a stopping criterion of 10−8.
To determine the influence of the stopping criterion, we test
the GMRES method using 50,000 maximum iterations and
10−12 as the stopping criterion, denoted by GMRES 10−12

in this study. A critical point of the GMRES algorithm is the
size of the Hessenberg matrix. In this work, we set it to the
max of 8 (Nx + NcP).

The results obtained using the Jacobi and SOR methods
are not detailed here. As previously reported [19], the Jacobi
method is inefficient, leading to a very high failure ratio
(close to 100 %) even for the easiest test cases. For the SOR
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Table 1 List of the selected
solvers Name Source Method Matrix properties

Direct

LU [60] LU decomposition –

DGETRS [61] LU decomposition –

UMF [55] Direct multifrontal –

DSYTRS [61] UDU-factored symmetric matrix Symmetric

DPOTRS [61] Cholesky A = UT ×U Definite positive

DGELS [61] QR decomposition

LU QUAD [60] LU decomposition quadruple precision –

Iterative

SYMMBK [63] Iterative SYMMBK HLS MI02 Symmetric

Inc. CHOLESKY [63] Incomplete Cholesky HSL MI28 Symmetric

CGS [63] Conjugate gradient squared HLS MI23 –

BiCGStab [63] Biconjugate gradient squared stabilized HLS MI26 –

GMRES [63] Flexible GMRES HLS MI15 –

Gauss-Seidel [60] Gauss-Seidel method –

Preconditioned

LU Equil [53–60] LU and matrix equilibration –

DGESVX [61] LU and optional preconditioning –

GMRES Equil [53–63] GMRES and matrix equilibration –

GMRES 1.d-12 [63] GMRES convergence criteria 1.d-12 –

method [23, 26, 56, 62], the over-relaxation parameter is the
key factor. Unfortunately, we did not find any efficient rela-
tionships to define it. For the same chemical system, the best
value varies from 0.097 to 1.91 without apparent order.

We do not extensively test the possibility of using a pre-
conditioner. As stated by Barrett et al. [21]: “Since using a
preconditioner in an iterative method incurs some extra cost,
both initially for the setup, and per iteration for applying
it, there is a trade-off between the cost of constructing and
applying the preconditioner, and the gain in convergence
speed”. In our case, the matrices are very small, leading us

to suppose that this trade-off would not be advantageous.
Nevertheless, an easy way to test preconditioners is pro-
posed by the LAPACK routine DGESVX, which performs
LU decomposition and matrix equilibration depending on
the estimated condition number. We implement matrix equi-
libration according to Knight et al. [53] to obtain a reference
solution. We test this preconditioning technique associated
with LU decomposition and the GMRES method, denoted
by LU Equil and GMRES Equil in this study. The maximum
iterations allowed for the equilibration procedure is fixed to
5, according to the recommendations of Knight et al.

Table 2 Structure of the
Jacobian matrix
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Table 3 Properties of the 10 chemical test cases ranked by increasing the maximal condition number

Nx Nc NcP Z size cond(Z) min cond(Z) max cond(Z)

max after
50 equili-
bration

%Z diag-
onal domi-
nant

%Z positive
definite

Gallic acid 3 17 0 3 100.61 1012.6 100.95 18.4 100

Valocchi 5 7 0 5 100.49 1015.3 100.65 67.7 100

Pyrite 4 40 0 4 104.06 1024.9 100.95 0.00 100

MoMaS easy 5 12 0 5 103.44 1037.7 101.05 0.00 71.1

Morel-Morgan 52 781 0 52 1043.4 1060.7 101.13 0.00 35.9

MoMaS medium 5 14 0 5 105.88 10103.9 100.95 0.00 78.8

Fe-Cr 7 39 0 7 109.46 10113.6 101.05 0.00 68.9

Pyrite mineral 4 43 3 7 101.71 1033.1 103.19 0.00 0.00

MoMaS hard 6 15 2 8 105.45 10123.9 103.02 0.00 0.00

Fe-Cr mineral 7 43 3 10 108.67 10213.9 1013.4 0.00 0.00

Finally, we test an LU decomposition method compiled
as quadruple precision, denoted by LU QUAD. The source
of this method is the LU double-precision real of numer-
ical recipes [60], and we adapt it to quadruple precision.
Because the usual computations are performed using dou-
ble precision, the quadruple precision (dξQUAD) should be
translated in double-precision real. To avoid overflow, we
rescale dξQUAD to ensure its validity. If huge (1.d0) is the
highest double-precision real represented by the machine,
we rescale dξQUAD to obtain the double-precision solution
dξLU QUAD:

dξLU QUAD = huge (1.d0)

max
∣∣dξQUAD (i)

∣∣ · dξQUAD (23)

In this way, we conserve the direction of the Newton step,
even if its norm is changed.

3 Results and discussion

3.1 Properties of the Jacobian matrices

As defined by Eq. 11, the Jacobian matrix has several
properties:

(i) Thematrix is block-structured, aspresented in Table 2. A
four-block structure is present if precipitation occurs.

(ii) The matrix is symmetric, as shown in Table 2.
(iii) In the case of no precipitation, all the diagonal terms

of the matrix are strictly positive because they are the
sum of a2i,j [Ci]. It is then possible for the matrix to
be diagonal dominant. We examine this possibility for
the selected test case. Table 3 shows the ratio of diag-
onal dominant Jacobian matrices for all the chemical
tests performed according to the previously defined
test procedure. Some matrices in the gallic acid and

Valocchi cases are diagonal dominant, but none of the
matrices from the other cases are diagonal dominant.
By plotting the ratio of diagonal dominant matrices
depending on the condition number (see Appendix 2
(B-1)), it appears that only matrices with very low
condition numbers can be diagonal dominant.

(iv) Because the Jacobian matrix is real, symmetric,
and sometimes diagonal dominant, the question of
whether it is positive definite may be posed. In the
case of no precipitation, Eq. 11 can be written in
matrix form, leading to Eq. 24

Z = AT · diag (C) · A (24)

Because the concentrations are positive, the Jacobian matrix
is analytically positive definite. Nevertheless, this may not
be true numerically. We are not able to propose a gen-
eral framework, but we can compute the eigenvalues of the
Jacobian matrix and test whether they are positive for all
test cases. Table 3 shows that for the gallic acid, Valocchi,
pyrite, and Morel-Morgan test cases, all the Jacobian matri-
ces are positive definite. For the MoMaS easy, MoMaS
medium, and Fe-Cr test cases, a large proportion (66.4 to
74.1 %) of the Jacobian matrices are positive definite. For
cases including minerals (pyrite mineral, MoMaS hard, and
Fe-Cr), essentially none of the matrices are positive defi-
nite (only 0.1 % for the MoMaS hard test). Plotting the ratio
of positive definite matrices as a function of the condition
number (see Appendix 2 (B-2)) shows that the chemical
conditions are more important than the condition number
when determining whether the Jacobian matrix is diagonal
dominant.

(v) According to the test procedure presented previously,
we plot, on the same graph, the logarithm of the norm



Comput Geosci (2017) 21:131–150 139

of ||Y|| and the logarithm of the condition number of
the matrix Z (Fig. 1). There is a strong linear relation-
ship between these parameters. Moreover, the linear
relationship does not depend on the chemical test, only
on the existence of minerals. According to our results,
the conditioning of the Z matrix can be evaluated using
the following empirical formulas:

cond (Z)no mineral = 105.30±0.03 × ‖Y‖0.9374±0.0008

cond (Z)mineral = 10−3.23±0.08 × ‖Y‖1.706±0.002 (25)

The value and uncertainties are obtained through the least
squares method over all cond(Z) and ||Y ||. In this way, we
propose an estimation of cond(Z) with no computation time
cost because the objective function is evaluated during the
Newton-Raphson procedure. As shown in Fig. 1, cond(Z)

and ||Y || are strongly correlated for large condition num-
bers, and the results are noisier if cond(Z) and ||Y || are

small. The evolution of this relation for low ||Y || can be seen
in Appendix 7 (G-11). Therefore, Eq. 25 should not be used
for ||Y || less than 1010.

Several of these properties are obtained using the loga-
rithm of the component activities as the primary unknown
in Eq. 8. The historical approach [34] uses the component
concentrations as the primary variable and leads to a less
interesting Jacobian matrix. Even if the structure presented
in Table 2 exists, the matrix is not symmetric. Moreover,
the matrix is worse conditioned (condition number from
1011.2 to 1049.4 rather than 104.06 to 1024.9 for the pyrite
case). Finally, no specific relation exists between cond(Z)

and ||Y || for the historical formulation.
As an example, we show one linear system from the Fe-

Cr mineral test, corresponding to a condition number of
10187. One can observe the structure of the matrix and the
specificity of the linear system (26).

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.15 · 1094 9.09 · 1093 −5.04 · 10−13 −11.7 3.03 · 1093 0 1.10 · 1087 0 5 −1

5.45 · 1093 0 1.14 · 1010 1.82 · 1093 0 4.11 · 1086 2 3 0

1.00 · 10−6 2.37 · 10−15 0 0 0 0 0 0

2.91 8.74 0 1.28 · 10−6 1 0 0.25

6.06 · 1092 2.23 · 10−2 1.37 · 1086 0 1 0.75

2.85 · 10−2 1.71 · 10−4 0 0 0

1.37 · 1086 0 0 0

0 0 0

0 0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (dξ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3.03 · 1093
−1.82 · 1094
−1.05 · 10−13

8.99 · 10−3

−6.06 · 1094
−2.25 · 10−2

−1.37 · 1086
−27.6

180

3.84

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

3.2 Robustness of the methods

Figure 2 presents the failure ratio for each method and each
test case. The presence of minerals prevents the DPOTRS,
Inc. CHOLESKY, and Gauss-Seidel methods from solving
the system. If there are minerals present in the chemical
system, a zero-value block appears in the Jacobian matrix,
as shown in Table 2 and Eq. 26. This block makes the
Inc. CHOLESKY factorization unappropriated. Because the
Gauss-Seidel method requires division by each diagonal
term, this zero-value block makes the method unadapted.
The failure of the DPOTRS routine is explained by the
properties of the Jacobian matrix. As shown in Table 3,
there is no positive definite matrix in the presence of min-
erals. In the case of the DPOTRS, Inc. CHOLESKY, and
Gauss-Seidel methods, the term failure is ambiguous. These
methods are expected to fail and should not be used on
systems with minerals. If there are no minerals, some matri-
ces are not positive definite in the MoMaS easy, MoMaS
medium, Morel-Morgan, and Fe-Cr tests. This explains the
failure of the DPOTRS routine.

Some other methods (DGETRS, DSYTRS, DGELS, and
DGESVX) present a substantial failure ratio, mainly for
high condition number tests (MoMaS easy and Fe-Cr min-
eral). UMF, SYMMBK, and CGS are robust for the Fe-Cr
mineral test but present significant failure ratios for lower-
conditioned tests, such as MoMaS easy or pyrite mineral.
Some methods adapted to symmetric matrices (DSYTRS
and SYMMBK) are included in this class of weak methods.

The BiCGStab method has a very low failure ratio and
fails only in the two difficult tests (MoMaS easy and Fe-Cr
mineral). GMRES is the only successful iterative method.

Figure 2 shows that some methods are successful for all
the test cases. The most successful direct method is LU,
while the most successful iterative methods are GMRES
and GMRES 10−12. The quadruple-precision method LU
QUAD is also successful, which is expected because the
double-precision LU method is also successful. The use of
an equilibration method as a preconditioner makes LU Equil
and GMRES Equil successful.

As stated previously, we focus on the capacity of a
method to produce a solution independent of its accuracy.
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Fig. 1 Relationship between the
condition number of Z and the
norm of the objective function
plotted on a log-log scale

For some advanced methods (e.g. LAPACK methods), a
posteriori estimation of the residual and estimation of the
condition numbers are performed. If the solution is not suf-
ficiently accurate, no solution is given, leading to a higher

failure ratio than for the more rustic methods (LU or Gauss-
Seidel). Because the key point of this work—the resolution
of a linear system—is included in the iterative Newton pro-
cedure, it is preferable to obtain an inaccurate solution (so

Fig. 2 Mean of the failure ratio for each method and each test case
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the iterative procedure can be continued) than no solution
(the iterative procedure will be aborted).

Appendix 3 presents the evolution of the failure ratio for
each test case and each method depending on the condition
number.

For the direct methods (Appendix 3 (C-1 to C-5)), for
small condition numbers corresponding to the test cases
gallic acid, Valocchi, and pyrite, no failure occurs. As the
condition number increases, the failure ratio also increases
for some methods. MoMaS easy (Appendix 3 (C-4)),
MoMaS medium (Appendix 3 (C-6)), and Fe-Cr (Appendix 3
(C-7)) show that for condition numbers greater than 1020,
the failure ratio increases greatly for some of the meth-
ods. These methods are DOPTRS and DSYTRS for MoMaS
medium and Fe-Cr. DGETRS, UMF, DSYTRS, DOPTRS,
and DGELS present some failure for condition numbers
greater than 1015 for the MoMaS easy case. In the presence
of minerals (Appendix 3 (C-8 and C-9)), for low condition
numbers (the pyrite mineral case), the methods are either
successful (UMF, LU, DSYTRS, DGETRS) or completely
unsuccessful (DPOTRS). For very high condition numbers
(Fe-Cr mineral case), the success of the method does not
depend on the condition number. We suppose that the con-
dition numbers (see Table 3) are too high to exhibit any
ordering.

For other iterative methods, the success does not depend
on the condition number but on the nature of the matrix
and the presence (Appendix 3 (C-18 to C-20)) or absence
(Appendix 3 (C-11 to C-17)) of minerals.

3.3 Accuracy of the methods

The accuracy of the methods is evaluated in two ways: (i)
the relative error on the norm (18) and (ii) the angle between
the reference and the calculated solution (19).

(i) By plotting the mean of the logs of the relative error
on the norm of each test case (Fig. 3), some general
tendencies are identified. The relative residual tends to
increase with the condition number of the system. For
direct methods and small condition numbers, the rel-
ative residual is small (10−10 to 10−3) for the gallic
acid, Valocchi, and pyrite test cases. For the itera-
tive methods, the relative residual corresponding to an
accurate resolution for tests with small condition num-
bers is approximately 10−4. This value corresponds to
the value of the convergence criteria of the iterative
methods. Iterative methods are more sensitive to the
condition number than direct methods. Only the Val-
occhi test case is accurately solved by almost all the
iterative methods, whereas the first three tests are accu-
rately solved by all the direct methods. Even in the case
of successful resolution (CGS and BiCGStab methods),

the relative errors on the norm are high for intermediate
cases (pyrite, MoMaS easy, and Morel-Morgan). Nev-
ertheless, the results are better for the iterative meth-
ods than for the direct methods for the difficult tests
(MoMaS easy, MoMaS medium, MoMaS hard, Fe-
Cr mineral). The GMRES and Gauss-Seidel methods
have mostly constant mean relative error on the norm,
with the same accuracy for all test cases. GMRES and
Gauss-Seidel are less efficient than the other methods
for the easy tests, but more ill-conditioned tests are
better solved by these two methods.

The condition numbers are so high that even LU QUAD
cannot provide accurate resolution. For theMoMaSmedium
and Fe-Cr mineral tests, many of the solutions cal-
culated by the LU QUAD method are rescaled using
Eq. 23, leading to excessively high relative error on the
norm.

Comparison of the relative error on the norm given
by the non-preconditioned (LU, DGETRS, and GMRES)
and preconditioned (LU Equil, DGESVX, and GMRES
Equil) methods shows that the preconditioned methods
lead to lower relative error than the non-preconditioned
methods for the direct methods, but the result is more
case-dependent for GMRES. The use of precondition-
ing usually leads to lower relative error on the norm,
except for the Morel-Morgan, Fe-Cr, and MoMaS hard
cases.

Increasing the maximum number of iterations and reduc-
ing the convergence criteria of GMRES leads to less relative
error on the norm, but this reduction is not significant.

Nevertheless, the global means of the logs of relative
errors on the norm hide the influence of the increasing
condition number. Appendix 4 presents the evolution of
the relative error on the norm for each test case and each
method depending on the condition number. The theoret-
ical behaviour is verified for the direct methods and for
all the test cases (except for the Valocchi one, Appendix 4
(D-2)). The relative error on the norm increases regularly
with the condition number. It is close to 10−16 when the
condition number is close to 1 and increases to 1 when the
condition number is close to 1016, in accordance with the
computation theory presented by Golub and van Loan [54].
For condition numbers greater than 1016, the evolution of
the relative error on the norm with the condition number is
much noisier. The use of the quadruple-precision LUQUAD
method leads to an accurate resolution of a large portion
of the tested systems. As expected by computation theory,
all the systems with condition numbers less than 1032 are
solved with a relative error on the norm of approximately
10−15. In some cases (MoMaS medium (Appendix 4 (D-
6)), Fe-Cr (Appendix 4 (D-7)), MoMaS hard (Appendix 4
(D-9))), LU QUAD produces an increasing relative error
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Fig. 3 Mean of the logs of the relative error on norm for each method and each test case

with increasing condition number (if higher than 1032) but
not systematically. LU QUAD produces a very low rela-
tive error on the norm even if the condition number is very
high (Appendix 4 (D-9)). This behaviour can be explained
by the fact that the LU QUAD method and/or the reference
method is unable to exactly solve such ill-conditioned sys-
tems. LU QUAD produces a very high relative error on the
norm, one point with 10290 error for the MoMaS medium
(Appendix 4 (D-6)), and all the values at condition numbers
greater than 1090 for the Fe-Cr mineral (Appendix 4 (D-10))
test case. These points correspond to the rescaling of the
computed quadruple-precision solution to maintain it on the
double-precision scale (using Eq. (23)).

Iterative methods present similar behaviour to direct
methods, giving very low relative error on the norm
(between 10−15 and 10−8) when the condition number is
less than a critical value. This critical value depends on the
method and the test case. It can be set to 108 for SYMMBK
CGS, BiCGStab, andGMRES for the gallic acid (Appendix 4
(D-11)) and MoMaS easy (Appendix 4 (D-14)) cases. It
can be set to 1012 or 1015 for Inc. CHOLESKY for the
gallic acid and MoMaS easy cases and for SYMMBK,
Inc. CHOLESKY, CGS, BiCGStab, and GMRES for the
pyrite (Appendix 4 (D-13)), theMoMaSmedium (Appendix 4
(D-16)), and MoMaS hard (Appendix 4 (D-19)) tests. Using
low convergence criteria (GMRES 1.d-12) leads to lower

relative error on the norm for low condition numbers
(Appendix 4 (D-21 to D-23, D-26 to D-29)), but no sig-
nificant improvements are obtained if the condition number
increases, as shown in Appendix 4 (D-24 to D-30).

Using preconditioning methods reduces the relative error
on the norm for intermediate condition numbers. No gain is
obtained for low condition numbers (Appendix 4 (D-21 and
D-22)), but the errors given by LU Equil, DGESVX, and
GMRES Equil are less than the LU and GMRES errors for
higher condition numbers (Appendix 4 (D-24 to D-26)). For
very high condition number tests (Appendix 4 (D-27, D-29,
and D-30)), the errors given by the preconditioned methods
are equivalent to the errors given by the non-preconditioned
methods.

(ii) By plotting the angle between the reference solu-
tion and the calculated solution, we can compare the
methods according to the computed direction (Fig. 4).
Because the resolution of the linear system (13) rep-
resents one step in the iterative Newton procedure,
this information is much more important than the
norm of the step. A wrong norm can be corrected
using line search methods [64], whereas modifying a
wrong direction leads to additional iterations. Small
condition number tests (gallic acid, Valocchi, pyrite,
and pyrite mineral) are solved using direct meth-
ods with the right direction. If the condition number
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Fig. 4 Mean of the angles between reference and computed solution for each method and each test case

increases, the directions given by the direct methods
become inaccurate, but the condition number is not
the only governing parameter. Morel-Morgan leads to
worse direction than MoMaS medium and Fe-Cr, and
MoMaS hard leads to a higher angle than the Fe-Cr
mineral test. Iterative methods result in a worse direc-
tion than direct methods, and only the Valocchi test
case is solved with an accurate direction by all the
iterative methods. Imposing lower convergence crite-
ria (10−12) on GMRES leads to a worse direction than
using the usual criteria (10−8). Using preconditioning
methods leads to a better direction when associated
with a direct method (LU Equil and DGESVX), but
the conclusion is less clear for the iterative GMRES
Equil method. Depending on the test case, the direc-
tion can be worse (Valocchi, MoMaS easy, MoMaS
medium) or better (gallic acid, pyrite, MoMaS hard,
Fe-Cr mineral)

The influence of the condition number on the angle (see
Appendix 5) indicates that the direction is correct for direct
methods when the condition number is less than 1015. For
iterative methods, the limit to obtain an accurate direc-
tion is a condition number less than 108, excepted for the
Gauss-Seidel method, which produces wrong directions for
low condition numbers. If the condition number increases,

the behaviour of the direction becomes noisy. Since the
relative error on the norm increases regularly until the con-
dition number reaches the limit of 108 or 1015, the angle
is accurately defined until this condition number limit is
reached. Using preconditioned methods leads to a better
direction for the LU Equil and the GMRES Equil meth-
ods when the condition number is higher than 1015 for some
cases (Appendix 5 (E-21, E-23 to E-25, and E-30)) but to
a worse direction for other cases (Appendix 5 (E-26 and
E-29)).

We present two successful direct methods, LU and LU
QUAD; one iterative method, GMRES (both tested ver-
sions, GMRES and GMRES 10−12); and two precondi-
tioned methods, LU Equil and the GMRES Equil. By com-
paring the relative error on the norm (Appendix 5 (D-21 to
D-30)), the successful methods can be ranked from the low-
est to highest error: LU QUAD, GMRES 10−12, GMRES
Equil, LU Equil, and LU. Ranking these methods according
to the angle between the reference and computed solution
is more complicated. For all the tests cases (Appendix 5
(E-21 to E-25, E-27, E-28, and E-30)), LU QUAD gives the
best direction, followed by LU Equil, LU, GMRES Equil,
and GMRES 10−12. The MoMaS medium (Appendix 5
(E-26)) and MoMaS hard (Appendix 5 (E-29)) test cases
lead to the same conclusion, except GMRES Equil which
gives the worst direction.
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3.4 Efficiency of the methods

The speed of the methods is studied by recording the com-
putation time for each test case and plotting the mean CPU
time for each test case and each method (see Fig. 5). As
expected, the computation times are very short (less than 1
ms) because the systems to solve are small.

Figure 5 shows the influence of the system size. For all
methods, the computation time increases with the number
of unknowns. The results show that the iterative methods
are less sensitive to the system size than the direct meth-
ods. For the iterative methods, the number of iterations is
important and depends on the first guess and other fac-
tors. The slowest method is LU QUAD, for which a large
amount of computation time is devoted to the translation of
double-precision real to quadruple-precision real and back.
Figure 5 also shows the computing time required to obtain
the reference solution, which requires more time.

The UMF method is the slowest double-precision direct
method, but its multifrontal block strategy becomes interest-
ing for large systems. The resolution of the Morel-Morgan
test requires 33 times more CPU time than the resolution of
the MoMaS easy test for the UMF method, whereas it takes
190 times more time for the LU method.

Among the iterative methods, the fastest is the Gauss-
Seidel method and the slowest is the Inc. CHOLESKY
method. The two most robust iterative methods, BiCGStab
and GMRES, are rapid, sometimes more so than the direct

robust methods, LU and UMF, especially for large systems
(Morel-Morgan test case). GMRES is less case-dependent
than BiCGStab, leading to similar computing time, regard-
less of the test case.

As expected, introducing preconditioning techniques
(LU Equil, DGESVX, and GMRES Equil) or decreasing
the convergence criteria for an iterative method (GMRES
10−12) leads to increased computing time. The computing
time for preconditioning does not depend only on the sys-
tem’s size: the Valocchi, MoMaS easy, andMoMaSmedium
test cases (system size of 5 ×5) are solved with the same
computing time for all the direct methods, but their resolu-
tion when using LU QUAD Equil, LU Equil, and GMRES
Equil is faster.

Appendix 6 shows the computation time (log scale) for
each test case and each method depending on the condition
number. Appendix 6 (F-1 to F-10) shows that, as expected,
the computation time of the direct methods does not depend
on the condition number of the system. The LU method is
usually 10 times faster than the UMF method, except for the
Morel-Morgan test case, in which LU is only 1.5 times faster.

In Appendix 6 (F-11 to F-20), the general tendency for
the iterative methods is to require the same computation
time, independent of the condition number. The oscilla-
tions presented by the curves seem to be not related to
the condition number. For the test case without minerals,
the Gauss-Seidel method is efficient. The two most robust
methods, BiCGStab and GMRES, are often the third and

Fig. 5 CPU time (s) for each
method and each test case
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fourth fastest methods (Gauss-Seidel and SYMMBK are the
fastest).

4 Proposal of a new algorithm

Based on our results, we propose an algorithm to opti-
mize the resolution of a chemical system using a Newton-
Raphson-like method.

Examining the failure ratio results, seven methods are
eligible: LU and LU QUAD as direct methods, GMRES
and Gauss-Seidel (if no minerals) as iterative methods, LU
Equil and GMRES Equil as preconditioned methods, and
the reference method (LU QUAD Equil).

Because these methods are included in a Newton mini-
mization procedure, the most important accuracy criterion
is the direction of the minimization, i.e. the angle between
the reference and the calculated solution. The behaviour of
this direction is strongly correlated with the condition num-
ber of the system and is correct if the condition number
is less than the critical value and wrong if the condition
number is greater than the critical value (see Appendix 5).
The critical condition number is 108 for GMRES, 1016 for
the double-precision direct methods, 1032 for LU QUAD,
and case-dependent for preconditioned methods (1020 to
1060). Gauss-Seidel leads to wrong directions for very low
condition numbers (Appendix 5 (E-11 and E-12)).

In terms of efficiency, the most rapid method is Gauss-
Seidel when it is available. The second most efficient
method is LU for small systems (less than 10 × 10) or
GMRES for larger systems (more than 10 × 10), and the
slowest method is LU QUAD. For small systems (less than

Table 4 Algorithm for equilibrium computation

cond(Z) Inversion method

>1030 LU QUAD Equil

1030 ≥ cond(Z) >1014 LU QUAD

1014 ≥ cond(Z) >104 LU(Nx+NcP<10) GMRES (Nx+NcP ≥ 10)

104 >cond(Z) LU

5 × 5), LU Equil is as fast as GMRES but becomes slower
as the system size increases.

We recommend using LU, LU QUAD, GMRES, and the
reference method LU QUAD Equil. Gauss-Seidel should be
rejected because of its wrong direction, and equilibration
does not sufficiently improve the behaviour of double-
precision routines.

Using Eq. 25, it is possible to estimate the condition
number of the system without additional computation. This
estimation enables the selection of the best-adapted method
depending on the system size and condition number.

The goal is to use the most robust method (LU QUAD
with preconditioning) for high condition number systems
(more than 1032) in the first Newton-Raphson iterations.
When the condition number is sufficiently decreased, the
preconditioning becomes useless and LU QUAD can be
used until the condition number is less than 1016. Then, a
faster method is used to obtain a coarse approximation of
the solution, LU for small systems and GMRES for large
systems (more than 10 × 10). To find the exact solution, the
LU direct method is used.

We propose the algorithm presented in Table 4 and
compare it with several inversion methods in a Newton-
Raphson algorithm. The 10 chemical test cases are solved

Fig. 6 Evolution of
NRrelativeerror as a function
of the Newton-Raphson
iteration for the pyrite
test case
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Fig. 7 Evolution of
NRrelativeerror as a function of the
Newton-Raphson iteration for
the MoMaS hard case

using the combined algorithm or one of the selected meth-
ods: LU QUAD Equil (used as the reference solution), LU
QUAD, LU, and GMRES. Appendix 7 shows the evolution
of the NRrelativeerror (7) as a function of the Newton-Raphson
iterations

Figure 6 shows that all the methods are equivalent for
easy test cases (see Appendix 7 (G-1 to G-3)). Nevertheless,
the use of LU inversion leads to non-convergence, even if
the test is easy, as observed for the Valocchi test (Appendix 7
(G-2)). If the difficulty of the test increases, the lower

Fig. 8 Computation time (s) as
a function of test case and
algorithm
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accuracy of GMRES (compared to the quadruple-precision
routine used in LU QUAD Equil, LU QUAD, and the
combined algorithm) leads to a greater number of Newton
iterations, as shown in Fig. 7 for the MoMaS hard case. This
point is confirmed for other cases (see Appendix 7 (G-4 to
G-9)). For the Fe-Cr mineral case (see Appendix 7 (G-10)),
only LUQUADEquil and the combined algorithm can solve
the problem. Other methods lead to non-convergence, due
to overflow for the GMRES algorithm (overflow appears in
the Newton algorithm and is not due to GMRES itself) and
because LU QUAD and LU are unable to give an accurate
descent direction.

Appendix 7 (G-11) shows the evolution of the rela-
tion between the norm of Y and the condition number of
the Jacobian matrix during the minimization process. This
figure is similar to Fig. 1, confirming the empirical relation
(25). This relation cannot be used close to the solution, and
the condition number tends to be a case-dependent limit for
very low ||Y ||.

Nevertheless, the number of iterations is not the critical
point. Because the time required by one iteration changes
depending on the method used, we have to consider the total
computation time. By plotting the total computation time
required to solve each test case depending on the algorithm
used (see Fig. 8), we can see that

(i) LU QUAD Equil, as expected, is the slow-
est. Nevertheless, this method allows the conver-
gence of the Newton-Raphson method for all test
cases.

(ii) LU QUAD is slightly faster. The difference between
LU QUAD Equil and LU QUAD gives an indica-
tion of the time used for matrix equilibration. This
time is greater for pyrite, MoMaS easy, pyrite mineral,
MoMaS hard, and Fe-Cr mineral than for the other
test cases.

(iii) LU is fast when it leads to convergence, but this
method results in a very weak Newton-Raphson algo-
rithm.

(iv) GMRES always results in the fastest Newton-Raphson
algorithm. It has been shown (Fig. 7, Appendix 7
(G-8)) that the number of required iterations can be
twice the number for other methods, but we show
(Fig. 5) that the GMRES method is faster than the
other methods.

(v) The proposed combined algorithm leads to interme-
diate computing times, equivalent to those of LU
QUAD Equil and LU QUAD, depending on the case.

According to our results, GMRES should be systematically
used because it is fast and usually leads to convergence of
the Newton-Raphson algorithm. The combined algorithm
should be used for very high condition numbers or for
recomputing a failed run.

5 Conclusion

In this work, we focus on the resolution of small linear
systems generated using the Newton-Raphson algorithm to
solve equilibrium chemistry problems. For the first time, we
propose a study of the condition number of such linear sys-
tems and find that the range of values covered is unusually
large. This characteristic leads to specific numerical prob-
lems, with matrices that are quite small (approximately 10
×10) but very badly conditioned (up to 10100). Ten different
chemical systems are studied.

There is a strong linear relationship between the log-
arithm of the condition number of the matrix and the
logarithm of the norm of the objective function. This factor
can be exploited to create efficient algorithms. This rela-
tion is strictly an empirical one and is not valuable for low
condition numbers.

A wide variety of linear solvers have been tested, and sev-
eral direct and iterative solvers are selected. Some of these
solvers are specific for a class of matrix, symmetric or pos-
itive definite, while others are generic. A preconditioning
method (matrix equilibration) has also been tested to reduce
the conditioning of the systems.

According to our selected test cases, only the LU and LU
QUAD direct methods, the GMRES iterative method, and
LU Equil and GMRES Equil preconditioned methods are
sufficiently robust to solve all the tests.

According to the size of the chemical tests, the LU
method is faster than the GMRES method. However, our
results for the Fe-Cr mineral and Morel-Morgan cases show
that GMRES is preferable for larger chemical systems
(more than 10 components). Chemical systems with more
than 10 components have not been frequently modelled in
the past decade. However, the use of geochemical databases
makes the construction of large geochemical systems easier,
and the increase in computation capacities makes it possi-
ble. For very large geochemical systems, we recommend the
GMRES method.

We also propose using the linear relationship between the
condition number of the Jacobian matrix and the norm of
the objective function to develop an efficient algorithm.

The classic LUmethod is not a good choice. Its weakness
is its low robustness for challenging test cases. We recom-
mend using the GMRES method, which is fast and usually
leads to convergence of the Newton-Raphson algorithm. For
very high condition numbers (more than 10100), we recom-
mend the most robust LU QUAD Equil method. When the
Newton-Raphson method is sufficiently near the solution to
decrease the condition number, the faster GMRES method
can be used. By using the linear relationship between
cond(Z) and ||Y ||, the transition between the two methods
can be achieved without computing the condition number
(which is very expensive).
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This work explores a new research field by studying geo-
chemical computation from a condition number point of
view. We attempted to benchmark a wide variety of lin-
ear solvers, but it was not possible to explore the flexibility
of all the tested solvers. This study will help us to elimi-
nate some solvers so that our future work can focus on the
most promising: LU, LU QUAD, GMRES, LU Equil, and
GMRES Equil. Some points for future exploration are as
follows:

(i) We did not extensively test the robustness and the
efficiency of the Newton-Raphson algorithm. Fur-
ther work should examine the influence of the ini-
tial Newton-Raphson guess to confirm our con-
clusions about the high efficiency of the GMRES
method.

(ii) The accuracy of iterative methods depends on the
value of the convergence criterion (which we set to
10−8) and on the method used to check the conver-
gence (we used the default method). Moreover, the
efficiency can vary depending on the initial guess
provided by the user. In this work, we used the eas-
iest initial guess: the residual for the tests from the
Newton-Raphson method and the previous Newton-
Raphson step for the test in a Newton-Raphson algo-
rithm. We believe that it is possible to make a better
choice, markedly enhancing the efficiency of the
iterative methods.

(iii) The GMRES method allows the use of left and/or
right preconditioners. These preconditioners can
increase the robustness, accuracy, and efficiency of
the method. More generally, several classes of precon-
ditioners that may reduce the condition number of the
linear system can be used [65, 66]. In this work, we
explored the use of one preconditioner: matrix equi-
libration. However, other classes of preconditioners
may be more efficient.

(iv) Previous works have addressed the use of methods to
solve geochemical equilibria other than the Newton-
Raphson method [17, 44, 49, 67]. It has been shown
[17] that an efficient algorithm can be obtained by
combining a zero-order method with the Newton-
Raphson approach.

(v) The size of the chemical tests presented here is repre-
sentative of the sizes actually used in environmental
studies. We have shown that the GMRES method may
be efficient for large systems. In anticipation of future
needs, it may be useful to test chemical systems larger
than the Morel-Morgan system.

(vi) Part of the Newton minimization related to very large
condition numbers (far from the solution) can be
performed using random methods; GMRES is effi-
cient even though its descent direction is not accurate

for high condition numbers. Some methods, such as
simulated annealing and particle swarm optimization,
could be used in future research.

These factors should be explored in light of the results pre-
sented in this study. We proposed a large set of chemical
tests, a criterion to determine the difficulty of these tests (the
condition number), and a panel of numerical methods that
should be studied preferentially.

As a more general consideration, the reader should pay
particular attention to the old Morel-Morgan test case and
the more realistic pyrite test case. The Morel-Morgan test
uses Fe2+ and Fe3+, Co2+ and Co3+, and SO2−

4 and S2−
as components whereas the pyrite case uses O2, Fe2+,
and SO2−

4 . The first studies on geochemical computation
avoided redox problems. We show that redox problems
lead to higher condition numbers because the stoichiomet-
ric coefficients and equilibrium constants cover a wider
range. Several geochemical databases avoid the introduc-
tion of redox reactions. There is sometimes a good reason to
not write redox reactions as equilibria (slow reaction rates,
irreversible reactions) as done in Arora et al. [2]. However,
the reason is sometimes numeric, and redox reactions are
avoided because they lead to non-convergence.

We propose the use of quadruple-precision real for chal-
lenging chemical systems. In this work, the core of the
geochemical code is conserved as double-precision real,
and only the linear system tool is set as quadruple preci-
sion. Rewriting an entire geochemical code in a quadruple-
precision format will result in robust code but at the cost
of an important and rebarbative work as well as efficiency.
In this stage of our research, we do not recommend such
an effort because implementing LU decomposition using
quadruple-precision real is very efficient, requiring only
a minor modification of existing code and reducing the
computation time.
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56. Woźnicki, Z.: On performance of SOR method for solving non-
symmetric linear systems. J. Comput. Appl. Math. 137(1), 145–
176 (2001)

57. Saad, Y., Van Der Vorst, H.A.: Iterative solution of linear systems
in the 20th century. J. Comput. Appl. Math. 123(1-2), 1–33 (2000)

58. Diersch, H.J.G.: FEFLOW reference manual. DHI-WASY GmbH,
Berlin (2009)

59. Van der Lee, J., et al.: Presentation and application of the reactive
transport code HYTEC. In: Hassanizadeh, S.M. (ed.) Devel-
opments in Water Science, Computational Methods in Water
Resources, Proceedings of the XIVth International Conference
on Computational Methods in Water Resources (CMWR XIV),
pp. 599–606. Elsevier (2002)

60. Press, W.H., S.A.T., Vettering, W.T., Flannery, B.P. Numerical
recipes in FORTRAN: the art of scientific computation, 2nd edn.,
pp. 123–124. Cambridge University Press, New Yor (1992)

61. The Linear Algebra Package (LAPACK) can be obtained free of
charge from the address listed here: http://www.netlib.org/lapack

62. Kincaid, D., Cheney, W. Numerical analysis: mathematics of
scientific computing, 3rd edn. American Mathematical Society
(2002)

63. HSL: A collection of Fortran codes for large scale scientific
computation. http://www.hsl.rl.ac.uk (2013)

64. Chapter 8 Systems of nonlinear equations. In: Studies in com-
putational mathematics, Claude, B. Editor. 1997, Elsevier. pp.
287–336

65. Soleymani, F.: A rapid numerical algorithm to compute matrix
inversion. Int. J. Math. Math. Sci. 2012 (2012)

66. Soleymani, F.: On a fast iterative method for approximate inverse
of matrices. Commun. Korean Math. Soc. 28(2), 407–418 (2013)

67. Morin, K.A.: Simplified explanations and examples of comput-
erized methods for calculating chemical equilibrium in water.
Comput. Geosci. 11, 409–416 (1985)

http://www.netlib.org/lapack
http://www.hsl.rl.ac.uk

	Comparison of linear solvers for equilibrium geochemistry computations
	Abstract
	Introduction
	Material and methods
	Geochemical modelling
	The Newton-Raphson method
	Chemical test cases
	Test procedure
	Reference solution
	Selected numerical methods for solving linear systems

	Results and discussion
	Properties of the Jacobian matrices
	Robustness of the methods
	Accuracy of the methods
	Efficiency of the methods

	Proposal of a new algorithm
	Conclusion
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	Ethical approval
	References


