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Governments and companies around the world collect point clouds (datasets containing elevation
points) because these are useful for many applications, e.g. to reconstruct 3D city models, to understand
and predict the impact of floods, and to monitor dikes. We address in this paper the visualisation of point
clouds, which is perhaps the most essential instrument a practitioner or a scientist has to analyse and
understand such datasets. We argue that it is currently hampered by two main problems: (1) point
clouds are often massive (several billion points); (2) the viewer's perception of depth and structure is
often lost (because of the sparse and unstructured points). We propose solving both problems by using
the Medial Axis Transform (MAT) and its properties. This allows us to (1) smartly simplify a point cloud in
a geometry-dependent way (to preserve only significant features), and (2) to render splats whose radii
are adaptive to the distribution of points (and thus obtain less “holes” in the surface). Our main con-
tribution is a series of heuristics that allows us to compute the MAT robustly for noisy real-world LiDAR
point clouds, and to compute the MAT for point clouds that do not fit into the main memory. We have
implemented our algorithms, we report on experiments made with point clouds (of more than one
billion points), and we demonstrate that we are able to render scenes with much less points than in the
original point cloud (we preserve around 10%) while retaining good depth-perception and a sense of
structure at close viewing distances.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With recent and ongoing advances in remote sensing to collect
3D elevation information, e.g. aerial LiDAR (Mallet and Bretar,
2009) and dense image matching (Haala and Rothermel, 2012), we
are able to acquire samples of the Earth in unprecedented quan-
tities (up to hundreds of points per square meter) and with very
high accuracy. A prime example is the Dutch national elevation
dataset AHN1 which has a total of over 600 billion points. The
collected elevation points represent both natural (e.g. vegetation,
mountains and valleys) and man-made (e.g. buildings, dikes and
bridges) surfaces—we refer to such point-based datasets, in-
dependent of their acquisition technique, as point clouds. Such
geo-referenced point clouds are currently being collected by many
governments and organisations because they allow us to re-
construct 3D city models (Rottensteiner, 2003), to better under-
stand and predict the impact of floods (Fewtrell et al., 2011) or
wind (Ujang et al., 2013), to monitor dikes (Krüger et al., 2008),
and can help improve several applications such as precision
farming (Koenig et al., 2015), forest mapping (van Leeuwen and
Nieuwenhuis, 2010) and infrastructure management (Snyder,
2013).

We address in this paper the effective visualisation of massive
point clouds, which is perhaps the most essential instrument a
scientist has to analyse and understand a point cloud. As argued by
Dykes et al. (2005), visualisation can and should support the entire
geoscientific process from the initial data exploration to synthesis,
analysis, evaluation and presentation. However, the visualisation
of point clouds is currently hampered by two main problems:
(1) due to their massive size they fit neither a computer's main
memory nor a computer's graphics memory; and (2) how to
achieve a visually pleasing rendering that strengthens the viewer's
perception of depth and her sense of structure when only sparse
and unstructured points are rendered. As we further describe in
Section 2, it is indeed possible to visualise point clouds that exceed
the capacity of a computer's internal memory through the use of
out-of-core spatial indexing schemes and by applying methods
such as view-frustum culling and multi-resolution hierarchies to
select a subset of the points (Kreylos et al., 2008; Wimmer and
Scheiblauer, 2006; Richter and Döllner, 2010). Thus a high frame-
rate can be achieved by limiting the number of points that is sent
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Fig. 1. Point cloud rendered with shaded fixed-sized points. When zoomed in it is
hard to perceive structure and depth, due to the large screen distances between
points.
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to the graphics card of a computer. We argue that the visual
quality is linked to the spatial distribution of points on the screen
and the applied point rendering technique. However, current point
cloud visualisation methods often use the most basic point ren-
dering techniques and always apply a regular grid-based point
simplification scheme that fails to take into account the geometry
of the sampled surface. See for instance Fig. 1 that illustrates how
the viewer's sense of depth and structure is distorted at closer
viewing distances because of the large gaps between points. Fur-
thermore, because the geometry of the sampled surface is not
taken into account during regular grid-based simplification, fine
details cannot be adequately represented.

In this paper we solve both problems by using a point cloud
visualisation approach based on the Medial Axis Transform (MAT),
a skeleton-like representation of shape that we describe further in
Fig. 2. A splat is defined for each point as a normal-oriented disk with a radius r.
Usually r is chosen such that there are no holes.

Fig. 3. Profile view of a DSM. Information is lost when the su
Section 3. In Section 4 we demonstrate how to use the local feature
size, a property derived from the MAT, to both achieve a geometry-
dependent point cloud simplification and a geometry-dependent
point rendering. The point distribution that we then obtain is
adaptive to the geometry of surface features: small surface fea-
tures are represented with relatively more points than large fea-
tures. To render points we use surface splatting (see Fig. 2), i.e. a
rendering technique where points are rendered as circular disks
(splats) that are oriented and shaded using the point normals (see
also Gross and Pfister, 2011). By relating the splat radii to the local
feature size, we are able to draw bigger splats for large features
that do not contain fine details and small splats for finer geometry
with a smaller feature size. Combined with our geometry-depen-
dent point simplification, we are able to render scenes with much
less points while retaining the same visual quality and we achieve
good depth-perception and sense of structure also at close viewing
distances.

Furthermore, to our knowledge we are the first to robustly
estimate the MAT for real-world LiDAR point clouds. In Section 3.3
we explain how we extend an existing algorithm to estimate the
MAT (Ma et al., 2012) to deal robustly with the noise that is ty-
pically present in LiDAR point clouds. We also show in Section 3.4
that our method to obtain MAT approximations from point clouds
can be scaled to massive datasets through the application of a
simple partitioning scheme. Finally, in Section 5, we describe our
experimental results with real-world datasets containing up to
1.3 billion points.
2. Related work

We review in this section two main topics related to the work
presented in this paper: (1) point cloud simplification and (2) vi-
sualisation approaches for big point clouds.

We do not elaborate on more traditional approaches of sim-
plification and visualisation that are based on raster grids or TINs
(see for example Lee, 1989; Garland and Heckbert, 1995; Kraus and
Pfeifer, 1998), because these are all based on the assumption that
the area of interest can be adequately represented with a so-called
2.5D surface or elevation field, i.e. a surface monotone to the
horizontal plane (Li et al., 2005; Kumler, 1994). We believe that
this assumption does not apply for existing urban point clouds
that contain many inherent 3D objects such as trees, balconies and
even vertical walls (see Fig. 3). By representing these objects in
2.5D, valuable information on their shape is lost. The resulting
misrepresented shapes may subsequently lead to errors in any
follow-up analysis.

2.1. Point simplification

Pauly et al. (2002) implement and review two approaches for
point cloud simplification of densely sampled smooth shapes:
clustering and iterative simplification. Notice, however, that the
rface must be uniquely projectable to a horizontal plane.



Fig. 4. The Medial Axis Transform for a two-dimensional shape.

Fig. 5. The two final iterations in the ball-shrinking process for the point p to
approximate the medial axis [ ].

Fig. 6. Two ball iterations for p, where = +j i 1. The noisy point p̃j can be detected
by the small separation angle θj of Bj.
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point cloud datasets that we consider are not necessarily smooth
and the sampling density may vary greatly.

Clustering subdivides the point cloud into clusters that are each
replaced by one representative sample. The cluster may be defined
by the non-empty cells of a regular grid that is superimposed on
the input point cloud, in which case the clusters are replaced by
the center points of these cells. Grid-based clustering is widely
used for LiDAR point clouds because it is simple to implement and
fast to compute. However, because of the fixed cell size the re-
sulting points are uniformly distributed, which makes it im-
possible to achieve a sampling density that is adaptive to the
geometry of the sampled surface.

Iterative simplification, which can be considered a general-
isation for 3D of the work of Lee (1989), reduces the number of
points based on an error metric that quantifies the error that re-
sults from the removal of a point. Points are removed in order of
increasing error, and every point removal affects the error of sur-
rounding points. This is a global algorithm that is difficult to scale
to massive point clouds.

Pauly et al. (2002) use the surface-variation metric to quantify
geometric detail for each point as the variation along the
approximated normal with respect to the tangent plane of a point.
They show that surface-variation closely resembles curvature, but
argue that surface-variation is a more meaningful metric for point
cloud simplification, because when two surfaces come close to-
gether, i.e. closer than the smallest enclosing sphere of the k-
neighborhood of the point in question, this also leads to a higher
surface-variation. The local feature size metric that we use in this
paper also possesses these favourable properties.

2.2. Visualisation of massive point clouds

Kreylos et al. (2008) have implemented a multi-resolution out-
of-core octree-based renderer. Their octree-based downsampling
scheme, similar to clustering as described in Section 2.1, is con-
structed in a pre-processing phase and designed to achieve a
uniform point distribution at every level of detail, so it does not
consider the geometry of the sampled objects in any way. At any
time a subset of the input point cloud is displayed and points are
rendered as simple fixed-sized squares with optional shading.
While fast and simple to implement, this results in a distorted
sense of depth and structure at closer viewing distances (see
Fig. 1). This is due to the presence of holes in the surface when the
distances between points become too large on the screen. It is
especially a problem for sparsely sampled areas such as vertical
surfaces (walls) in aerial point clouds. Wand et al. (2008), Wimmer
and Scheiblauer (2006); Scheiblauer (2014), Richter and Döllner
(2010, 2014) and Elseberg et al. (2013) all showcase comparable
out-of core octree-based visualisation frameworks for large point
clouds with uniform point downsampling. Elseberg et al. (2013)
visualise coarser level of details presumably by rendering sets of
octree cells as a point located in the cells' center rather than using
a subset of the original point cloud.

As illustrated by Fig. 2, splatting is a point rendering technique
where points are rendered as surface aligned disks that are para-
meterised by some radius r (see also Gross and Pfister, 2011).
Usually r is chosen such that the splats are overlapping each other
so that holes are absent and the point cloud appears to be a closed
surface on the screen regardless of the viewing distance, because r
is defined in object space (i.e. in the coordinate system of the point
cloud).

Wand et al. (2008) briefly discuss the possibility of using rec-
tangular point splats that are aligned according to the two greatest
principal components of a k-neighbourhood. Scheiblauer (2014)



Fig. 7. Simple tiling scheme. Each tile is buffered with the initial ball radius r0.

Fig. 8. The local point density and the radius of the splat for p (a point sampled on
) are based on the local feature size ( )f p which is the shortest distance from p to

the point approximation of [ ]. For this figure ϵ ≈ 0.5.

Fig. 9. Simulated aerial LiDAR point cloud for a house model (dimensions: 10�
20�15 m, 1751 points).
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and Richter and Döllner (2014) both implement a form of point
splatting. But Scheiblauer (2014) does not use normals, and the
size of the splats either depends on the rendered level of detail or
on a local point density estimate.

Kovač and Žalik (2010) propose to use a precomputed quadtree
index that facilitates on-the-fly point loading and normal com-
putation, but assumes good spatial coherence and is designed to
work only for 2.5D surfaces. Points are rendered as oriented splats
using the approach of Botsch and Kobbelt (2003). They apply
random subsampling and fixed splat radii, which does not ne-
cessarily result in a hole-free visualisation of the scene. As the
authors themselves note, the holes are partly caused by in-
adequate sampling densities in some parts of the point cloud. In-
deed, vertical and transparent surfaces are often relatively sparsely
sampled in airborne LiDAR point clouds.

We conclude that many of the described approaches have
solved the issue of managing huge point clouds using out-of-core
spatial indexes, and that some of the approaches apply splatting,
but none of them take the geometry of sampled objects in
consideration.
3. Computing the Medial Axis Transform

3.1. The MAT

The Medial Axis Transform (MAT) is an alternative re-
presentation of shape that explicitly encodes a shape's topology
and geometry as a skeletal structure. The MAT can be computed
from a boundary representation of a shape, and vice versa, and it
can be defined as a set of medial balls. Given a shape boundary
embedded in the three-dimensional Euclidean space ( 3), we
define a medial ball as a maximal ball that touches on at least
two points and does not contain any points of on its interior. The
MAT, denoted [ ], is defined as the set of medial balls (see Fig. 4
(a) and (b) for a 2D example); likewise the medial axis of is
defined as the set of centers of medial balls. Consequently, all
points of the medial axis of are closest to at least two points on
. In 3 the medial axis is a set of manifolds with boundaries

(called sheets) that meet along a set of Y-intersection curves (see
Siddiqi and Pizer, 2008) and form a skeleton-like structure. The
medial balls in the interior of form the interior MAT, and the
balls on the exterior of form the exterior MAT.

3.2. Approximating the MAT

The exact computation of the MAT is not possible for all shapes
and is computationally infeasible in practice, especially for 3D
objects (Attali et al., 2009). Fortunately, approximations of the
MAT give satisfactory results for most shapes and are computa-
tionally feasible. Various algorithms exist to approximate the MAT
from either a set of sample points on , often using the Voronoi
diagram (Attali and Montanvert, 1997; Amenta et al., 2001; Dey



Fig. 10. Sequence of shrinking balls on a 2D dataset for a single input point. (For interpretation of the references to colour in this figure, the reader is referred to the web
version of this paper.)
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and Zhao, 2004), or from a voxelised representation of using the
distance transform (Foskey et al., 2003; Hesselink et al., 2005;
Chaussard et al., 2011). However, Voronoi methods are complex to
implement robustly and using a voxelisation introduces unwanted
inaccuracies and is not scalable (Sobiecki et al., 2013). In this paper
we therefore choose to use the ball-shrinking algorithm that was
introduced by Ma et al. (2012). This algorithm is simple, robust,
memory efficient and easy to parallelise (see Ma et al., 2012; Jalba
et al., 2012). And, as we demonstrate in Sections 3.3 and 3.4 it can
be modified to deal effectively with noisy real-world inputs and to
process massive dataset.

The ball-shrinking algorithm approximates the medial axis
from an oriented point cloud P that samples . It works as follows
(see Fig. 5): for each point ∈ Pp with corresponding normal np, a
ball ( )B rc ,00 0 with a large radius r0 and center = − +rc n p0 p0 is
initialised. By definition this ball is centered on the straight line
through np. This large initial ball is iteratively shrunk to find and
approximate a medial ball. Let >i 0 be an iteration counter. A new
ball Bi is found by performing a nearest neighbour query from −ci 1

to the points in P (but excluding p itself). The resulting point p̃i is
used to compute ri and ci such that Bi passes through p and p̃i and
remains centered on the straight line that passed though np. The
iteration is stopped when ˜ +pi 1 equals pi or p, implying that Bi is
empty. It clearly also touches P on two points and can therefore be
considered a medial ball; and ci is therefore a point on the medial
axis of P. If this ball-shrinking procedure is executed for every

∈ Pp , an approximate interior medial ball for every p is obtained.
By running the algorithm a second time, but now with flipped
normals, we find also an approximate exterior medial ball for every

∈ Pp . The set of the interior and exterior medial balls forms an
approximate MAT of .
3.3. Denoising heuristics

The original ball-shrinking algorithm of Ma et al. (2012) was
designed to handle well-sampled point clouds with very little
noise. However, in practice, point clouds such as LiDAR datasets
typically contain significant noise and have a highly varying point
density which leads to a distorted MAT approximation. While it is
common to filter and remove noisy MAT points after approxima-
tion (see for instance Amenta et al., 2001), this has an unwanted
side effect: a filtered MAT contains less points and is therefore a
sparse approximation of the true MAT. In our experience, the re-
sulting MAT approximation may in fact be so sparse that the MAT
is hardly perceivable at all. We therefore introduce heuristics that
do not remove noisy MAT points, but move them towards a stable
MAT instead. They are extensions to the ball-shrinking algorithm
of Ma et al. (2012) which, as described in Section 3.2, computes a
series of n balls … −B B, , n0 1 for every point in P. We have found that
it is often possible to recognise an unstable medial ball by ana-
lyzing the progression of ball metrics as a function of the ball
iteration. Furthermore, we make the observation that the last ball
in the ball-shrinking sequence may not always be the best ap-
proximate medial ball when noise is taken into consideration (see
Fig. 6).

Based on these observations we propose two simple heuristics
that both use the scale invariant separation angle θi (the angle
∠ ˜pc pi i, see Fig. 6) that is defined for each iteration i in the ball-
shrinking process for a single point:

Stable ball preservation: Whenever θiþ1 drops below a threshold
tpreserve, we stop the ball-shrinking process and set Bi to the
approximate medial ball for the current surface point. As illu-
strated in Fig. 6, Bi ignores the noisy point of iteration iþ1, and
is therefore a better approximate medial ball.
Plane detection: When the separation angle of the first ball θ1 is



Fig. 11. Medial axis approximation dataset B without denoising (Ma et al., 2012)
and with denoising (our method) for = °t 20preserve and = °t 32planar . Shown are top
views (top) and side views (bottom). Interior points in red and exterior points in
purple. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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lower than a threshold tplanar, we do not assign a medial ball to
the current surface point. This typically occurs when approx-
imating the medial axis for a planar feature whose point sam-
ples are slightly perturbed. Since a ball that touches a plane in
two points should have an infinite radius, we should ignore
these balls.

Thus, by exploiting the information that is captured in the se-
quence of balls of a surface point, rather than only considering the
final ball, we find significantly more robust approximate medial
balls. Note that this does not add to the computational cost of the
ball-shrinking algorithm, since the average number of ball itera-
tions per point is lower as a result of these heuristics.

3.4. Approximating the MAT for large datasets

To be able to handle massive datasets (i.e. billions of points)
that do not fit a computer's main memory (in-core), we propose a
simple partitioning scheme for the ball-shrinking algorithm that is
able to sequentially process subsets of the dataset. This is possible
because the only global operation performed by the algorithms
described in this paper, the nearest neighbour query, is actually
bounded by the initial ball radius r0 which is a user-defined
parameter. Only medial balls with a radius up to r0 are con-
structed, and the radius of the largest medial ball of an object
typically depends on the approximate size of that object. A sen-
sible choice for the value of r0 is therefore an approximate size of
the largest object in the input. For our datasets we found that a
value for r0 of approximately 100 m suffices. It is therefore possible
to spatially subdivide and process a massive dataset with a limited
amount of main memory.
To partition, we subdivide the dataset into square tiles of fixed
dimensions. The tile-size is chosen such that the contained points
easily fit main memory. Additionally, every tile is buffered with the
value of r0 (see Fig. 7). Then, the tiles are processed one by one.
First we compute a kd-tree for the complete tile (including the
buffer) to speed up nearest neighbour queries. Then we approx-
imate the point normals and the MAT itself for the points that are
inside the tile but not in the buffer region.

With this simple out-of-core scheme we can obtain identical
outputs compared to the in-core approach. In Section 5 we de-
monstrate how we compute the MAT for a dataset with 1.3 billion
points.
4. MAT-based simplification and splat-based visualisation

We propose to use the MAT derived local feature size (LFS) for
both the point cloud simplification and the splat radius determi-
nation. The LFS ( )f p of a point on ∈ Pp , where P represents the
point cloud, is defined as the shortest distance between p and the
MAT of P (see Fig. 8). It captures the curvature at p and the
proximity of other parts of , since in both these cases the medial
axis is close to . Given a point cloud P, we can eliminate much of
its redundancy by removing points that have relatively high LFS.
We use the ϵ-sampling criterion (Amenta et al., 1998) to achieve
this, similar to Dey et al. (2001) and Ma et al. (2012). P is called an
ϵ-sample if each point ∈ Pp has another point of P within a dis-
tance of ϵ ( )f p (see Fig. 8). An ϵ-sample can be approximated by
iteratively removing points that do not break the ϵ-sampling cri-
terion. Similar to Ma et al. (2012) we compute an approximate ϵ-
sample from an oversampled input point cloud P by testing for
each ∈ Pp whether the ball ( ϵ ( ))B fp p, contains any point from P
other than p itself. If it does, p is removed from P. In our version of
this algorithm we process the points in a random order, because
an order in which subsequent points are too close may cause gaps
in the simplified point cloud. The LFS thus gives a simple and ef-
fective definition of the size of a feature, and with the ϵ-sampling
criterion we are able to relate the LFS directly to the local sampling
density. We thus obtain a geometry dependent simplification of
the point cloud where areas with a large LFS are represented with
relatively fewer points than areas with a small LFS.

To complete our visualisation approach we also make the splat
radius adaptive to the LFS. Each point is rendered as a splat with a
radius set to ϵ ( )f p (see Fig. 8). Points in areas with a lower point
density in the ϵ-sample are therefore drawn with larger splats.
Moreover, because both the splat radii and the ϵ-sample are based on
the distance ϵ ( )f p , the resulting visualisation is such that a surface-
like impression is obtained where holes are minimised despite the
non-homogeneous geometry-aware point simplification.
5. Implementation, experiments and discussion

We have implemented the algorithms described in Sections
3 and 4 and tested them using two aerial LiDAR datasets. The first
is a publicly available dataset of a mountain range in California,
USA (National Science Foundation, 2005). From this ‘mountain’
dataset we took an area of 942�898 m, containing 1 632 040
points. The reported point density is 2.98 points per square meter.
The second dataset is from the municipality of Rotterdam, The
Netherlands, and has a reported point density of 30 points per
square meter. From this ‘urban’ dataset we selected an area of
200�250 m, containing 746 351 points, to compare with the
mountain dataset and an area of 1.3 billion points to test the
scalability of our method.

Since our ball-shrinking algorithm requires a normal vector for



Fig. 12. Exterior MAT approximation with (our method) and without denoising (Ma et al., 2012) heuristics. = °t 20preserve and = °t 32planar .

Fig. 13. Local feature size approximations for urban dataset with and without denoising. Red indicates low local feature size and blue high local feature size. (For inter-
pretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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every input point, we compute these beforehand using a principal
component analysis of the nearest 15 neighbours of every point. To
speed up nearest neighbour queries for the normal computation,
the MAT estimation, the LFS estimation and the ϵ-sample simplifi-
cation, we use a kd-tree. Furthermore, to make the computation of
the LFS more robust, we compute the LFS (the distance from a
surface point to the MAT) as the median distance of the 15 nearest
MAT points. To perform splatting we implement the splat rendering
method of Botsch and Kobbelt (2003) using OpenGL shaders.

We have released our Python implementation under an open-
source license and made it publicly available (Peters, 2015).

5.1. MAT approximation and noise handling

In order to quantitatively analyse the effect of the novel de-
noising heuristics that we propose in Section 3.3 we use a point
cloud that was obtained by simulating an aerial LiDAR scan2 on a
surface model of a house (see Fig. 9). Noise is simulated by adding
a normally distributed noise component with a standard deviation
of 2 cm along the scanning direction and an additional 2 cm in the
2 Using industry standard parameters (flight height 400 m, flight line spacing:
400 m) and the BlenSor software (Gschwandtner et al., 2011).
position of the scanner. We ran the unmodified ball-shrinking al-
gorithm (Ma et al., 2012) (denoted ) and our improved variant
with denoising heuristics (denoted d) on this point cloud with
added noise (denoted Pn) and without added noise (denoted P). To
quantify the quality of the resulting MAT approximation we
measure the distance to a reference MAT, that is directly derived
from the surface model geometry (denoted [ ]). From Fig. 10
(b) we observe an overall decrease of 31% (at a conservative

= °t 20preserve ) in the error of [ ]Pn as a result of our ball-pre-
servation denoising heuristic that affected 11% of the interior MAT
points. These points are no longer close to the main MAT branches,
as a result of the small perturbations in Pn for which the un-
modified ball-shrinking is particularly sensitive. Fig. 10
(a) illustrates how these points are moved towards [ ] as a
result of our ball-preservation heuristic, thereby obtaining a den-
ser MAT approximation than possible when these points would
have been removed (e.g. Amenta et al., 2001). From our experi-
ments with real-world LiDAR datasets we observe the same be-
haviour (see Figs. 11 and 12). As a result of the plane detection
heuristics, 96% of the exterior points MAT are filtered at

= °t 30planar (similar to the plane detection in Fig. 11). Furthermore,
from the plot of [ ]Pd , we see that our denoising heuristics have a
negligible effect on the approximation of the MAT of the noise-free



Fig. 14. The denoised MAT for the mountain dataset. Colours indicate elevation. (For interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 15. Memory consumption as a function of the number of processed points for
the MAT approximation of the 1.3 billion point urban dataset.
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pointcloud P.
It can also be observed (especially from Fig. 12) that some of the

minor side-branches disappear or shrink in the denoised MAT. We
can conclude that there is a trade-off between the amount of detail
captured by the MAT and the robustness to the noise present in
the input point cloud. Where our denoising approach distin-
guishes itself is that it delivers a much denser MAT approximation
than previous methods (where noisy points are removed). Also,
despite the dependence of two used-defined thresholds, we find
that the same parameter values ( = °t 20preserve and = °t 32preserve )
are adequate for both the urban and the mountain dataset.

Ultimately a much more distinctive and more useful MAT ap-
proximation is obtained. Without our denoising heuristics, com-
puting the LFS would not be feasible since there are many MAT
points near the sampled surface that distort the LFS computation
(see Fig. 13). Therefore, it would not be possible to successfully
perform our geometry-dependent point cloud simplification and
splat-radius determination for visualisation.

Fig. 14 illustrates very clearly the skeleton-like nature of the
MAT of the sample dataset, where the ridges and valleys of the
mountain range are translated to branches of the interior and
exterior MAT respectively.

5.2. Scaling

Fig. 15 shows the memory usage of our simple partitioning
scheme during the MAT computation of a 1.3 billion point dataset.

We must note that our current implementation has inefficient
memory management, which is inherent to the used programming
language (Python). The memory measurements in Fig. 15 are
therefore exhibiting a slightly increasing trend over time (i.e. as
the number of processed points increases) that is independent for
the theoretical memory requirements of the algorithm. None-
theless, we make the key observation that the amount of required
memory is successfully limited. The amount of required memory is
now bounded by the largest number of points inside a tile rather
than the total point count of the dataset. As a result we are able to
process massive datasets.

Furthermore, others have shown that highly efficient parallel
implementations of the ball-shrinking algorithm are feasible (Ma
et al., 2012; Jalba et al., 2012) (our added denoising heuristics do
no alter the memory requirements of the ball-shrinking algo-
rithm). We therefore conclude that our approach to obtain a ro-
bust MAT approximation of a LiDAR point cloud is well scalable in
terms of both memory and computational cost.

5.3. MAT-based simplification and splat-based visualisation

Figs. 16 and 17 demonstrate the effect of the MAT-based sim-
plification and splats with their radii adapted to the LFS.

In both cases the simplification removed 90% of the original
points (ϵ¼0.4), yet when rendered with LFS-sized splats the re-
sulting visualisation is similar to the original splatted point cloud
with fixed splat-radii. While the simplified LFS-splatted rendering
is not absolutely free from holes for the urban dataset (see mark
2 in Fig. 17), we also observe that, despite the reduction in points,
the sparsely sampled vertical surfaces (walls) now appear as solid
surfaces (see mark 1 in Fig. 17(d)). This is a notable improvement



Fig. 16. Visualisation results for the Mountain dataset (ϵ¼0.4).

Fig. 17. Visualisation results for the Urban dataset (ϵ¼0.4). Note the different point-densities on vertical and horizontal surfaces (marked 1 and 2).
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over fixed-sized splats, because this amplified the viewer's sense
of structure and depth at all viewing distances.

Fig. 18 illustrates further how the distribution of points in the
simplified point cloud respects the geometry of the sampled
surface.

Splats are drawn there with a decreased radius so that it is
clearly visible that (1) more points are drawn in areas with a re-
latively high curvature such as the creases in the valleys and
(2) the corresponding splats have a smaller radius when compared
to the planar areas with fewer and larger splats (also apparent in
Fig. 17(d)). Finally, in Fig. 19(a) we compare fixed-sized splats with
LFS-sized splats for the simplified mountain dataset. The flat re-
gion has fewer samples due to the relatively high LFS. But, in the
case of LFS-sized splats, the larger splat radii effectively compen-
sate for the coarser point distribution, leading to a virtually hole-
free visualisation.



Fig. 18. MAT-based simplification and splat-radii. The splat radii in this image are
reduced for illustrative purposes.
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6. Discussion

We have shown that a robust MAT can be computed from Li-
DAR point clouds, and that we can use the MAT to perform geo-
metry-dependent simplification and to improve splat-based vi-
sualisation of LiDAR point clouds. A key motivation for the de-
velopment of this approach was the distorted depth-perception
and sense of structure due to the presence of holes when a point
cloud is viewed up close (see Fig. 1). From Fig. 17 it is obvious that
splat-based rendering gives significantly less and smaller holes.
Furthermore, with our MAT-based point simplification and splat-
radii, we can maintain this benefit while retaining only 10% of the
points. However, not all holes are eliminated and some new holes
are even introduced. This has two causes. First, the largest holes
are mainly a result of insufficient sampling of the LiDAR point
cloud due to occlusion (e.g. missing walls) and the material and
orientation of the surface with respect to the laser scanner (also
noted by Kovač and Žalik, 2010). Without either making explicit
assumptions on the shape of objects or acquiring more samples in
the field, little can be done about this in our opinion. Second, while
our simplification procedure guarantees that areas are not over-
sampled according to the ϵ-sample criterion, it does not guarantee
that sufficient points are preserved in all cases. Thus, although the
local point densities are approximately the same, depending on
the (randomized) order in which points are processed during the
simplification, holes may appear in some places. To solve this is-
sue, the local point distribution after simplification should be more
homogeneous. This may be achieved by enforcing a more grid-like
distribution of points during the simplification or by more care-
fully considering the order in which points are decimated.

While we did not address how to efficiently create and manage
Fig. 19. Simplified point cloud (ϵ¼0.4) of mountain dataset.
different (discrete) levels of simplification for one dataset, we do
not foresee any major problems in combining our simplification
approach with an octree data-structure (similar to e.g. Kreylos
et al., 2008).

The simple partitioning scheme that we have implemented
effectively limits the amount of memory required to complete the
computation of massive datasets. The main limitation of this ap-
proach is that the number of points in a tile is still bounded by the
amount of available memory. Also, the size of a tile should be at
least as large as the buffer radius. Thus for extremely dense da-
tasets (several hundreds points per square meter) it may no longer
be feasible to process reasonably sized tiles. The point streaming
techniques introduced by Isenburg et al. (2006) are a possible
solution to this problem, although these techniques require a good
spatial coherence of the input point cloud.
7. Conclusions

In this paper we have made three main contributions. First, we
have shown that a usable MAT approximation can be obtained
from a massive LiDAR point cloud. To make that possible we have
extended the ball-shrinking algorithm to approximate a robust
MAT from a noisy input point cloud. Second we have proposed an
out-of-core partitioning scheme to approximate the MAT for
massive datasets that do not fit a computer's main memory. And
third, we have demonstrated one potential application of the MAT
in visualisation of LiDAR point clouds, by using it to perform
geometry-aware simplification and splat-radius determination. As
a result we have obtained a visualisation in which it is easier to
perceive depth and structure in the rendered LiDAR point cloud,
while rendering only a fraction of the full point cloud.Video S1
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