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A B S T R A C T

Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are
presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For
this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough
for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by
using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of
particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds
number and settling velocity on the development of the current which can freely evolve in the streamwise and
spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current,
the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds
number is mainly affecting the size and number of vortical structures at the front of the current, and the energy
budget.
1. Introduction

Turbidity currents are particle-laden gravity-driven currents in which
the gravitational driving force is supplied by a density excess associated
with the suspension of particles. They exhibit a complex dynamic with
the presence of the lobe-and-cleft patterns at the head of the current
followed by a region of mixing with intense spanwise Kelvin-Helmholtz
vortices. Understanding the physical mechanism associated with these
currents as well as the correct prediction of their main features are of
great importance for practical and theoretical purposes. This type of
gravity-driven currents is the most important mechanism for the
dispersal and deposition of sand on deep seafloors and on underwater
slopes of many deltas and lakes. Their associated deposits can provide a
valuable record of submarine landslide dynamics, shedding light on the
magnitude of associated tsunamis, river flooding and major earthquakes
(Talling et al. (2012)). They can also damage seriously seafloor cables
and expensive seafloor installations for recovering oil and gas (Barley
(1999)). More details about turbidity currents can be found in the
extensive reviews of Meiburg and Kneller (2009) and Middleton (1993).

The deposits observed in nature are very complex, very voluminous
and are extremely challenging and costly to study. As a result, turbidity
currents have been mainly investigated in very simplified and idealized
ugust 2017; Accepted 15 September
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configurations. The most studied one is the horizontal channelized lock-
exchange configuration in which uniformly suspended particle sediments
are enclosed in a small reservoir separated by a gate from the fresh fluid.
The dynamics of channelized currents is reasonably well understood with
a large number of experimental, numerical and theoretical studies as well
as predictive models (Middleton (1993); Meiburg and Kneller (2009)).

The first experimental investigations on non-channelized turbidity
currents were reported in the 1950's by Kuenen (1951) with experi-
mental studies of deposition patterns for turbidity currents in a basin
configuration. Large-scale laboratory experiments, similar to the present
configuration, are presented in Luthi (1981) to investigate the dilution
process of the particles with the ambient fluid with a focus on the
thickness of the deposit. In Bonnecaze et al. (1995), the authors studied
experimentally axisymmetric gravity currents with a finite-release of
particles to determine both the radius of an axisymmetric particle-laden
gravity current as a function of time and its deposition pattern for a va-
riety of initial particle concentrations, particle sizes, volumes and flow
rates. More recently, Parsons et al. (2007) showed evidence of a mech-
anism called lobe switching (focusing of the flow into a single lobe) in
their laboratory experiments for a basin configuration.

Highly resolved simulations of conservative gravity currents (with no
suspended sediment) for non-channelized axisymmetric initial reservoirs
2017
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were performed in Cantero et al. (2007b,a) for various Reynolds
numbers. The objective was to address the structure and dynamics of
cylindrical density currents and in particular to clarify the influence of
circumferential stretching. The authors made some comparisons with a
laboratory experiment for the case of saline water spreading in quiescent
fresh water but with a much higher Schmidt number by comparison to
the simulations. They found that their numerical simulations were in
good agreement with experimental observations and with theoretical
prediction models for axisymmetric currents (Hoult (1972); Huppert and
Simpson (1980); Rottman and Simpson (1983); Ungarish (2009)).

Very recent high-fidelity simulations and laboratory experiments for
circular and non-axisymmetric finite initial reservoirs (Zgheib et al.
(2015a,c)) showed that the effect of an initial non-circular shape for the
lock can persist for the whole duration of the observation, makingmost of
prediction models irrelevant. The authors found that some of their non-
axisymmetric currents eventually reach a self-similar shape with the
same power-law spreading rate as an axisymmetric front. They also
identified that the local speed of propagation is strongly dependent of the
initial reservoir's shape, leading to local fast and slow fronts. They pro-
posed an advanced box model, extending the classical box model (Hup-
pert and Simpson (1980)), in order to account for the shape of the initial
release (Zgheib et al. (2014, 2015b)). Theoretical and experimental
tentatives to predict gravity currents in open basins was also made by
Rocca et al. (2008, 2012). The authors used a complex model based on
shallow-water theory for the prediction of the evolution of gravity cur-
rents. They found that currents in an open basin cannot be predicted
using the usual framework adopted for channelized and axisymmetric
gravity currents.

The main motivation behind the present numerical work is to study
idealized gravity currents in an original basin configuration more
representative of real situations than channelized and axisymmetric
gravity currents. As a first step, we focus exclusively on the influence of
the Reynolds number and settling velocity in the early stages of the
evolution of the current. The paper is organized as follows. We first
present the Direct Numerical Simulation (DNS) methodology, the flow
configuration and the numerical parameters of each simulation. Some
instantaneous visualizations followed by results about the spreading of
the current, sedimentation rate, suspended mass and energy budget are
discussed in the following sections. Then, the structure of the current at
the wall and related deposition are discussed in great details. The paper is
ended with a conclusion.

2. Numerical set-up

The flow configuration is shown in Fig. 1. Unlike axisymmetric lock-
exchange configurations or the non-axisymmetric configuration of
Zgheib et al. (2014, 2015b)), there is a preferential direction for the
current, perpendicular to the initial reservoir (x1-axis, streamwise di-
rection). We assume a small volume fraction of the particles (typically
less than 1%) so that interactions among the particles can be neglected as
Fig. 1. Schematic view of the initial configuration of the lock-exchange open
basin problem.
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discussed in Espath et al. (2015). In this framework, the settling velocity
us may be considered constant and is related to the particle diameter by
the Stokes settling velocity law (Julien (2010)) which assumes that the
dominant flow force on an individual particle is the Stokes drag. This
flow configuration can be studied by solving the incompressible
Navier-Stokes equations and a scalar transport equation under the
Boussinesq approximation for the concentration of particles.

To make the equations dimensionless, half of the box height h and the
buoyancy velocity ub are chosen as the characteristics length and velocity
scales, respectively. The buoyancy velocity is related to the reduced
gravitational acceleration ub ¼

ffiffiffiffiffiffiffi
g0h

p
where g0 ¼ g (ρp � ρ0)ci∕ρ0. Here,

the particle and ambient fluid densities are ρp and ρ0 respectively, with g
defined as the gravitational acceleration, and ci as the initial volume
fraction of the particles in the lock. The Reynolds number is defined as
Re¼ ubh∕νwhere ν is the kinematic viscosity, and the Schmidt number is
defined as Sc ¼ ν∕κ ¼ 1, where κ is the mass diffusivity of the particle-
fluid mixture. All other variables are made dimensionless using ci, h
or/and ub. Thus, the incompressible Navier-Stokes equations and scalar
transport equation can be written as

∂u
∂t

¼ �∇p� 1
2
½∇⋅ðu� uÞ þ ðu⋅∇Þu� þ ν∇2uþ ceg þ f (1)

∇⋅u ¼ 0 (2)

∂c
∂t

þ ðuþ usegÞ⋅∇c ¼ κ∇2c (3)

where u (x, t) is the velocity, p (x, t) the pressure, c (x, t) the particle
concentration, eg ¼ (0,�1,0) the unit vector in gravity direction and f is a
forcing term to account for the basin geometry.

These equations are solved on a Cartesian mesh with the high-order
flow solver Incompact3d1 which is based on sixth-order compact
schemes for spatial discretization and a third-order Adams-Bashforth
scheme for time advancement. To treat the incompressibility condition, a
fractional step method requires to solve a Poisson equation, fully solved
in spectral space. With the help of the concept of modified wavenumber,
the divergence free condition is ensured up to machine accuracy. The
pressure mesh is staggered from the velocity mesh by half a mesh to avoid
spurious pressure oscillations. The modelling of the channel-basin ge-
ometry is performed with a customized immersed boundary method
based on a direct forcing approach that ensures a zero-velocity boundary
condition at the wall of the solid geometry and a no-flux boundary
condition for the particle concentration. Following the strategy of Par-
naudeau et al. (2008), a mirror flow is imposed inside the geometry in
order to avoid any discontinuities at the wall of the geometry. Note that
the edges of the basin have been rounded (r ¼ 0.2, as seen in Fig. 1). For
the particles concentration, no-flux conditions are imposed at the wall of
the geometry and are consistent with the boundary conditions of the
computational domain. More details about the present code can be found
in Laizet and Lamballais (2009). The size of the present simulations is
such that we have no alternative but to use the parallel version of this
solver (Laizet and Li (2011)), based on a highly scalable 2D decompo-
sition library and a distributed FFT interface. Incompact3d has been
extensively validated for axisymmetric gravity currents (non-published
comparisons with the data from Zgheib et al. (2015c)) and for channel-
ized gravity currents (Espath et al. (2014, 2015); de Rooij and Dal-
ziel (2001)).

For the initial condition, a weak perturbation is introduced into the
velocity field at the gate to mimic disturbances when the gate is removed.
Free-slip boundary conditions are imposed for the velocity field in the
streamwise and spanwise directions x1 and x3 while zero-velocity
boundary conditions are used in the vertical direction x2 (to mimic
1 This open source code is available at www.incompact3d.com.

http://www.incompact3d.com


Table 1
Summary of the numerical parameters.

Re L1 � L2 � L3 n1 � n2 � n3 Δt us

REY1K2 1000 12� 2� 12 1; 201� 193� 1;201 4:� 10�4 0.02
REY5K0 5000 12� 2� 12 1; 201� 289� 1;201 5:� 10�4 0
REY5K2 5000 12� 2� 12 1; 201� 289� 1;201 5:� 10�4 0.02
REY5K4 5000 12� 2� 12 1; 201� 289� 1;201 5:� 10�4 0.04
REY5K8 5000 12� 2� 12 1; 201� 289� 1;201 5:� 10�4 0.08
REY10K2 10,000 12� 2� 12 1; 201� 385� 1;201 4:� 10�4 0.02
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walls). For the scalar field, no-flux conditions are used in the streamwise
and spanwise directions x1 and x3, and in the vertical direction x2 at the
top of the domain. For the particles sedimentation in the vertical direc-
tion x2 at the bottom of the domain, a simple 1D outflow boundary
condition is imposed, meaning that the particles can virtually leave the
computational domain to mimic the deposition process (non conserva-
tive simulations).

Six high-fidelity 3D simulations are presented in this paper and the
parameters of the simulations are presented in Table 1. The initial vol-
ume of heavy fluid is defined as ðL1s � L2s � L3sÞ ¼ ð1� 2� 2Þ. The
spatial and temporal resolutions have been determined consistently with
previous high-fidelity 3D simulations of channelized and axisymmetric
gravity currents (Espath et al. (2014, 2015); Zgheib et al. (2015c)) and
the present results are independent of the spatial and temporal dis-
cretization. Three different Reynolds numbers and four different settling
velocities are investigated with a focus on the early stages of the evolu-
tion of the current. At the end of our simulations more than 75% of the
particles have deposited. In particular, for the simulationwith the highest
settling velocity more than 98% of the particles have left the computa-
tional domain, very close to the well-known run-out distance described in
Ungarish (2009) for which all the particles have left the current. Note
Fig. 2. Turbulent structures of the gravity currents illustrated by the Qâ�L�S criterion for the is
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finally that, in an equivalent laboratory experiment, the deposition of
particles would imply a change in the topography of the bottom floor
which could influence the evolution of the current and particle dynamics.
In line with previous numerical studies based on high-fidelity simulations
(H€artel et al. (2000b,a); Necker et al. (2002); Cantero et al. (2008);
Espath et al. (2014)), this change of topography is not taken into account
in the present simulations.

3. General features of the flow

Illustrations of our gravity currents in an open basin set-up for
t ¼ 10 are presented in Fig. 2 using isocontours of the Q-criterion
and the concentration of particles. For the simulations where the
settling velocity is not zero, the current can be separated in three
parts: (i) the head of the current where the well-known lobe-and-cleft
patterns can be observed in combination with very intense vortical
structures (if the Reynolds is high enough), (ii) a very quiet area just
after the head with very low level of turbulence (even at high Rey-
nolds number), (iii) a pocket of intense vortical activity, just in front of
the gate, except for the simulation REY1K2 where the Reynolds
number is too small to generate intense vortical structures. This
alternation of intense and quiet areas was also observed for axisym-
metric currents (Cantero et al. (2006, 2007b,a)). It can be noticed that
regions of high concentration of particles coincide with regions of
intense vortical activity (except for simulation REY1K2 with a low
Reynolds number). As expected the area covered by the current at this
time is strongly related to the settling velocity. Based on Fig. 2, the
settling velocity (which is related to the particles size) does not seem
to strongly affect the turbulence activity in the head of the current.
This observational result will be checked afterwards when investi-
gating the energy budget.
ovalue Q ¼ 25 and by the concentration of particle c ¼ 0.025. Data obtained at t ¼ 10.



Fig. 3. Time evolution of the streamwise front location. The triangle symbols are
extracted from the experiments of Bonnecaze et al. (1995) and correspond to a
non-conservative (Expt 1) and a conservative axisymmetric (Expt 2) current. The black dot
symbols are extracted from a channelized simulation of Espath et al. (2015), the lines are
from the present study.
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4. Front location

The streamwise evolution of the front location is a quantity of
importance, easily obtainable in experiments and simulations, which can
be used to compare the difference between channelized, axisymmetric
and the present basin gravity currents. Different phases of spreading have
been identified when the current propagates horizontally into its ambient
(Huppert and Simpson (1980); Cantero et al. (2007b)): (i) an acceleration
phase where the current initially at rest reaches its maximum velocity,
(ii) a slumping phase with a nearly constant front velocity, (iii) an inertial
phase for which the buoyancy driving force is balanced by inertia and
during which the current starts to decelerate, (iv) a viscous phase for
which the buoyancy driving force is balanced by viscosity. For the non-
channelized non-axisymmetric currents considered in this numerical
study, the local front locations are expected to vary significantly with a
strong dependence to the local direction of spreading. We therefore focus
on the slowest and fastest directions of spreading, along the x3-axis
(spanwise front) and x1-axis (streamwise front) respectively.

Comparisons with channelized and axisymmetric configurations for
the streamwise evolution of the streamwise front location are presented
in Fig. 3. The streamwise front location x1f corresponds to the first
streamwise location (located at x3 ¼ 0, corresponding to the middle-
plane) for which the concentration is equal to 0.01 when starting from
the end of the computational domain. A similar procedure is used for the
spanwise location x3f. The present results are consistent with the exper-
imental data of Bonnecaze et al. (1995) for the simulations at Reynolds
Fig. 4. Time evolution of the streamwise front location (left) and of the ratio
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5000 with and without suspended sediment. The experiments were
carried out for axisymmetric initial reservoirs of conservative and
non-conservative currents at comparable Reynolds numbers. The present
data are also showing a slightly slower expansion for the present currents
by comparison to a channelized gravity current. In the channel config-
uration, it is natural to expect a faster spreading of the current in the
streamwise direction due to the presence of walls in the lateral direction
which prevent the current to spread sideways.

The time evolution of the streamwise front location and of the ratio
between the location of the streamwise and spanwise fronts are presented
in Fig. 4. The power-law coefficients have been obtained with a con-
ventional nonlinear least-squares (NLLS) Marquardt-Levenberg algo-
rithm. For the presents simulations, the slumping phase, with a linear
time evolution, can be clearly observed up to t � 7:5, independently of
the Reynolds number. After the slumping phase, the currents are tran-
sitioning very quickly to a phase where the front evolution scales as
t1∕3 � t2∕3, with a strong dependence to the settling velocity. Note that
power-law exponents equal to 2∕3 and 1∕2 are usually reported for
channelized currents and axisymmetric currents, respectively, in the in-
ertial phase (Hoult (1972); Huppert and Simpson (1980); Rottman and
Simpson (1983); Ungarish (2009)). The impact of the Reynolds number
can be noticed with a slight reduction of the duration of the slumping
phase for the simulation at the lowest Reynolds number. Other than that,
it seems that the Reynolds number does not affect the power-law coef-
ficient in the inertial phase.

The spanwise expansion of the current in the slumping phase is quite
slow. It is however important to point out that for all the simulations the
current is evolving a bit faster in the streamwise direction with reported
power law coefficients of 1∕5� 2∕5 for the ratio between the location of
the streamwise and the spanwise fronts. Note that a power law coefficient
of 1 corresponds to an axisymmetric spreading. For the simulation
REY10K2, the evolution of the spanwise front is somehow irregular with
an alternation of low and fast regions for the spanwise expansion. Due to
the high settling velocity, the spreading of the current for the simulation
REY5k8 is quite limited after t ¼ 5, especially in the spanwise direction.
Those results will be confirmed in Fig. 8 with isolines of the bottom wall
concentration.

5. Sedimentation rate, suspended mass and energy budget

In this section, the temporal evolution for the sedimentation rate and
suspended particles mass is presented in Fig. 5. The sedimentation rate

m
⋅

sðtÞ is defined as

m
⋅

sðtÞ ¼ 1
L1L3

∫ L1
L1s
∫ L3
0 cwðx1; x3; tÞusdx3dx1; (4)

where cw is the concentration at the bottom wall. The initial value for

m
⋅

sðtÞ is the settling velocity. It can be seen that m
⋅

sðtÞ is slowly
between the location of the streamwise and the spanwise fronts (right).



Fig. 5. Time evolution of the sedimentation rate (left) and suspended mass (left).
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increasing, at a rate proportional to t (independently of the settling ve-
locity and Reynolds number), up to t � 6:5 where it reaches a peak value.
Beyond this peak, the particles continue to deposit but at a diminishing
rate, with a strong dependence to the settling velocity. As expected the
peak values obtained can be directly related to the settling velocity while
the dependence with the Reynolds number is insignificant. The rather
fast initial rate is two times larger than the rate observed in Espath et al.
(2014) for channelized gravity currents at similar Reynolds numbers. As
the current starts to spread, its surface area in a basin set-up is larger than
the surface area in a channel set-up (as the side walls are preventing a
spanwise spreading) while the bottom concentration remains at a high
level. It means that more particles will deposit in the open basin
configuration. In the present work and for us ¼ 0.02, the sedimentation
rates are reaching values of more than 0.1 which was not the case for the
channelized gravity currents in Espath et al. (2014) for the same us.

After the peak, the sedimentation rate is suddenly decreasing at a rate
varying from t�1.25 (for the lowest settling velocity) to t�6 (for the highest
settling velocity). The concentration at the bottom is more dilute with the
ambient fluid and the sedimentation rate begins to decrease. Note that
for a channelized current with us ¼ 0.02 and Re ¼ 5000 a rate of t�2.25

was reported in Espath et al. (2014). The simulations REY10K2 and
REY5K2 are producing similar results which seems to suggest that the
Reynolds number is not influencing the sedimentation rate (for the range
of Reynolds numbers considered here). The key parameter with a strong
influence for the sedimentation rate is the settling velocity.

The suspended mass normalized by the initial suspended mass is
defined as mp∕mp0 with

mpðtÞ ¼ ∫ ΩcdV : (5)

At the end of the simulations, at t ¼ 20, between 80% (for the lowest
settling velocity) and 98% (for the highest settling velocity) of the
Fig. 6. Temporal evolution of the potential energy k and potential energy Ep. Left: simulations w
with the same settling velocity us ¼ 0.02 (different Reynolds numbers).
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particles have already deposited whereas roughly 70% of the particles
have deposited in the channelized simulations of Espath et al. (2014) for
the same initial amount of particles. It be explained by textcolorblackthe
fact that the extend of the current at a given time is larger for the present
open basin set-up than it is for the channel set-up. The decrease for
mp∕mp0 is quite fast before t � 8 and then it is slowing down until the end
of the simulations. Note that the influence of the Reynolds number is
minimal for the temporal evolution of the suspended mass.

The potential to kinetic energy transformation is of fundamental in-
terest in the study of gravity currents. The rate of change for the total
energy is given by

d
�
kþEp

�
dt

¼�∫ Ω

2
Re

s : s dΩþ ∫ Ω

�
1

ScRe
x2∇2cþ x2us

∂c
∂x2

�
dΩ¼�ε� εs

(6)

where s is ε tensor of the velocity field, ε is associated to the turbulent
dissipation (macro dissipation at macroscopic scale) while εs is the
dissipation associated with loss of energy due to suspended particles
(micro dissipation at microscopic scale) Espath et al. (2014). kðtÞ ¼
∫ Ω

1
2u⋅u dΩ and EpðtÞ ¼ ∫ Ωcx2 dΩ are the kinetic and potential energy

components, respectively. In order to study the temporal evolution of ε
and εs, we define Ed and Es as the time integrals of the dissipation com-
ponents ε and εs with

EdðtÞ ¼ ∫ t
0εðτÞ dτ and EsðtÞ ¼ ∫ t

0εsðτÞ dτ: (7)

Integrating Eq. (6) in time yields the following equation

k þ Ep þ Ed þ Es ¼ ET ¼ ET0 ¼ cst (8)

where ET0 is the energy available in the computational domain at the
ith the same Reynolds number Re ¼ 5000 (different settling velocities). Right: simulations



Fig. 7. Temporal evolution of the turbulent dissipation Ed and particle-settling dissipation Es. Left: simulations with the same Reynolds number Re ¼ 5000 (different settling velocities).
Right: simulations with the same settling velocity us ¼ 0.02 (different Reynolds numbers).
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beginning of the simulation.
Figs. 6 and 7 show the temporal evolution of the four terms on the left

hand side of Eq. (8) normalized by ET0 . Note that k þ Ep þ Ed þ Es ¼ ET is
not plotted here but is within 1% of ET0 at all time. A rapid conversion of
potential energy into kinetic energy can be observed with a peak at t � 4
independently of the settling velocity and Reynolds number. The
decrease in potential energy, strongly linked to the settling velocity, is
due to the finite nature of the lock-exchange set-up with no external
source of energy available. Note that for the simulation REY5K8 the
potential energy is almost zero at the end of the simulation. The peak in
kinetic energy is followed by a decay in two stages: a rather fast decay
from t � 4 up to t � 10 and then a moderate decay up to the end of the
simulation. This change in decay rate, which seems independent of the
Reynolds number and settling velocity, can be connected to the previ-
ously mentioned change in decay rate for the suspended mass and to the
start of decay for the sedimentation rate, both occurring just before t � 8.
After t � 10, not only the concentration is more diluted as 50% of the
Fig. 8. Time evolution of isolines of the bottom wall concen
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original particles have left the computational domain. As a consequence,
we can observed a decay in the driving force of the flowwith less and less
energy available. Surprisingly, the temporal evolution of the kinetic en-
ergy is more or less the same for Re ¼ 5000 and for Re ¼ 10,000, even if
an enhancement of turbulence was eventually expected when increasing
the Reynolds number. This trend, already observed for axisymmetric
currents (Zgheib et al. (2015c)) and consistent with a similar behaviour
for the suspended mass, can be explained by different extents of the
currents, growing at a different rate, as it will be seen later in Figure 8.

In channelized and axisymmetric currents for similar Reynolds
numbers and settling velocities, the dissipation Es related to particle-
settling is dominating the dissipation Ed related to the turbulence only
in the early stages of the simulation. When particles deposit at the bottom
wall, the macroscopic dissipation Ed becomes the dominant dissipation
term and can be two times larger than the microscopic dissipation Es
(Espath et al. (2014); Zgheib et al. (2015c)). Some of the trends observed
in the present open basin set-up are radically different from the
tration (c ¼ 0.01) for the six simulations (see Table 1).



Table 2
Summary of dimensional parameters for our study about the thickness of the deposition.

Re 1000 5000 5000 5000 10,000
us 0.02 0.02 0.04 0.08 0.02

bg0 ðm∕s2Þ 0.00052 0.0129 0.0129 0.0129 0.0518

ûsðm∕sÞ 0.00017 0.0008 0.00161 0.00322 0.00161bdðμmÞ 16.38 35.8 50.6 71.6 50.6
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behaviour of the energy budget observed in channelized gravity currents,
with a strong influence of the settling velocity. For example, for all the
simulations with us ¼ 0.02, Ed is always larger than Es which is fairly low
compared to channel gravity currents. Once again it is hypothesized that
this is related to the surface area of the current which is much larger for
the open basin than for the channel. As a consequence, the turbulent
structures have more freedom to develop and can be convected in a less
restrictive way than in a channel. For the simulation REY5K8, with the
highest settling velocity, it can be seen that Es becomes high very quickly
and then slowly increases up to values close to 0.4 at the end of the
simulation. The switch of dominance between Es and Ed is only
happening after t � 10 which is a confirmation that the high level of
particle deposition is strongly constraining the spreading of the current,
confirming the trends observed in Figures 4 and 5.

6. Structure of the current at the wall and deposition

The formation, merging and meandering of the lobe-and-cleft struc-
tures at the front of the current can be seen in Fig. 8. When the Reynolds
number is increased, the size of the lobe-and-cleft structures decreases
and therefore their number increases. There is only very few large lobe-
and-cleft structures at Re ¼ 1000 while the simulations at Re ¼ 5000 and
Re¼ 10,000 exhibit a large number of curved lobe-and-cleft structures of
different sizes, unevenly distributed radially. The observed slightly
curved structures are different from the straight ones obtained with an
axisymmetric lock (Cantero et al. (2007a)), which are aligned with the
Fig. 9. 2D deposit maps from t ¼ 5 to t ¼ 20 for the five non-conservative simulations (red is t
legend, the reader is referred to the web version of this article).
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current local direction of expansion. Such curved lobe-and-cleft struc-
tures were reported very recently in Zgheib et al. (2015a) for non-circular
releases of rounded-rectangular shape. They can be attributed to
different radial spreading rates. When the settling velocity is increased
the lobe-and-cleft structures are dramatically impacted with fewer and
smaller structures as a result of a substantial reduction in the current
spreading. The sedimentation seems to prevent some interactions among
the lobe-and-cleft structures.

In order to better understand the influence of the Reynolds number
and settling velocity on the temporal evolution of the currents, it could be
interesting to compare their areas as a percentage of the computational
domain. This can be easily achieved by using the last isoline obtained at
t¼ 20. For the conservative simulation REY5K0 the current covers 70.3%
of the computational domain whereas for the simulation REY5K8 (same
Reynolds number but higher us) the current covers only 24.2% of the
computational domain. An interesting feature is that the settling velocity
is mainly slowing down the current in the spanwise direction. As far as
the Reynolds number is concerned (and for the same settling velocity),
the extend of the current is almost the same between the simulation
REY5K2 and the simulation REY10K2 with the current covering 53% and
55% of the computational domain, respectively.

Dimensional quantities (denoted with a hat) can be used to investi-
gate about the thickness of the deposition. To relate our simulations to
a typical laboratory-scale experiment, we choose a vertical dimension L2
of 2ĥ ¼ 0:25m. We assume that the ambient fluid is water
(bρfluid ¼ 1000kg∕m3, bν ¼ 10�6m2∕s) and the density of the particle isbρpart ¼ 2650kg∕m3 (a value representative of gravity currents, see Nor-

mark et al. (1993)). The reduced gravity bg0 , settling velocities and di-
ameters of particles can be found in Table 2.

2D maps of the wall deposition, defined as

Dtðx1; x3; tÞ ¼ ci
σ
∫ t
0cwðx1; x3; τÞus dτ (9)
he maximum value, blue is 0). (For interpretation of the references to colour in this figure
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where σ is defined as the packing fraction of the settled sediment, are
presented in Fig. 9 at t ¼ 20. σ typically takes an approximate value of
0.63 (Nasr-Azadani et al. (2013)). However, as we are not concerned
with the porosity of the sediment layers in the present study, we simply
set σ ¼ 1. For the lowest Reynolds number (simulation REY1K2), the
deposition pattern is still symmetric with large lobe-and-cleft structures.
For the simulation REY10K2, a large-scale bifurcation seems to split the
deposit map in two large areas (for x3 ¼ 0 cm and x1 � 87 cm). Such
bifurcations are often observed in nature as seen in Fig. 3 of Twichell
et al. (1992). We are currently running a stability analysis to fully un-
derstand the origin of this bifurcation which seems to happen only at
large Reynolds numbers. Such stability analysis is beyond the scope of
the current study.

One important result is the high levels of deposition very close to the
initial reservoir, especially when the settling velocity is large. The
maximum deposition height for the simulation REY5K8 is more than five
time higher than the maximum deposition height reported in the simu-
lation REY5K2. The deposition maps obtained for simulations REY5K2
and REY10K2 are showing that when the Reynolds number is increased
the deposition process is less intense near the gate and the particles are
more likely to travel downstream of the initial reservoir. This can be
related to a more turbulent flow when the Reynolds number is increased,
with particles more likely to be convected downstream in vortical
structures. These results are drastically different from the ones obtained
for a channel where a streamwise wavy behaviour was observed in
Espath et al. (2014, 2015) for the deposition maps at the bottom wall,
with intense levels of deposition at a streamwise distance of about 3h and
6h from the gate.

7. Conclusion

We have presented original high-fidelity simulations for an open
basin lock-exchange configuration for which the geometry is represen-
tative of the geometry of some real-life turbidity currents such as deltas at
the mouth of rivers. Our basin currents exhibit many differences with
channelized or axisymmetric lock-exchange configurations reported
previously in the literature. They consist of an alternation of intense and
quiet areas. The quiet areas are characterized by the absence of vortical
structures while the intense areas are characterized by a large density of
multi-scale vortical structures. Those structures in the intense areas are
directly related to high levels of particles concentration. The sedimen-
tation rates observed in this study are much faster than the ones obtained
in channelized configurations, with a strong influence of the settling
velocity. When the settling velocity is increased, important reduction of
the front extent is observed in the spanwise direction whereas the
streamwise extent of the current remains more or less unaffected. The
influence of the Reynolds number on the sedimentation rate and sus-
pended mass is very limited. One important result is that, unlike chan-
nelized gravity currents, the macroscopic dissipation Ed is not necessarily
the dominant dissipation term when particles deposit at the bottom wall.
When the Reynolds number is increased, the currents exhibit a large
number of curved lobe-and-cleft structures of different sizes, unevenly
distributed radially, different from the straight ones observed in
axisymmetric currents. The sedimentation seems to control the devel-
opment of the lobe-and-cleft structures with a strong reduction of their
size, especially in the spanwise direction. Finally, we observe a large-
scale bifurcation on the deposit map for the simulation with the high-
est Reynolds number, very similar to what is observed in nature. Its origin
is yet to be discovered.

Assuming that our basin currents will eventually become axisym-
metric currents (which is not guaranteed and which is not yet the case
according to Fig. 4), future polydisperse (various particles sizes at the
same time) studies with a larger and longer computational domain
(requiring very expensive high-fidelity simulations) will be carried out to
determine at which radial distance our currents are eventually tran-
sitioning to axisymmetric currents. Finally, we are currently developing a
8

new framework based on a customized Immersed Boundary Method
where the height of deposition at the bottom floor can be taken into
account in order to add more realistic features to our approach.
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