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a b s t r a c t

Seismic interferometry is a technique for extracting deterministic signals (i.e., ambient-noise Green's
functions) from recordings of ambient-noise wavefields through cross-correlation and other related
signal processing techniques. The extracted ambient-noise Green's functions can be used in ambient-
noise tomography for constructing seismic structure models of the Earth's interior. The amount of cal-
culations involved in the seismic interferometry procedure can be significant, especially for ambient-
noise datasets collected by large seismic sensor arrays (i.e., “large-N” data). We present an efficient
parallel algorithm, named pSIN (Parallel Seismic INterferometry), for solving seismic interferometry
problems on conventional distributed-memory computer clusters. The design of the algorithm is based
on a two-dimensional partition of the ambient-noise data recorded by a seismic sensor array. We pay
special attention to the balance of the computational load, inter-process communication overhead and
memory usage across all MPI processes and we minimize the total number of I/O operations. We have
tested the algorithm using a real ambient-noise dataset and obtained a significant amount of savings in
processing time. Scaling tests have shown excellent strong scalability from 80 cores to over 2000 cores.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It has been demonstrated, both experimentally and theoreti-
cally, that “by cross correlating and stacking the ambient noise
recorded at two receivers, it is possible to recover the response of
the material recorded at one receiver as if there were an impulse
excitation at the other receiver” (i.e. the Green's function) (Rickett
and Claerbout, 1999). Theoretical backgrounds of this principle
have been developed using the normal-mode theory (e.g., Lobkis
and Weaver, 2001), representation theorems (e.g., Weaver and
Lobkis, 2004), time-reversal invariance (e.g., Derode et al., 2003),
the principle of stationary phase (e.g., Snieder, 2004) and the re-
ciprocity theorem (e.g., Wapenaar, 2004). This capability to extract
deterministic response of the Earth from random noise is playing
an increasingly important role in passive-source seismic tomo-
graphy, since it allows us to exploit the density of the seismic
network without waiting for natural earthquakes to occur.

Rapid advances in seismic data acquisition technology, in par-
ticular the availability of cable-free, autonomous geophones (e.g.,
Freed, 2008), have now opened up the possibility of recording the
full ambient-noise wavefields and conducting ambient-noise
tomography using large, dense 2D seismic arrays (e.g., Ritzwoller
et al., 2011; Lin et al., 2013). Such full-wavefield analysis using
dense seismic array data is sometimes called “large-N” seismic
analysis. The number of autonomous receivers used in such large-
N studies can be much larger than those used in conventional
passive-source seismic experiments. For the ambient-noise to-
mography study in Long Beach, California documented in Lin et al.
(2013), more than 5200 autonomous receivers recorded the am-
bient-noise wavefield for three weeks. For the Blair Wallis,
Wyoming and Sierra Nevada, California critical-zone ambient-
noise tomography study, we deployed 6 square arrays with about
400 autonomous receivers per array and each receiver recorded
the ambient-noise wavefield for 3–4 days at a sampling rate of 500
samples per second, producing a dataset of about 1.5 TB.

To estimate ambient-noise Green's functions that can be used
in ambient-noise tomography, the noise data recorded by a seis-
mic array need to be processed following a sequence of operations
that are often called “seismic interferometry”. The computational
cost of the entire procedure depends upon the total number of
receivers Nr (Table 1) and the duration of the recording and can
become a lengthy compute for large-N data. For the Blair-Wallis
and Sierra-Nevada datasets used in this study, it took about 13
days of uninterrupted computing time on a single state-of-the-art
four-core desktop computer to process the noise data recorded by
one array of about 400 receivers. A natural choice for speeding up
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Table 1
List of symbols.

Symbol Meaning

M MPI process row number (Fig. 1)
N MPI process column number (Fig. 1)
Np Total number of MPI processes, i.e., Np¼M�N
Pi,j The MPI process on the i-th row and j-th column (Fig. 1)
Nr Total number of receivers of the seismic receiver array

Nr
p Number of receivers per process row, i.e., Nr

p¼Nr /M
Nseg Total number of time segments (e.g., if the entire noise recording is

1-h long and each time segment is 2-min long, then Nseg¼1 h/
2 min¼30)

Nseg
p Number of time segments per process column, i.e., Nseg

p ¼Nseg/N

Nc Total number of stacked cross-correlations, i.e., Nc¼(Nr �1)�Nr /2
Ns Number of data samples per time segment

Ns
p Number of data samples per MPI process, i.e., = × ×N N N Ns

p
r
p

seg
p

s
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the entire process is through parallelization.
The parallelization of the seismic interferometry algorithm

appears to be trivial, as there is no apparent interdependence
among the calculations of the stacked cross-correlations of dif-
ferent receiver pairs. A naive implementation is to execute the
sequential seismic interferometry code on multiple CPU cores with
each core calculating the stacked cross-correlations for a subset of
all receiver pairs and no inter-process message passing is required.
This problem seems to be “embarrassingly parallel”. However, this
naive implementation is heavily I/O-bound, especially on small to
medium-sized computer clusters not equipped with powerful I/O
subsystems. On most current-generation computer clusters, the
memory size per core is limited. For our Blair-Wallis and Sierra-
Nevada datasets, the average size of the binary file for one receiver
is about 0.62 GB (each time sample is stored as a 4-byte single-
precision float). On the Mount Moran cluster (a 284-node IBM
System X cluster with each node having two 8-core Intel Xeon E5-
2670 2.6 GHz processors) at the Advanced Research Computer
Center (ARCC), University of Wyoming, the usable memory size
per core is about 1.8 GB, which allows holding the recordings of a
maximum of 3 receivers at one time, not counting the memory
needed for storing other data during the calculation. To obtain all
the stacked cross-correlations (approximately 80,000), each pro-
cess needs to access the disk repeatedly during the entire calcu-
lation, which incurs heavy I/O overhead, especially at large core
count.

One possibility for reducing the I/O overhead in the naive im-
plementation is to adopt the Hadoop framework and the asso-
ciated MapReduce computational paradigm and the Hadoop Dis-
tributed File System (HDFS). In fact, the ambient-noise seismic
interferometry problem is an ideal candidate for the Hadoop im-
plementation (Addair et al., 2014). When combined with the HDFS,
the Hadoop framework leverages data locality by moving com-
putation to the data, thereby providing extremely high I/O speed.
However, on small to medium-sized computer clusters that are
shared by many different types of applications, such as Mount
Moran, the benefit for the ambient-noise seismic interferometry
application may not justify the effort involved in setting up the
Hadoop framework on the entire cluster.

In this study, we explore the possibility of reducing the I/O
burden of ambient-noise seismic interferometry calculations on
conventional distributed-memory computer clusters through al-
gorithmic redesign. The pSIN code provided with this paper reads
the ambient-noise data of the entire array from disk only once at
the beginning of the execution and writes out all stacked cross-
correlations at the end of the execution. Parallelization is im-
plemented using the Message-Passing Interface (MPI). Computa-
tion, inter-process communication, and memory usage are well
balanced across all CPU cores. Scaling tests using one of our Blair-
Wallis and Sierra-Nevada datasets show excellent strong scal-
ability from 80 cores to more than 2000 cores.
2. Algorithm

A widely adopted seismic interferometry technique (e.g.,
Bensen et al., 2007) involves three steps: single-receiver proces-
sing, inter-receiver cross-correlation and temporal stacking. At the
single-receiver processing step, the entire time series recorded by
each receiver is cut into Nseg equal-length time segments with Ns

samples per segment (Table 1) and each time segment is nor-
malized both in the time domain and in the frequency domain. At
the inter-receiver cross-correlation step, each time segment at one
receiver is cross-correlated with the corresponding time segment
of every other receiver in the same array. For an array composed of
Nr receivers, the total number of unique cross-correlation calcu-
lations is therefore (Nr�1)�Nr�Nseg/2. At the temporal stacking
step, all the Nseg cross-correlations for the same receiver pair are
summed, producing Nc¼(Nr�1)�Nr/2 stacked cross-correlations
(Table 1), which are often called “ambient-noise Green's functions”.

2.1. Single-receiver processing

Single-receiver processing is the first step in the seismic in-
terferometry workflow. In this step, we need to read the ambient-
noise data of the entire array from disk and decide the layout of
the massive amount of noise data across all MPI processes. The
data layout will determine the amount of inter-process commu-
nication overhead during the inter-receiver cross-correlation and
temporal stacking steps, as well as the overhead for writing the
stacked cross-correlations back to disk. The smallest data unit in
the entire seismic interferometry process is one time segment of
the noise data recorded by one receiver. We therefore need to
consider how to group these smallest data units together so that
the inter-process communication overhead in later steps can be
minimized.

The smallest data unit has two natural coordinates: the index of
the receiver that recorded this segment of noise data (i.e., receiver
number) and the time-segment index that determines the offset
from the beginning of the entire time series recorded by that re-
ceiver. We therefore adopt a two-dimensional Cartesian virtual
topology to organize the MPI processes. The horizontal dimension
is the time dimension with N MPI processes (Table 1) and the
vertical dimension is the receiver dimension with M MPI processes
(Table 1, Fig. 1). The total number of processes (i.e., cores) used in
the entire calculation is therefore Np¼M�N (Table 1). The total
number of receivers of a seismic array Nr is partitioned across the
M rows of the process array and each row stores the noise data of

=N N M/r
p

r receivers (Table 1). The entire time series of each receiver
is partitioned across the N columns of the process array and each
column stores =N N N/seg

p
seg time segments (Table 1). The total

number of noise data samples per process is therefore
= × ×N N N Ns

p
r
p

seg
p

s (Table 1), represented as black circles in Fig. 1.
On disk, the ambient-noise data are usually stored as one

binary file per receiver, which contains the entire time series re-
corded by that receiver during the deployment, as well as some
metadata (e.g., receiver ID and start time). The root rank of each
process row, denoted as P*,0 in Fig. 1, where “*” denotes any row
rank, can read the binary files for different receivers simulta-
neously. After reading the binary file for one receiver, the root
process of each row evenly distributes the data to the N processes
in the same row using the MPI scatter function with each process
receiving ×N Nseg

p
s data samples. This reading/scattering procedure



Fig. 1. A schematic diagram of the 2D process array. Each process Pi,j (i¼0, 1, 2, … M�1; j¼0, 1, 2, …, N�1) is represented as a rectangle and black arrows indicate directions
of data movement. Black circles: noise data belongs to the process; gray circles: data buffers for hosting noise data from neighboring processes during data shuffle.
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is iterated Nr
p times on each process row to move the noise data of

the entire seismic array from disk to the memory of the 2D process
array. The memory usage is balanced across the entire process
array. The binary file of each receiver is read only once.

The calculation in the single-receiver processing step involves
normalization in the time domain and in the frequency domain.
Each data unit (i.e., one time segment of the noise data of one
receiver) needs to be transformed to the frequency domain
through FFT. To reduce memory usage, we only retain the positive-
frequency half of the entire spectrum after FFT. The computational
cost is proportional to the total number of data units on each
process ×N Nr

p
seg
p and is therefore balanced across the 2D process

array. There is no inter-process communication involved in the
normalization and FFT calculations and we obtain ideal scaling for
these calculations.

2.2. Inter-receiver cross-correlation

The inter-receiver cross-correlation between two receivers is
computed only between the same time segments. Hence,
computation of the cross-correlation between different time seg-
ments at different receivers is not required. This observation
means that no inter-column communication is needed in our 2D
process array in the inter-receiver cross-correlation step. We
therefore separate this step into two stages: the local stage, in
which no inter-process communication is required, and the global
stage, in which inter-row communication (i.e., along the vertical
dimension across process rows) (Fig. 1) is needed. All cross-cor-
relations are computed in the frequency-domain using the fre-
quency-domain noise data obtained in the single-receiver pro-
cessing step. The frequency-domain cross-correlation is trans-
formed back to the time-domain through IFFT. We apply a time-
domain normalization using the maximum amplitude of the cross-
correlation before temporal stacking, as suggested in Bensen et al.
(2007).

2.2.1. Local stage
In the local stage, each process calculates the time-domain

normalized cross-correlation between the same time segments of
different receivers stored in its own memory. The number of cross-
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correlation calculations per process, as well as the number of IFFT
and time-domain normalization calculations per process, is
therefore ( )− × ×N N N1 /2r

p
r
p

seg
p . The computational load is balanced.

2.2.2. Global stage
In the global stage, the frequency-domain noise data on process

Pi,j are duplicated on process Piþ1,j so that the time-domain nor-
malized cross-correlations between noise data on receivers stored
on two neighboring process rows can be calculated. We call this
procedure “data shuffle” (upward arrows in Fig. 1). To store the
transferred noise data, a separate data buffer on each process is
created (gray circles in Fig. 1). For each shuffle, we transfer the
noise data of Nr

q receivers and Nseg
p time segments from processes

Pi,j to the data buffer on process Piþ1,j and if the data buffer is
sufficiently large, we can choose =N Nr

q
r
p and the entire noise data is

shuffled by one process row. After each shuffle, the number of
time-domain normalized cross-correlations that can be computed
on each process (i.e., cross-correlations between the data in the
black circle and those in the gray circle in Fig. 1) is × ×N N Nr

p
r
q

seg
p . The

computational load and memory usage are balanced across the
entire process array.

We impose the periodic boundary condition on the vertical
dimension of the 2D process array (Fig. 1). The noise data stored in
the gray circle on process PM-1,* are shuffled to process P0,* (Fig. 1),
where “*” denotes any column rank in the 2D process array. The
total number of data shuffle operations needed to cover all re-
ceiver pairs is =( − )C M/2 1 /2M

2 , where CM
2 is the total number of

combinations of M process rows taken 2 at a time.
The data shuffle operation can be implemented conveniently

and efficiently using the MPI send-receive routine, which com-
bines the sending of a message to a destination with the receiving
of another message from a source. On a Cartesian process virtual
topology, the ranks of the source and destination processes needed
in the send-receive call can be obtained by calling the MPI
Fig. 2. An example of the data shuffle operation for a process array with 5 rows and 1
numbers on the left side of each column indicate the number of cross-correlations comp
of the first column show the total number of cross-correlation computed by each proces
cross-correlations computed by all processes during the current stage. The number “45
Cartesian coordinate shift routine. This technique for shifting data
across a chain of processes in a certain direction is also widely
used in parallelizing finite-difference solutions of partial differ-
ential equations using a domain decomposition approach, in
which state variables on the ghost points of a sub-mesh need to be
shifted in order to compute the derivatives on a neighboring sub-
mesh.

2.2.3. An example
Consider the example shown in Fig. 2. We have a seismic array

composed of Nr¼10 receivers, indexed as 0, 1, 2, …, 9, and we
distribute the noise data evenly on a process array with M¼5 rows
and N¼1 column, therefore each process row holds the entire
noise recordings of =N 2r

p receivers. The total number of stacked
cross-correlations for the entire array is Nc¼(Nr�1)�Nr/2¼45. In
the local stage, each process row calculates ( )− × =N N1 /2 1r

p
r
p cross-

correlations, providing 5 cross-correlations in total (left column,
Fig. 2). The 5 process rows have =C 105

2 different combinations
taken 2 at a time. After the first shuffle (center column, Fig. 2), we
obtain M¼5 combinations out of the 10 combinations. Each pro-
cess row can now calculate × =N N 4r

p
r
p cross-correlations, providing

20 cross-correlations in total. After the second shuffle (right col-
umn, Fig. 2), we obtain 5 more combinations, covering all 10
combinations, and the entire process array can provide 20 more
cross-correlations, covering all 45 cross-correlations. The total
number of data shuffle operations is = =C /2 10/5 25

2 for this ex-
ample. Each process row calculates 9 time-domain normalized
cross-correlations in total and the computational load is balanced.

2.3. Temporal stacking

The stacking process involves summing the time-domain nor-
malized cross-correlations for the same receiver pair over all the
Nseg time segments. Hence for the first time in our algorithm, we
column. Rectangles, black and gray circles have the same meaning as in Fig. 1. The
uted by each process during the current stage. The numbers listed on the right side
s in all stages. The numbers listed on top of the columns show the total number of
” is the total number of cross-correlations computed by all processes in all stages.
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need to perform inter-column, not inter-row, communication
across the 2D process array. We also separate this step into the
local stage, in which no inter-process communication is needed,
and the global stage, in which communication along the horizontal
dimension across the different columns of the same row is needed.
We note that the stacking process does not need to wait until the
cross-correlations for all receiver pairs and all time segments are
completed. As soon as the cross-correlations for all time segments
of a subset of receiver pairs are calculated, a stacking of that subset
can be performed. Note that by stacking the Nseg cross-correla-
tions, large quantities of memory are freed. Hence, by weaving
together the stacking and the cross-correlation operations, we can
effectively reduce the total memory usage per process.

2.3.1. Local stage
During the local stage, we sum the time-domain normalized

cross-correlations for the same receiver pair at different time
segments stored locally on each process. As soon as the summa-
tion is completed for a subset of receiver pairs, the memory used
for storing the time-segment cross-correlations of those receiver
pairs can be reused for other receiver pairs. We use a separate data
buffer to store the locally stacked cross-correlations.

2.3.2. Global stage
Because each process column stores only a subset of all time

segments, the locally stacked cross-correlations need to be sum-
med across process columns to generate the globally stacked
cross-correlations. This global summation can be implemented
conveniently using the MPI reduction routine. To ensure memory
Fig. 3. An example of the global stage in the temporal stacking process on the bottom
movement. Ellipses indicate data buffers for storing the locally stacked cross-correlatio
data; gray ellipses indicate the destinations of the reduction operation. Numbers inside
usage balance for the global summation, the destinations of dif-
ferent reduction operations are different. We modify the example
shown in Fig. 2 by adding two more process columns. The entire
noise recording of each receiver is evenly partitioned into 9 time
segments and each process column stores 3 time segments. Fig. 3
shows the layout of the cross-correlations on the bottom row of
the 2D process array. Fig. 2. shows that the bottom row calculates
the cross-correlations for 9 receiver pairs: 0–1, 0–8, 0–9, 1–8, 1–9,
0–6, 0–7, 1–6, 1–7. After the local stage, each column of the bottom
row stores the locally stacked cross-correlations (solid-line ellipses
in left column, dash-line ellipses in center column, dash-dot-line
ellipses in right column, Fig. 3) for these 9 receiver pairs. We group
these 9 locally stacked cross-correlations into 3 different data
buffers with each buffer containing the cross-correlations for
3 receiver pairs (ellipses in Fig. 3). The first reduction operation
reduces the 3 cross-correlations in the first group on all process
columns onto column 1 (top row, Fig. 3). The data buffers for
storing the first group on columns 2 and 3 can be released. The
second reduction operation reduces the 3 cross-correlations in the
second group on all process columns to column 2 (second row,
Fig. 3) and the data buffers for the second group on columns 1 and
3 can be released immediately. The last reduction operation re-
duces the 3 cross-correlations in the third group on all process
columns onto column 3 (third row, Fig. 3) and the data buffers for
the third group on columns 1 and 2 can be released.

In practice, the global reduction does not need to wait until
locally stacked cross-correlations for all 9 receiver pairs are com-
pleted. For instance, the first reduction (top row, Fig. 3) can be
carried out immediately after the locally stacked cross-correlations
row of a 2D process array with 5 rows and 3 columns. Black arrows indicate data
ns; different line styles of the ellipses indicate different time intervals of the noise
each ellipse show the receiver indices for the cross-correlations.
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for the 3 receiver pairs in the first group (i.e., receiver pairs 0–1, 0–
8, 0–9 in Fig. 3) are completed. The memory used for storing the
globally stacked cross-correlations is balanced across the process
array (bottom row, Fig. 3). Those globally stacked cross-correla-
tions are the ambient-noise Green's functions and can be written
to disk for ambient-noise tomography analysis.
Fig. 5. Examples of stacked cross-correlations (i.e., ambient-noise Green's func-
tions) between one receiver with the remaining receivers in the BW3 array (Fig. 4).
All ambient-noise Green's functions have been bandpass filtered to between 65 Hz
and 85 Hz. Color indicates amplitudes. Dash lines indicate velocities of 200 m/s
(red) and 1500 m/s (white). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
3. Results

During the summer of 2015, seismologists of the Wyoming
Center for Environmental Hydrology and Geophysics (WYCEHG)
deployed six seismic arrays at the WYCEHG Blair-Wallis study area
and the Southern Sierra-Nevada Critical Zone Observatory with
the goal of generating three dimensional shear wave velocity
models to characterize critical zone development in varying re-
gions and provide constraints for hydrologic flow modeling. In this
paper we use the ambient-noise data from one of the Sierra-Ne-
vada critical zone seismic arrays for evaluating the performance of
the pSIN code. This seismic array with 396 active autonomous
receivers was deployed at the Bald Mountain outcrop (approxi-
mately N37.12923, W119.19139) in the Southern Sierra-Nevada,
California from August 17th to 20th in 2015 (Fig. 4). The 396 re-
ceivers were distributed in a roughly 200-m by 200-m square area.
Each autonomous receiver is equipped with a one-channel 24-bit
analog data logger, a GPS, rechargeable lithium-ion batteries that
can last 12 days and a 2GB flash memory for storing the data. Each
receiver weights about 4.8 lb, is about 6-in. high with about 5-in.
diameter and has a detachable 5-in. spike. For the example dataset
used in this study, each receiver recorded the vertical-component
ambient-noise wavefield continuously for about 4 days at a sam-
pling rate of 500 samples per second. Examples of the stacked
cross-correlations generated using pSIN are shown in Fig. 5.

The entire calculation from reading the raw noise data from
disk to writing out the 78,210 stacked cross-correlations to disk
took 52.45 min of wall-time on 2112 CPU cores (Intel Xeon E5-
2670 2.6 GHz). We used a 2D process array with M¼66 rows and
N¼32 columns with each process row storing the noise data of

=N 6r
p receivers. The entire time series recorded by each receiver

was evenly partitioned into Nseg¼2592 time segments with each
process column storing =N 81seg

p time segments. Each time segment
had 65,536 data samples (�2.2 min of noise recording). The total
Fig. 4. Array geometries for the seismic deployments at the Bald Mountain outcrop
in the Southern Sierra-Nevada Critical Zone Observatory (SSCZO) in California. Each
node (yellow circle) recorded the local ambient field for roughly 4 continuous days.
The array size is roughly 200 m by 200 m. The noise data from the lower-right array
(BW3) are used as the example data in this study and examples of ambient noise
Green's functions are shown in Fig. 5. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
number of time-segment cross-correlations involved in the entire
calculation was about 202.72 million and each CPU core computed
95,985 time-segment cross-correlations.

We have evaluated the scalability of pSIN by using smaller
subsets of the entire Bald Mountain ambient-noise dataset. Since
the process array is two dimensional (Fig. 1) and the overhead is
different for inter-row communications and inter-column com-
munications, we have carried out two strong scaling tests by: 1)
increasing the number of process columns while fixing the num-
ber of process rows, and by 2) increasing the number of process
rows while fixing the number of process columns. In our tests, we
have grouped all operations in pSIN into 5 categories: (1) “Calc”,
which includes all the local calculations that does not involve any
inter-process communications (i.e., single-receiver processing, the
local stages of the inter-receiver cross-correlation and temporal
stacking steps); (2) “Sendrecv”, which includes inter-row com-
munications during data shuffle in the global stage of the inter-
receiver cross-correlation step; (3) “Reduce”, which includes inter-
column communications during the global summation stage of the
temporal stacking step; (4) “Scatter”, which includes inter-row
communications when the root process of each row scatters the
noise data of each receiver to all other processes in the same row;
(5) “Read”, which includes the disk I/O operations.

3.1. Strong scaling with process column number N

Fig. 6 shows strong-scaling results obtained by doubling the
number of process columns 5 times (i.e., N¼16, 32, 64, 128, 256,
512) while holding the number of process rows constant at M¼5.
For strong-scaling tests, the size of the problem must be fixed and
we used a subset of the Bald Mountain ambient-noise data that
consists of the complete 4-day noise recordings of 30 receivers.
Each process row stored the noise data of 6 receivers, while the
number of time segments stored on each process column de-
creased from 160 to 5 as the number of process columns increased
from 16 to 512.

The proportion of the amount of wall-time spent on “Calc”
operations, which shows perfect scaling in Fig. 6, decreased from
about 96.39% to about 59.6% of the total wall-time as the number
of process columns increased 32-fold. The wall-time spent on in-
ter-row communication in “Sendrecv” operations also shows good



Fig. 6. Strong scalability with respect to the number of columns of the 2D process
array. Vertical axis: wall-time in seconds; horizontal axis: number of CPU cores.
Different symbols show the scaling of different types of operations as discussed in
the text.

Fig. 7. Strong scalability with respect to the number of rows of the 2D process
array. Vertical axis: wall-time in seconds; horizontal axis: number of CPU cores.
Different symbols show the scaling of different types of operations as discussed in
the text.
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scaling. As the number of process column increases, the commu-
nication volume per process (i.e., the total amount of data sent
from process Pi,j to process Piþ1,j during data shuffle) decreases
proportionally and the total number of data shuffle operations is
fixed at 2, because the number of process rows is fixed at M¼5 for
all tests. The amount of wall-time spent on “Reduce” and “Scatter”
operations increased slightly with the number of process columns.
The communication volume per process in “Reduce” and “Scatter”
operations does decrease linearly with the number of columns. But
the total number of processes involved in these two types of op-
erations also increases linearly with the number of columns,
thereby limiting the scalability of these two types of operations.
However, the proportion of these two types of operations in the
total amount of wall-time is relatively small (i.e., about 6.8% for
“Scatter” and 0.3% for “Reduce” for the largest column number).
The amount of wall-time spent on “Read” operation was about
constant for all the column numbers, since the amount of ambi-
ent-noise data on disk and also the number of processes used for
reading the noise data were constant.

3.2. Strong scaling with process row number M

Fig. 7 shows the wall-time spent on the different types of op-
erations when increasing the number of process rows from 5 to
135 (i.e., M¼5, 15, 45, 135) and holding the number of columns
constant at N¼16. The total number of receivers used in these
tests was fixed at Nr¼2430, which is much larger than the 400
receivers in our Bald Mountain dataset. We generated the “fake”
dataset by duplicating the Bald Mountain dataset about 6 times.
The number of receivers stored in each process row therefore
decreased from 486 to 18 as the number of process rows increased
27-fold. The number of time segments stored on each process
column was fixed at 80 and each time segment had 512 samples.

The proportion of the amount of wall-time spent on “Calc”
operations was about 79% of the total amount of wall-time in all
tests. The total amount of wall-time shows excellent scaling with a
maximum deviation from a linear prediction of about 16.52% (i.e.,
100*(measurement�prediction)/prediction). The amount of wall-
time spent on “Sendrecv” operations was about constant. As the
number of process rows increases, the communication volume per
process in the data shuffle operation decreases proportionally,
while the total number of data shuffle operations increases pro-
portionally, which resulted in roughly constant wall-time for all
“Sendrecv” operations. The proportion of the amount of wall-time
spent on “Sendrecv” operations was less than 2.54% of the total
amount of wall-time. The amount of wall-time spent on “Reduce”
operations decreased faster than a linear prediction. As the num-
ber of process rows increased, the number of receivers per process
row Nr

p decreased proportionally, while the number of stacked

cross-correlations per row decreased roughly as ( )Nr
p 2, which re-

sulted in a decrease not only in the communication volume per
process but also in the number of global stacking operations per
process row. The “Scatter” operations had the worst scaling with
the maximum deviation from a linear prediction of about 50.77%.
However the proportion of the wall-time spent on “Scatter” op-
erations was less than 0.03% of the total wall-time.
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4. Summary and discussion

We have presented a complete distributed-memory parallel
algorithm for performing seismic interferometry of large-N am-
bient-noise data and tested the implementation pSIN using a real
large-N dataset collected by WYCEHG seismologists. The parallel
pSIN code has allowed us to reduce the total amount of processing
time from 13 days on a single state-of-the-art four-core desktop
computer to about 52 min on 2112 CPU cores. The parallel algo-
rithm is based on a two-dimensional partition of the entire noise
dataset collected by the seismic array. The computational load,
inter-process communication overhead and memory usage are
well balanced across the entire 2D MPI process array. The pSIN
code reads the entire noise dataset only once at the beginning of
the execution and writes out all stacked cross-correlations at the
end of the execution. The entire parallel algorithm has shown
excellent strong scalability from 80 CPU cores to over 2000 CPU
cores.

Compared with the Hadoop implementation presented in Ad-
dair et al. (2014), the pSIN code is relatively lightweight and easier
to use on conventional distributed-memory clusters. It does not
need any additional preparation steps that may require non-trivial
changes to the cluster. It does not eliminate the I/O overhead, but
it has minimized the total number of I/O operations involved in
the entire calculation. Hence, as we have demonstrated herein,
this algorithm is useful for speeding up the seismic interferometry
calculations of large-N data using small to medium-sized con-
ventional distributed-memory computer clusters.

In addition to seismic interferometry based on cross-correla-
tion (e.g., Bensen et al., 2007), our parallelization algorithm can
also be easily adapted to seismic interferometry based on decon-
volution, coherency and transfer functions (e.g., Vasconcelos and
Snieder, 2008a; 2008b; Prieto et al., 2011) and also acoustic/seis-
mic noise data collected by different types sensors. We expect pSIN
to be a convenient and useful tool for significantly speeding up
ambient-noise seismic interferometry processing and ambient-
noise tomography.
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