
Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Rule-based topology system for spatial databases to validate complex
geographic datasets

J. Martinez-Llarioa,⁎, E. Colla, M. Núñez-Andrésb, C. Femenia-Riberaa

a Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
b Departamento de ingeniería del terreno, cartográfica y geofísica, Universitat Politécnica de Catalunya, Barcelona, Spain

A R T I C L E I N F O

Keywords:
Topology
Spatial Databases
GIS
Cartography
INSPIRE

A B S T R A C T

A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in
spatial relationships among datasets is presented. This improved topology rule system is built over the spatial
extension Jaspa. Both projects are open source, freely available software developed by the corresponding author
of this paper.

Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the
topology rules are designed and performed in the spatial backend). If the topology rules are applied in the
frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in
this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules,
it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the
topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is
performed in the spatial backend.

The proposed topology system allows users to check the complex spatial relationships among features (from
one or several spatial layers) that require some complex cartographic datasets, such as the data specifications
proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.

1. Introduction

In recent years, certain regulations, including the INSPIRE data
specification (INSPIRE, 2010) and its subsequent regulations, or the
Land Administration Domain Model (LADM) – ISO 19152 (ISO, 2012)
are forcing GIS datasets to be highly structured to consider the spatial
relationships among features (geographic objects).

Before structuring the datasets using these models, it is necessary to
perform a quality control check to assure the spatial relationships. One
of the ways to accomplish this task is to use topology rules to model all
of the spatial relationships. We will then be able to test and ultimately
edit and fix the geometries to build these complex datasets in a non-
traumatic way.

Topology is a branch of mathematics that studies the relative
positions among geometric features, particularly focusing on the spatial
relationships that are maintained when the embedding space is altered
with topological transformations, such as translation, rotation and
scaling. The GIS community has long understood that topology can
help manage spatial data; hence, how to efficiently apply its principles
has been a largely discussed issue in the GIS world and is not yet

definitely solved.
In this section, we overview its main topics. The second section

describes the different topology software approaches. The created
topology rule system is presented in the third section. Section four
studies a real cartographic model case.

1.1. GIS basic topological structures

Vector-based GIS models spatial features from the real world by
means of geometry primitives such as points, lines and polygons. To
accomplish this, several abstractions or simplifications must be per-
formed, and consequently a series of conventional rules must be
satisfied to coherently characterize the geographic reality.
Standardization has been already achieved with OGC Simple feature
access (SFA)—Part 1: Common architecture (OGC, 2011), providing a
widely adapted way to describe geometry (Yan et al., 2011). It
repeatedly relies on topological concepts to define geometry represen-
tation, but it not addresses how to store topologically structured data. It
was published as the ISO 19125-1 Standard (ISO, 2004). Each
geometry is independently described by a set of coordinates
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(Worboys and Bofakos, 1993) and sharing geometries between features
(geographic objects) is not precluded.

Conversely, the arc-node model is the paradigmatic topological
structure for GIS topology. In this model, the primitives are nodes, arcs
and faces, all of which are interrelated. As a result, in the arc-node
model, relationships such as connectivity, direction, and adjacency are
explicitly stored (Murray, 2009). This is a very old model, but the still
recent ISO 13249-3 or SQL/MM (ISO, 2016) represents its evolution.
The SQL/MM standard defines a way of modelling and accessing a
topological dataset and allows multiple levels of topological connectiv-
ity.

Both models (ISO 19125-1 or ISO 13249-3) present advantages and
disadvantages, so the usage of each model depends on the task at hand.
The main disadvantage of ISO 19125-1 is the repeated storage of
features, but its structure is less complex and can be seamlessly used
for display tasks. The main advantages of explicit storage of the
topology structure model (ISO 13249-3) are the avoidance of redun-
dant data storage and the ability to maintain data consistency by
performing validation rules (De Hoop and van Oosterom, 1992).

The standard ISO 19125-1 is also known as the OGC Simple
Feature Access (OGC-SFA) (OGC, 2011) Model. In addition, the
standard OGC-SFA has a more recent version than ISO 19125-1.

1.2. Topology rules

A rule-based topology model consists of a set of spatial rules that
constrain the spatial relationships among the features. The GIS user is
able to choose which relationships are relevant for the data. After
validating the rules, the GIS user handles the cases where the rules are
violated and fixes the errors with the aid of topological editing tools.
When a geometry that participates in some rule is added, deleted or
updated, the spatial extent affected is flagged as a “dirty area” to note
that this area should checked again (ESRI, 2003).

With a rule-based topology engine, it is possible to model the
spatial relationships among datasets easily. A few real cases of some
topology rules area as follows:

– Buildings (polygons) from a dataset must be inside cadastral parcels
(polygons)

– Lakes (polygons) and land parcels (polygons) from two different
layers must not overlap

– Vegetation (polygons) and soils (polygons) must cover each other
– Endpoints of electric lines (lines) must be capped by transformers

(points)

A rule-based topology model can be built over both basic GIS
structures: a simple feature model (ISO 19125-1) or an explicit
topological model (ISO 13249-3).

If the rule-based topological model is built over an explicit
topological model, then some spatial relationships are automatically
maintained, and there is no need to design some topology rules: the
detection of closed polygons, overlapped areas, dangles, undershoots,
points inside polygons (Baars et al., 2004).

2. Topology software background

GIS software packages have worked with topology differently. In the
present section, we offer a brief overview of how the theoretical aspects
of planar spatial data topology have been transferred to GIS software.
Table 1 shows the main characteristics related to the geometry
structure and the rule-based topology system used by the most
important GIS desktop and spatial databases.

To be able to justly compare all software, we consider that the
ArcNode or SQL/MM systems implement some topology rules in an
inherent way, although the number of topology rules is much lower
(few or very few) than in a full rule-based topology system.

The rule-based topology system column has the following meaning:

– The software labelled “very basic and basic” shows that although
they do not implement a pure rule-based topology system, they have
an explicit topology system that allows certain SQL attribute queries
to be built to check spatial relationships between features as stated
before. If the software follows the SQL/MM standard, these SQL
queries can be extended to use some relationships between layers
because SQL/MM allows multiple levels of topological connectivity.

– The label “medium” shows that even if the software implements
some type of topology rule system, the number of topology rules is
restricted, and a dirty area system is especially not supported;
therefore, every time a topology rule is validated, all features must
be checked, which makes the system very inoperative.

– The only two software programs that support a full rule-based
topology system (Section 3.5) are labelled as “advanced”.

2.1. Desktop GIS

As mentioned before, ArcInfo coverages (arc-node model) maintain
topologically structured data. However, some disadvantages including
slowness when assembling features on the fly and constant validation
after editing have pushed ESRI to implement another approach to
topology to be applied on a simple feature model.

ArcGIS follows a rule-based topology model in which topology is
handled via a set of rules that are applied to the feature classes that
form the geodatabase.

The open GIS world has in GRASS1 its major counterpart. GRASS
has usually defined itself as a topological GIS (Neteler et al., 2012). Its
native format is based on arc-node representation. When importing
spatial data stored in a format without topology, it is able to
automatically build topology, although it also allows work with
spaghetti data if the size of the dataset affects the system.

GvSIG2 and Kosmo3 have both implemented topology extensions
with graphical user interfaces that provide a range of functionalities to
clean and validate data. Like ArcGIS, they are based on a rule-based
topology model. In both cases the JTS library (Erickson and County,
2009) provides the necessary algorithms to perform the basic geometry
calculations.

QGIS4 follows the same approach as gvSIG or Kosmo, but the
geometry library is not JTS based (Java Topology Suite) but OGR
(OpenGIS simple features Reference implementation).

2.2. Moving on to DBMS

As shown before, GIS vendors have conventionally lead the research
of topology implementation for spatial data. Nevertheless, van
Oosterom et al. (2002) argued why topology management should be
carried out within the database: topology is a general and reusable
aspect of the data, and thus it should be maintained at the database
layer. Different reasons encourage the usage of databases instead of
files systems: transactional integrity, multiple users, unified storage
and solid SQL standards are the most prominent advantages.

Owing to the spread trend of maintaining spatial data in RDBMS,
these products have started to support topology. Oracle Spatial 10 g5

pioneered a two-dimensional topological architecture in a DBMS
environment, supporting primitive topologies including nodes, arcs
and faces stored in persistent topology tables.

Radius topology developed by 1Spatial6 extends the Oracle Spatial

1 http://grass.osgeo.org/
2 http://www.gvsig.com
3 http://www.opengis.es/
4 http://www.qgis.org
5 http://www.oracle.com
6 http://1spatial.com/
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Database to manage topological structured data (Ellul, 2008). From
Oracle 10 g, Radius topology was migrated to use the Oracle SQL/MM
topology storage model and thus currently is mainly a graphical Oracle
Spatial SQL/MM frontend, which allows features to be edited and fixed
graphically.

On the open source side, PostGIS7 has begun to develop a topology
schema model and accessory functions for topology editing. Once the
schema are created, the user is able to store topological structured
features such as nodes, edges and faces according to the generic
topology model, define objects composed by those elements (PostGIS
type “TopoGeometry”) and convert them to simple geometry objects.
Creation, editing and validation is performed by SQL sentences
(Picavent, 2010).

2.3. Rule-based topology

A topologically structured database maintained in an RDBMS
provides several benefits but also raises new problems. The positive
consequences are that it ensures data integrity, the elimination of
redundancy, consistent editing and updating or advanced querying
(van Oosterom et al., 2002). However, topological structures pose some
problems. Although there is no redundancy, Penninga (2004) claims
that topological structures require almost five times more storage in
worst case scenarios, largely due to the need for indexes. Topological
structures determine workflows, and the systems to ensure topology
are fixed. There is little room to adapt it to the user's needs.

Topological structures also force higher complexity of updates
because the topology must be rebuilt. In addition, the topological
model must be capable of maintaining integrity across transactional
boundaries, which can be problematic when exporting a huge volume
of data into a topological model. Depending on the size and complexity
of the dataset, the assembly of the spatial data from the topology
primitives turns into a time-consuming task because it is far more
complex than the geometric structure. Overall, a powerful system in
terms of both software and hardware is required to support a
topological structure.

Query performance varies depending on the type of query. The
access to features is slower in the topology structure because they must
be assembled. Conversely, queries involving relationships are faster
when performed with topological structures. Penninga (2004) claimed
that the larger the dataset, the better the relative topological query
performance.

The rule-based topology model may be considered a bridge between
the geometrical (ISO 19125-1) and the explicit topological models (ISO
13249-3). It cleans the geometrical data by means of enforcing
topology rules between layers. The result is not topologically structured
data according to ISO 13249-3 but topologically correct data. In this
case, the user chooses or creates a set of rules to handle the topology.
These rules may be based on the attributes of the features or the cluster
tolerance.

Baars et al. (2004) notes the main advantages and disadvantages of
a topology rule system: flexibility when choosing constraints and error
handling, quick validation processes and overall ease of usage.
However, there are also negative aspects, such as data redundancy
because of working with spaghetti data, lack of automatic correction of
detected errors and, similarly to topological structure data, impossi-
bility of extending the set of rules provided by the software.

3. Topology rule system developed

We have chosen to develop a topology rule-based system rather
than a topologically structured data system because of the much better
performance and the ease of use for end users.

Neither PostGIS nor Oracle Spatial or any other spatial DBMS
currently implements a rule-based topology system. For GIS desktop
applications, the most advanced software is ArcGIS, which has a
topology rule-based system but it cannot be extended, has little variety
of rules and cannot mix the feature attributes with the topology rules as
a filter.

To implement an improved topology rule system, we have chosen
the spatial extension Jaspa (Martinez-Llario and Gonzalez-Alcaide,
2011). Jaspa is a novel spatial extension for relational database
management systems. It is an open source project developed by the
authors of this paper, and the programming system is totally known by
them. In addition, Jaspa is easy to extend thanks to the integrated

Table 1
Topology model implemented by the main GIS desktop and spatial database software.

Geometry
structurea

Rule-based
topology systemb

Dirty
areasc

Cluster
toleranced

Custom
topology rulese

Topology rules
numberf

Spatial backend
logicg

Arc/Info (discontinued) ArcNode Very basic Y Y N Very few Y
ArcGIS 10.2 Very similar to OGC-

SFA
Advanced Y Y N 32 Y (ArcSDE)

Grass 7 OGC-SFA ArcNode Very basic Y Y N Very few N
Kosmo 3 OGC-SFA Medium N N N < 20 N
gvSIG 1.12* OGC-SFA Medium N N N < 20 N
QGIS 2.14 OGC-SFA Medium N N N < 15 N
PostGIS 2.2 OGC-SFA SQL/MM Basic N Y N few Y
Oracle Spatial 11 g OGC-SFA SQL/MM Basic N Y N few Y
Radius Topology

(discontinued)
SQL/MM over Oracle
spatial 10 g

Basic Y Y N few Y

Developed System OGC-SFA over Jaspa Advanced Y Y Y 67 Y

* The rule-based topology extension does not support gvSIG 1.12 newer versions.
a The vector model implemented by the software (Section 1.1).
b We consider a basic or very basic system to the software without an explicit topology rule system (an extended explanation is showed in this section).
c The software has a system to update the topology rules only in zones with updated or new features.
d The software is able to use snap rounding algorithms in order to adjust the vertices among different layers to improve the spatial analysis robustness.
e An advanced user can create new topology rules.
f The number of topology rules that implement the software (few and very few are used to mention the software without an explicit topology rule system thus the number of topology

rules is very limited and unknown).
g The topology rules are developed in the spatial backend (with spatial stored procedures or other mechanism). These software ensure greater reliability and robustness in the integrity

of the topology rules.

7 http://postgis.net/
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structured developed in Java using stored procedures (Martinez-Llario
and Gonzalez-Alcaide, 2011). Jaspa works with multiple RDBMSs
including H2,8 PostgreSQL9 and Oracle,10 which makes it an attractive
option.

We have implemented in Jaspa a topology system based on rules,
which is similar to the ArcGIS approach (ESRI, 2003) or the conceptual
design of spatial constraints in SQL proposed in (Pelagatti et al., 2009).
The enforcement of the topological rules between geometries is based
on binary predicates, provided by the JTS library11 (Erickson and
County, 2009) that implements the Dimensionally Extended
Intersection Model (DE-9IM) (Clementini and Di Felice, 1995). The
scope of Jaspa topology is planar topological structures.

Topological rules in Jaspa can be applied to a subselection of a layer
rather than the full layer, to a single layer or between two layers. As
claimed by Brown et al. (2005), topological rules impose conditions on
the relationships between spatial layers to characterize the real world
and prevent placement incoherencies and guarantee spatial consis-
tency.

The rule-based topology engine has been programmed in Java and
SQL. Topologic geometries are neither stored nor created on the fly.
Jaspa topology can be perceived as a whole data model that relies on
three key features: topology rules, cluster tolerance and dirty area
management.

The topology rules can combine spatial and alphanumeric criteria
without any restriction, and it is possible to validate the selected rules
rather than the entire topology as in other systems.

The system allows the GIS user to define their own topology rules
by using templates and SQL scripts. Currently, this task is only for
advanced users because it requires some Java coding.

The large set of topology rules and the possibility to design new
rules are crucial to validate and check the integrity of complex
geographic database datasets.

3.1. Cluster tolerance

The tolerance engine controls the distance at which the vertices or
edges that make up the geometries are considered identical. The
tolerance is set according to the accuracy used to store the coordinates.
The engine snaps the vertices and segments between features from the
layers that participate in the topology. The Jaspa function ST_Snap12 is
its first approach.

This process adjusts the cartography vertices and avoids many of
the problems that plague the current GIS software related to perform-
ing vector-based spatial analysis (Belussi et al., 2015).

The ST_Snap algorithm follows the well-known family of snap
rounding algorithms like (Halperin and Packer, 2002). Fig. 1 shows
how the function ST_Snap (A, B) will snap the geometry A to the
geometry B by moving the A vertices:

1. First, if a vertex of 'A' geometry is within the tolerance of a vertex of
‘B’ geometry, then this vertex from 'A' will be moved to the closest
vertex of B. Vertex A1 will move to B2.

2. Second, if a segment of 'A' geometry is within the tolerance of a
vertex of ‘B’ geometry, then this segment will be split, and the newly
added vertices from 'A' will be moved to the closest vertices of B.
Segment A14 will be split, and the new vertex will move to B3.

The full process is a recursive task that snaps all updated or new
geometries. Fig. 2 shows the algorithm flowchart. This task is
performed before any topology rule is validated.

The system of cluster tolerance is optional and must be explicitly
specified by the GIS user.

The snapping process can produce invalid geometries according to
the OGC-SFA—e.g., full or partial dimensional collapses, self-intersec-
tions. To fix this, the implemented topology system automatically
detects these cases and fixes them using the ST_MakeValid Jaspa
function. This function attempts to create a valid representation of a
given invalid geometry: in the case of a geometry collapse, the output
geometry may be a collection of lower-to-equal dimension geometries
or a geometry of lower dimension, and single polygons may become
multi-geometries in the case of self-intersections. If the topology
system cannot fix the geometry automatically, an error is triggered,
and the user must edit the geometry manually (rare cases).

3.2. Topology rule set

Currently, Jaspa supports 67 topology rules; 30 of them are applied
to features from only one layer, and 37 topology rules are applied
between features from two layers.

To rigorously define the semantic meaning of the topology rules, we
have used logical formulas (Praing and Schneider, 2008) based on
mathematical notation similar to that used in the standard “Simple
Feature Access” (OGC, 2011). For the spatial relational operators, we

Fig. 1. Snapping two geometries with ST_Snap.

Fig. 2. Algorithm for snapping the geometries of a full layer.

8 http://www.h2database.com/
9 http://www.postgresql.org/
10 http://www.oracle.com/database
11 http://www.vividsolutions.com/jts/
12 http://jaspa.upv.es/jaspa/v0.2.0/manual/html/ST_Snap.html
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have used the document notation based on the matrix DE-9IM
(Clementini et al., 1993).

Table 2 summarizes the notation and the spatial function used to
describe the semantics of the topology rules. For instance, the “must be
disjoint” topology rule is defined as ∀ a ∈ A, ∄ b ∈ B / a ∩ b ‡∅, which
means: For each geometry ‘a’ contained in layer A, there is not any
geometry ‘b’ contained in layer B, such that the geometry ‘a’ intersects
the geometry ‘b’.

Table 3 shows the implemented topology rules on single layers.
Some topology rules can be applied to any geometry type layer; for
example, the rule “Must be single Part” supports point (P), line (L) or
polygon (S) layers (the geometry type is called as ‘P’, ‘L’ or ‘S’ in the first
column of the table), whereas other rules can be applied to just a
geometry layer type including “Must not have dangles” (only line
layers).

Table 4 shows the implemented topology rules between two layers.
The fist column of the table shows the allowed geometry type layer
combinations; e.g., the topology rule “Must be covered by boundary of”
can be applied between punctual and lineal layers (P+L) and between
punctual and polygonal layers (P+S).

For the implementation of the topology rules, we have used SQL
plus some SQL Jaspa functions developed for these rules. All rules use
a primary spatial filter plus some secondary spatial filers using the
Jaspa spatial predicates following the standard OGC-SFA. However,
the goal of this paper is not to show the implementation details, which
are freely available on the Jaspa web site.

Some topology rules consider an extra tolerance parameter. This is
beneficial in cases when the GIS user does not want to use a cluster
tolerance (as explained in the previous chapter) with the layer.

All topology rules are performed in 2D except the “Must be
connected 3D” topology rule, which works in 3D.

On the official Jaspa web site, we have created detailed documenta-
tion of all 67 rules with graphical examples (Gonzalez-Alcaide and
Martinez-Llario, 2011).

As stated before, ArcGIS has been the GIS software with the richest
set of topology rules. It has 32 different topology rules (ESRI, 2012).

The proposed topology system implements 67 rules. Some of these
rules can be applied to different geometry types (as in ArcGIS). If we do
not consider the different geometry type versions (although the
developed algorithm is different for each geometry type) to count the
topology rule number, then the proposed system has 40 pure topology
rules (ArcGIS has 27). We can conclude that the proposed system has a
richer set of pure topology rules, and the rules can be applied to a wider
set of geometry types.

The motivation to choose this set of rules is to give users the
opportunity to apply geographic constraints to their datasets without
any limitation. Some common spatial relations between layers—e.g.,

rivers (lines) must not intersect buildings (polygons), buildings must be
inside parcels (polygons)—cannot be modelled with ArcGIS because of
a lack of geometry type rule variations.

In other cases, some totally new topology rules are needed, such as
those for checking network continuity (rivers, transportation, etc.) in
2D and in 3D using a threshold tolerance or checking whether
boundaries of states are covered by boundaries of counties, etc. Some
of these new topology rules are the following: “must be connected 2D
with”, “must be connected 3D with”, “boundary must be covered by
boundary of layer”, etc.

All ArcGIS (and other GIS software) topology rules have been
included in the proposed topology system. A couple of ArcGIS topology
rules require the use of two chained Jaspa topology rules: “Endpoint A
must be covered by B” (“A must not have dangles” + “C must be
covered by B”, where “C” is the returning error dataset from applying
the first rule) and “must cover each other” (“A must be covered B” + “B
must be covered A”).

3.3. Extending the rules

The system allows GIS users to define their own topology rules by
using templates and SQL scripts, but at this time, this task is only for
advanced users because it requires some Java and SQL coding.

To add a new topology rule, we must register the rule in the Java
code (defining a set of parameters, such as the geometry types and the
number of layers involved).

The second step is to create the SQL sentence that inserts the
geometries into the error table. This sentence uses a combination of
Jaspa functions, data manipulation SQL commands and operators, and
some parameters to set the table and columns names.

For example, Fig. 3 shows the SQL script for the rule “Must Be
Disjoint” for polygons, which checks whether the polygons of a layer
are disjoint. The output error table is a table (without any geometry
constraint) that can store points, lines or polygons. This rule inserts
into the error table the geometric intersections (rule violations).

The Jaspa API documentation shows the description of all of these
parameters, and new topology rules can be added to the system simply
by designing the SQL sentence and registering the new rule.

We want to mention that we have developed in Jaspa all spatial
stored procedures used in the topology rule code. These stored
procedures add the needed spatial functionality including
ST_Intersects, ST_Boundary, ST_Intersection, ST_Extract,
ST_Union, ST_Force_2D, ST_Length, and many more.

3.4. Semantic predicates

Sometimes, it is convenient to apply a topology rule to a subset of a

Table 2
Notation used to define the topology rules.

Symbol Meaning

I(a), B(a), E(a) Given a geometric object a, let I(a), B(a) and E(a) represent the interior, boundary and exterior of “a”, respectively.
F_dim(a) Returns the dimension of a geometry according to the OGC-SFA. The ST_Dim Jaspa function implements it. This is performed in Jaspa through

the JTS library
F_isValid(a) Returns true is a geometry is valid according to the standard OGC_SFA. This is performed in Jaspa through the JTS library.
F_isSimple(a) Returns true is a geometry is simple according to the standard OGC_SFA (do not cross by the same point twice). This is performed in Jaspa

through the JTS library
F_distance(a, b) Returns the minimum 2D cartesian distance between geometry ‘a’ and geometry ‘b’
F_startPoint(a) Returns the start or end point of a lineal geometry
F_endPoint(a)
F_repeatedPoints (a) Returns a point set with the repeated vertices (two identical followed vertices)
F_segment (a) Returns the set of segments composing a geometry
F_zDistance(a, b) Returns the minimum 3D cartesian distance across the Z axis between geometry ‘a’ and geometry ‘b’
F_closestPoint (p0, A, tol), Calculate the 2-dimensional point from the set of geometries A (layer A), which is closest to the point geometry ‘p0’. If the distance between the

calculate point and p0 is smaller than tolerance (tol) then returns the calculated point otherwise returns an empty point.
F_union (S) Returns a geometry which is the union of the set of geometries S.
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Table 3
Definition of topology rules (one layer A).

P L S Rule / Algebra definition

X X X Must be single Part
∀ a ∈ A / F_numGeometries (a) = 1

X X X Must be disjoint
∀ a ∈ A, ∄ b ∈ A, b ‡ a / a ∩ b ‡ ∅

X X X Must be disjoint (with tolerance)
∀ a ∈ A, ∄ b ∈ A, b ‡ a / F_distance(a, b) < tol

X X X Must not be duplicated
∀ a ∈ A, ∄ b ∈ A, b ‡ a / F_equals(a, b)

X X X Must not have repeated points
∀ a ∈ A / F_repeatedPoints (a) = ∅

X Must not self intersect
∀ a ∈ A / F_isSimple(a)

X Must not self overlap
∀ a ∈ A, SG = { segment ∈ F_segment(a) } /
∀ sga ∈ SG, ∄ sgb ∈ SG, sga ‡ sgb, sga ∩ sgb ‡ 0

X Must not intersect or touch interior (except at endpoints)
∀ a ∈ A, ∄ b ∈ A, b ‡ a / I(a) ∩ I(b) ‡ ∅ ∨ I(a) ∩ B(b) ‡ ∅ ∨ B(a) ∩ I(b) ‡
∅.

X Must not touch interior
∀ a ∈ A, ∄ b ∈ A, b ‡ a / I(a) ∩ B(b) ‡ ∅ ∨ B(a) ∩ I(b) ‡ ∅

X Must not intersect (except at endpoints)
∀ a ∈ A, ∄ b ∈ A, b ‡ a / I(a) ∩ I(b) ‡ ∅

X X Must not overlap
∀ a ∈ A, ∄ b ∈ A, b ‡ a / F_dim (I(a) ∩ I(b)) = F_dim (a)

X Must not have dangles
∀ a ∈ A,
∃ b ∈ A, b ‡ a / F_endPoint (a) ∩ b ‡ ∅ ∨
∃ c ∈ A, c ‡ a / F_startPoint (a) ∩ c ‡ ∅

X Must not have dangles (with tolerance)
∀ a ∈ A,
∃ b ∈ A, b ‡ a / F_distance ( F_endPoint (a), b) < tol ∨
∃ c ∈ A, c ‡ a / F_distance ( F_startPoint (a), c) < tol

X Must not have pseudonodes
∀ ai ∈ A, S = { b ∈ A, b ‡ ai: F_startPoint (ai) ∩ B(b) ‡ ∅ },
R = { b ∈ A, b ‡ ai: F_endPoint (ai) ∩ B(b) ‡ ∅ }
/ ( |S| = 1 ∨ |S| = 0) ∧ ( |R| = 1 ∨ |R| = 0)

X Must not have pseudonodes (with tolerance)
∀ ai ∈ A, S = { b ∈ A, b ‡ ai: F_distance (F_startPoint (ai), B(b)) < tol
},
R = { b ∈ A, b ‡ ai: F_distance (F_endPoint (ai), B(b)) < tol } /
/ ( |S| = 1 ∨ |S| = 0) ∧ ( |R| = 1 ∨ |R| = 0)

X Must be valid
∀ a ∈ A / F_isValid(a)

X Must not have gaps
∀ ai ∈ A, S = { b ∈ A: ai ∩ b ‡ ∅ } / F_length (B(ai)) = F_length (B(ai)
∩ S)

X Must be connected 2d (with tolerance)
∀ a i ∈ A, p0 = F_startPoint(a i), p1 = F_endPoint(a i),
cp0 = F_closestPoint (p0, A – {ai}, tol), cp1 = F_closestPoint (p1, A –

{ai}, tol) /
F_distance (p0, cp0) < tol ∨ F_distance (p1, cp1) < tol

X Must be connected 3d (with tolerance)
∀ a i ∈ A, p0 = F_startPoint(a i), p1 = F_endPoint(a i),
cp0 = F_closestPoint (p0, A – {ai}, tol), cp1 = F_closestPoint (p1, A –

{ai}, tol) /
F_zDistance (p0, cp0) < tol ∨ F_zDistance (p1, cp1) < tol

Table 4
Topology rule definition (between two layers).

Geometry Rule/Algebra definition

P+P, L+L, S+S Must be disjoint with
∀ a ∈ A, ∄ b ∈ B / a ∩ b ‡ ∅

P+P, L+L, S+S Must be disjoint with (with tolerance)
∀ a ∈ A, ∄ b ∈ B / F_distance(a, b) < tol

P+P Must be coincident with
∀ a ∈ A, ∃ b ∈ B / a ∩ b = a ∧ a ∩ b = b

P+P Must be coincident with (with tolerance)
∀ a ∈ A, ∃ b ∈ B / F_distance(a, b) < tol

P+L, P+S, L+L, L+S, S
+S

Must be inside
∀ a ∈ A, ∃ b ∈ B / a ∩ b = a

P+L, P+S, L+L, L+S, S
+S

Must be properly inside
∀ a ∈ A, ∃ b ∈ B / a ∩ I(b) = a

P+S,L+S Must be covered by boundary of
∀ a ∈ A, ∃ b ∈ B / a ∩ B(b) = a

L+L Must not intersect or touch interior with (except at
endpoints)
∀ a ∈ A, ∄ b ∈ B / I(a) ∩ I(b) ‡ ∅ ∨ I(a) ∩ B(b) ‡ ∅ ∨B(a) ∩
I(b) ‡ ∅

L+L Must not touch interior with
∀ a ∈ A, ∄ b ∈ B / I(a) ∩ B(b) ‡ ∅ ∨ B(a) ∩ I(b) ‡ ∅

L+L Must not intersect with (except at endpoints)
∀ a ∈ A, ∄ b ∈ B / I(a) ∩ I(b) ‡ ∅

L+L, S+S Must not overlap with
∀ a ∈ A, ∄ b ∈ B / dim (I(a) ∩ I(b)) = dim(a) = dim (b)

L+L, L+S, S+S Must be covered by layer
∀ ai ∈ A, S = { b ∈ B: ai ∩ b ‡ ∅ }, c = F_union(S) / ai ∩ c =
ai

L+S Must be covered by boundary of layer
∀ ai ∈ A, S = { b ∈ B: ai ∩ b ‡ ∅ }, c = F_union(S) / ai ∩
B(c) = ai

S+P Must contain one point
∀ ai ∈ A, S = { b ∈ B: ai ∩ b ‡ ∅ } / |S| = 1

S+P Must contain one point properly
∀ ai ∈ A, S = { b ∈ B: I(ai) ∩ b ‡ ∅ } / |S| = 1

S+P Must contain points
∀ a ∈ A, ∃b ∈ B / a ∩ b = b

S+P Must contain properly points
∀ a ∈ A, ∃ b ∈ B / I(a) ∩ b = b

S+L Boundary must be covered by layer
∀ ai ∈ A, S = { b ∈ B: ai ∩ b ‡ ∅ }, c = F_union(S) / B(ai) ∩
c = B(ai)

S+S Boundary must be covered by boundary of layer
∀ ai ∈ A, S = { b ∈ B: ai ∩ b ‡ ∅ }, c = F_union(S) / B(ai) ∩
B(c) = B(ai)

L+L Must be connected 2D with (with tolerance)
∀ a ∈ A, p0 = F_startPoint(a), p1 = F_endPoint(a),
cp0 = F_closestPoint (p0, B, tol), cp1 = F_closestPoint
(p1, B, tol) /
F_distance (p0, cp0) < tol ∨ F_distance (p1, cp1) < tol

L+L Must be connected 3D with (with tolerance)
∀ a ∈ A, p0 = F_startPoint(a), p1 = F_endPoint(a),
cp0 = F_closestPoint (p0, B, tol), cp1 = F_closestPoint
(p1, B, tol) /
F_zDistance (p0, cp0) < tol ∨ F_ zDistance (p1, cp1) < tol
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layer instead to the whole layer—e.g., to require street features to be
connected to other street features at both ends, except in the case of
streets belonging to the cul-de-sac or dead-end subtypes.

In other GIS software programs such as ArcGIS, this is accom-
plished by using subtypes. Subtypes are a subset of features in a layer
that share the same attributes. They are used as a method to categorize
the data (Law and Collins, 2016). This is a prerequisite task before
defining or performing the topology rules and can be considered as
dividing the layers into different logical layers that affect our database
model.

In the proposed system, the semantic filter is defined together with
the topology rule, and there is no need to define new logical layers. In
this way, the database model is not required to be adapted according to
the semantic filters.

Chapter 4 shows an example of defining a semantic filter at the
same time a new topology rule is added to our model.

3.5. Topology timestamp

GIS workflow includes tasks such as loading new data into a layer or
updating them on a regular basis. This means that it is necessary to
continuously validate the topology rules in which a layer participates.
To avoid validating topology rules with features that have already been
validated, the proposed topology system provides a mechanism called
“TopoTime”. It ensures that the validation of the topology rules is
applied only to registers that are not validated because they either
contain new data or have been updated.

This mechanism consists of an SQL trigger that increments a
sequential counter (version number) when a layer or a topology rule
that participates in a topology model is somehow modified. The rule
metadata table has a “topotime” field that contains the version number
at the time the rule is validated.

Similarly, when a layer is added to a topology model, a “topotime”
field is automatically added to the layer. This “topotime” layer field
contains the version number from the last feature update for all
features of the layer.

However, an additional parameter is required: when a feature is
updated or deleted, its neighbouring geometries may change. The
boxes of these neighbouring geometries are stored in a temporal table.

Thus, the only features that are considered when validating a rule
are as follows:

1. Those with a higher “topotime” field than the one stored in the rule
metadata table.

2. Those that intersect any geometry bounding box from the temporal
table.

This temporal table is similar to the concept of “dirty areas” from
ArcGIS (Law and Collins, 2016), but there is an important change: In
ArcGIS, there is only one “dirty area” table for all layers participating in
the topology, and in the designed system, there is one “dirty area” for
each layer. The disadvantage of the designed system is that all of these
temporal tables require more storage space than just one “dirty area”

table for all layers. The benefit is that each topology rule can validate
just the updated features participating in that rule and not in all
defined rules, which is much more efficient.

We want to mention that the “dirty area” or “topotime” mechanism
in the proposed system (as in ArcGIS) is completely valid for the full set
of topology rules, in the sense that this mechanism depends only on the
neighbouring geometries; this concept is correct and has been checked
for all exposed rules. The only exception to this would be the case of
designing a new customized topology rule that includes distance
concepts; e.g., rivers must be closer than 1000 m from roads (in that
case, the dirty area boxes from both rivers and roads should be
expanded by at least the distance used as a parameter).

3.6. Topology management in Jaspa

The process of topology management in Jaspa can be quickly
summarized as follows: the creation of a topology model, addition of
layers to the model and rules to be satisfied by the layers, and finally
rule validation.

1) Creation of a topology model

Topology management in Jaspa starts by creating a topology model.
If it is the first time, a topology schema is simultaneously created. This
topology schema can host multiple topology models with different or
equal rules or layers participating in each topology model. For each
topology model, Jaspa automatically creates two metadata tables that
will contain the layers and rules that will participate in the topology
model:

1. Layers_TopologyModelName: It stores information about the tables
that are part of a topological model (name, geometry type and the
tolerance of each layer).

2. Rules_TopologyModelName: It stores information about the rules
that are part of a topological model, such as the name of each rule,
the name of the layers that participate in it with their geometry types
and tolerances, and other fields with information about validation
status.

2) Configuration of the topology model

First, the user must add the layers that participate in the topology
model. At this step, the cluster tolerance for each layer is explicitly
specified by the user. If not, the default tolerance is 0.001 units. The
addition of a layer includes three events:

– The layer metadata table is updated.
– A temporal topotime table is added.
– A topotime field is added to the geometry table of each layer.

Second, the user adds to the topology model the rules that must be
followed by the layers. It is possible to specify for each layer a filter to
validate a set of features (rows). The same rule can be added to the

Fig. 3. SQL script definition of the ‘Must be disjoint topology’ rule.
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topology model several times, with different selections of a layer
participating in each instance of the rule. The consequence of adding
a rule is the update of the rule metadata table.

3) Rules validation

Depending on the requirements of the user, a topology model can
be fully or partially validated by the following criteria:

– Validate a full topological model.
– Validate a rule that participates in a specific topological model.
– Validate a layer that participates in a specific topological model.
– Validate a layer in every topological model in which it participates.

Jaspa validates by default only the features indicated by the
“TopoTime” mechanism, although the entire layer can be validated if
required. Regardless of the chosen validation criterion, the results of a
validation process are as follows:

– Each rule metadata table is updated.
– If a rule is validated for the first time, an error table for each

topology rule is created to insert the errors into it.

4. Practical case

The INSPIRE (Infrastructure for Spatial Information in Europe)
European Directive (European Parliament, 2007) and subsequent
regulations define the structure of spatial data and services for future
European SDI. The INSPIRE policy of harmonization and interoper-
ability of spatial data are consistent with international standards of the
OGC (Open Geospatial Consortium) and the ISO/TC 211 (http://www.
isotc211.org).

The BTA (Base Topográfica Armonizada - Harmonized Spatial
Database) (Martinez-Llario et al., 2012) is a complex geographic
database model that attempts to follow the European specification
data from INSPIRE in Spain.

The purpose of this chapter is to show how the new topology system
can be applied to this cartographic model. The BTA model defines
hundreds of spatial relationships. In this example, we show the use of
just one topology rule to model a special conflictive case between two
layers.

In this example, we have two datasets (layers) that model the
transportation network. The layer “viarialin” contains the line strings
defining the transportation network: edges and borders. The layer
“viariapol” contains the polygons defining the road areas.

The zone of study covers a rectangle of 15×10 km2. The “viarialin”
layer contains approximately 6200 lines, and “viariapol” contains
approximately 800 polygons. The number of errors detected by this
topology rule example can be extrapolated to any other zone.

The “viarialin” layer has a feature attribute “componen1d”, which
categorizes the feature as follows:

– EJE: Line strings defining the centreline of the road area.
– BOR: Line strings defining the external boundary of the road area.
– BVI: Line strings defining the shared boundaries that divide two

road polygons.
– ECO: Line strings defining the junction between centrelines (notice

that these lines do not divide road polygons.

Fig. 4 shows that there is some duplicated data because the
boundaries of the polygons of “viariapol” must overlap some lines
from “viarialin” (only the ‘BOR’ and ‘BVI’ categories). These duplicated
lines must be totally coincident. This duplication is not observed most
of the time (see Fig. 5a) because the geometries have different numbers
of vertices or segments or only because both layers come from different
editing and capture processes and do not adjust exactly.

Fig. 5a shows the distance (‘d’) between the boundary of the
polygon feature and the line feature. If ‘d’ is much less than the data
accuracy (approximately one-tenth as a minimum), then we can
assume that the line and/or the polygon can be moved to match each
other exactly without distorting the map accuracy. This process is
performed automatically by adjusting the vertices between both layers
as we stated in chapter 3.1.

In this example, we apply a topology rule to these two datasets, first
without using this automatic adjustment and later with it. This way, the
reader can check the importance of this procedure.

To model the explained spatial relationship between these two
layers, we have developed a “line-polygon” topology rule called “Layer
A must be covered by boundary of layer B”, where A is “viarialin” and B
is “viariapol”. Any line from layer A must be covered by the boundaries
of one or many polygons for layer B.

As shown in Fig. 4, the lines of type “EJE” and “ECO” are
centrelines and must not participate in this rule. For this purpose, we
have extended the system to use attribute filtering.

Fig. 5b shows a semantic inconsistency in our model: the boundary
of the polygon is covered partially because there is a section of the line
categorized as ‘EJE’ instead of ‘BVI’ or ‘BOR’.

The process is extremely easy. From an SQL client, we will run the
followings SQL commands:

1) Create a new topology: SELECT command ('create topology
t1')

2) Add the layer “viariapol” to the topology: SELECT command ('ADD
layer viariapol TO t1')

3) Add the layer “viarialin” to the topology: SELECT command ('ADD
layer viarialin TO t1')

4) Add the rule “must be covered by boundary of layer” (mbcbbol) to
the topology:

SELECT command ('ADD RULE mbcbbol TO t1 using viarialin,
viariapol attrexp1 {(Table 1).componen1d like ''B%''}')

The “attrexp1” parameter passes a filter to the SQL script. In
this case, only the attribute ‘component1d’ from “viarialin” that
starts with ‘B’ (‘BOR’ and ‘BFI’ in Fig. 3) are required.

Fig. 4. Spatial relationships between two transportation network layers from BTA.

Fig. 5. Some topology errors.
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5) Validate de topology rule: SELECT command ('SHOW RULES ON
t1')

The full process takes a few seconds for all layers, and by default,
the process does not snap geometries between layers. The response is
as follows:

Process finalized. Number of SQL executed: 3335 Number
of affected rows: 872

command
The rule 1 in the topology t1 has been validated.

Errors [Before:0 After validating:1313]
The validation shows that 1313 lines are not covered properly by

the boundaries of the “viariapol” layer.
Although we have demonstrated how powerful the topology rule

system is, the GIS user cannot manually fix all of these errors. To fix
most of the errors, we have developed an adjusting method (see Section
3.1). By default, Jaspa does not adjust the geometries; to accomplish
this, we must specify the property SNAP for each layer of the topology
(the snapping tolerance is 0.001 m by default):

SELECT command ('ALTER LAYER viarialin ON t1 SNAP
true');

SELECT command ('ALTER LAYER viariapol ON t1 SNAP
true');

SELECT command ('validate rule 1 ON t1');
After validating the topology again, the number of features that

violate the rule decreases to 103 (92% of the errors have been fixed
automatically). The Jaspa topology system creates a new layer with
these 103 problematics geometries (r1_t1_mbcbbol_viariapol layer)
that the user can display with a GIS desktop (Fig. 6) to determine the
problem of each feature.

The GIS user must check all of these remaining errors and attempt
to fix them with a GIS editor. After this process, our datasets will be
ready for any spatial analysis and hence to be delivered.

Fig. 7. shows two examples of the errors found and summarizes

most of them. Fig. 7a shows a lack of adjustment (approximately
3 mm) between viarialin and the boundary of viariapol. Fig. 7b shows
many errors because the viarialin lines are marked as BVI type, which
means that these lines should determine the boundaries of different
polygons, but the figure shows only one large polygon.

4.1. Data specification INSPIRE rules

As we mentioned, the BTA model attempts to follow the European
data specification from INSPIRE in Spain. Most of the designed
topology rules can be used to validate the INSPIRE data specification,
and this is one of the main goals of the presented software.

In the technical guidelines for the INSPIRE data specification, there
are specific instructions about defining the geometrical spatial relation-
ships among features.

In the data quality chapter from each data specification guideline,
there are some explicit spatial constraints. To check these constraints,
we can easily use the topology system presented; e.g., some of the
spatial constraints that contain the guidelines from the transportation
network data specification (data quality chapter) (INSPIRE, 2014) are
as follows:

Completeness (commission) due to

– Number of duplicate feature instances.

Logical consistency (topological consistency) due to

– Number of invalid overlaps of surfaces. Total number of erroneous
overlaps within the data.

– Number of missing connections due to undershoots or overshoots.
The lack of connectivity exceeding the connectivity tolerance is
considered to be an error if the real features are connected in the
transport network.

– Number of invalid self-intersect errors. Count of all items in the data

Fig. 6. Kosmo GIS with the Jaspa plugin showing the topology rule errors (red) layer.
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that illegally intersect with themselves.
– Number of invalid self-overlap errors. Count of all items in the data

that illegally self-overlap.

The violation of the above constraints can be checked easily by
applying the topology rules: “must not be duplicated”, “must not
overlap”, “must not overlap with”, “must not self-intersect” and “must
not self-overlap”.

To check the lack of connectivity, we have developed the INSPIRE
specific rules “must be connected 2D with” and “must be connected 3D
with” (these rules are not supported by ArcGIS) that follow the
INSPIRE definition. The INSPIRE technical guide, in its data capture
chapter (ensuring network connectivity) defines the connectivity as
follows: “link ends and nodes that are not connected shall always be
separated by a distance that is greater than the connectivity tolerance”,
which is exactly the function of these topology rules.

The technical guidelines contain more examples about spatial
constraints that can be checked using the implemented topology rules.
To show all of these spatial constraints from each INSPIRE data
specification is not the purpose of this paper but rather to show that the
topology rule engine can be used to test most of them.

With this practical example, we wanted to show the following:

– The end user can use the predefined rules (an advanced user could
design new topology rules) that consider the complex spatial
relationships between layers.

– The layers are adjusted to avoid any geometrical precision matching
problem between geometries.

– The attribute features (“componen1d” in this example) can be used
to filter and apply the topology rule depending on the semantic
meanings of the features.

– PostgreSQL has been used as the DBMS backend, but we could have
used Jaspa with H2 or Oracle.

5. Conclusions

Jaspa is the first open source spatial extension for databases that
implements a rule-based topology. Topology management is a method
to determine the integrity of the data. To this end, Jaspa provides a
highly flexible and fast procedure to enforce relationship integrity
between layers. After validating and correcting, a high-quality dataset
is obtained without the need to change to an arc-node model.

The Jaspa topology rule-based engine introduces five major ad-
vantages over the topology rule systems provided in GIS desktops:

• By default, Jaspa covers more spatial relationships (67 topology
rules) between layers than any other GIS system.

• An advanced user may freely define its own rules using SQL
parametrized scripts in Jaspa code. As a result, each user will
elaborate a set of rules that portrays its data model in the most
suitable way. No other GIS software is able to do that.

• Topology rules can be applied to the whole layer or just a set of
features from the layer. In ArcGIS, to be able to apply the topology
rule to a set of features, it is necessary to create subtypes. In other
open source GIS, the topology rules area applied only to the whole
layer.

• There is not a single cluster tolerance for all layers. This is
particularly important in terms of scalability because some data
have usually been collected with different accuracy levels, or the user
may want to apply different tolerance depending on the layers.

• A topology scheme can be understood as a set of topology rules (and
a cluster tolerance) that affect one or many datasets. A GIS user can
define many topology schemes, and the same dataset can take part
of several topology schemes as well. In other GIS such as ArcGIS,
this is not allowed because each dataset can take part of just a
topology schema.

• We showed that many spatial constraints defined in the INSPIRE
data specification technical guides can be checked using these
topology rules, and some rules have been implemented specifically
for this INSPIRE purpose.

With this topology rule system, a user can design a rigorous quality
control for the datasets. Users can design complex spatial relationships
to model their geographic databases. The result is a much more reliable
cartography to perform subsequent spatial analysis.

Most of the base maps of a country should follow complex GIS
datasets such as the INSPIRE data specification in Europe. The
proposed topology rule system offers a solution to be able to model
the spatial constraints and check the data quality of these data
specifications in a spatial database manager.

6. Future research

Despite the advantages, the topology treatment is not fully com-
plete. Once the topology rules are applied, the software should be able
to automatically fix some errors. The research is currently focused on
improving the automatic spatial adjustment of features given a certain
cluster tolerance and without producing invalid geometries.

As noted previously, a DBMS is the natural environment for storing
data, so a full solution should be provided to satisfy users who require
topological structures. Furthermore, the next step would be to imple-
ment a dual system in which the user could choose between storing
spatial data in a compliance simple feature structure or a topological
structure and offer mechanisms for conversion from one structure into
another in addition to keeping the topology rules system to ensure high
quality in spaghetti data. As stated by Baars et al. (2004), both types
(topology rules and topological structures) may work together: first
check the rules and subsequently migrate to a topologically structured
model.

Fig. 7. Main errors in the case study.
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Software availability

JASPA Topology software: Free under the GNU GPL license and
can be downloaded from http://jaspa.upv.es.

Developer: Jose Martinez-Llario, jomarlla@cgf.upv.es.
First version: 2011.
Programing languages: Java, PL/Java and SQL.
Operating System requirements: MS Windows XP or newer, recent

Mac OSX, GNU/Linux or a UNIX variant.
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