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Integrated hydrologic models coupled to land surface models require several input parameters to
characterize the land surface and to estimate energy fluxes. Uncertainty of input parameter values is
inherent in any model and the sensitivity of output to these uncertain parameters becomes an important
consideration. To better understand these connections in the context of hydrologic models, we use the
ParFlow-Common Land Model (PF-CLM) to estimate energy fluxes given variations in 19 vegetation and
land surface parameters over a 144-hour period of time. Latent, sensible and ground heat fluxes from
bare soil and grass vegetation were estimated using single column and tilted-v domains. Energy flux
outputs, along with the corresponding input parameters, from each of the four scenario simulations were
evaluated using active subspaces. The active subspace method considers parameter sensitivity by
quantifying a weight for each parameter. The method also evaluates the potential for dimension re-
duction by identifying the input–output relationship through the active variable – a linear combination
of input parameters. The aerodynamic roughness length was the most important parameter for bare soil
energy fluxes. Multiple parameters were important for energy fluxes from vegetated surfaces and de-
pended on the type of energy flux. Relationships between land surface inputs and output fluxes varied
between latent, sensible and ground heat, but were consistent between domain setup (i.e., with or
without lateral flow) and vegetation type. A quadratic polynomial was used to describe the input–output
relationship for these energy fluxes. The reduced-dimension model of land surface dynamics can be
compared to observations or used to solve the inverse problem. Considering this work as a proof-of-
concept, the active subspace method can be applied and extended to a range of domain setups, land
cover types and time periods to obtain a reduced-form representation of any output of interest, provided
that an active subspace exists.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Energy transfer into and out of the land surface is a primary
driver of climate and weather patterns. Incoming solar radiation
provides energy to change the phase of water through latent heat
and heats the land surface and subsurface through sensible and
ground heat, respectively. Latent heat fluxes redistribute water
between the land and atmosphere through evaporation and
transpiration while sensible and ground heat fluxes change the
surface temperature and promote atmospheric circulation.
le. For citation purposes, please
iences, 83, pp. 127-138.
5.07.001.
nes, Hydrologic Science and
80215, USA.
fferson).
Evapotranspiration depends on the surface temperature, is the
largest component of the surface energy balance (Trenberth et al.,
2009) and is responsible for precipitation that falls around the
globe. Components of the surface energy balance are difficult to
measure because they vary in both space and time. As a result,
hydrologic models emerge as one approach to obtain estimates of
these fluxes; other approaches such as remote sensing (Carlson
et al., 1995; Mu et al., 2007) also exist. As computing power has
increased these models have become more complex, often re-
quiring several input parameters to model interacting systems. If
the complexity of models can be reduced while still maintaining
accuracy, understanding the distribution of water and energy
throughout the hydrologic system becomes more accessible.

Hydrologic models can be used to estimate energy and water
fluxes for a given set of environmental conditions. Unlike mea-
surements that capture conditions over a finite period of time,
models can simulate a range of scenarios that cannot be observed
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but are of interest to researchers and end-users of model output.
Representing complex, natural systems in such models can require
between 10 and 50 surface and subsurface input parameters
(Bastidas et al., 1999). Unfortunately, many input parameters are
difficult to measure or obtain, which introduces uncertainty in the
precise values required for model simulations (Beven, 1989). It is
important to understand how uncertain inputs influence model
output.

Recently, integrated hydrologic models have emerged as an option
to combine attributes of groundwater and land surface models.
Groundwater models handle flow within the saturated zone but often
poorly represent the unsaturated zone. Land surface models estimate
water and energy fluxes and may simulate the unsaturated zone.
Traditionally, land surface models have limited capabilities to account
for the saturated zone and do not consider subsurface flow in three
dimensions (Beven, 1997; Henderson-Sellers et al., 1995; Liang et al.,
1994). Integrated models compute the flow of water in both un-
saturated and saturated regions of the subsurface, and account for
spatial and temporal variations in water table depth. Subsurface con-
ditions have been shown to influence surface energy fluxes (Ferguson
and Maxwell, 2011; Mahmood and Hubbard, 2003; Rihani et al., 2010;
Szilagyi et al., 2012), so integrated hydrologic models should provide
more realistic representations of natural systems, given that their
parameters are well constrained by observations. Historically, in-
tegrated models have been less studied but given their growing use it
is important to consider the sensitivities of these types of models.

Several studies analyze the sensitivity of energy balance esti-
mates to changes in inputs for land surface models (Table 1). Some
studies use a one-at-a-time (OAT) approach to evaluate how out-
put changes as a result of changing one input parameter, while
others use methods that account for parameter interactions. De-
pending on the method, the number of hydrologic model simu-
lations required to conduct a sensitivity analysis (SA) study can
vary over five orders of magnitude. Detailed descriptions of the
methods included in Table 1 can be found in the respective re-
ferences and are summarized in Beringer et al. (2002). In addition
to differences in methods, SA studies of hydrologic models have
varying scopes where some compare findings between multiple
Table 1
Summary of energy flux sensitivity analysis (SA) studies, methods and sensitive land su

Reference Modela SA method(s)b Sensi

Bastidas et al. (1999) BATS MOGSA lai, la
depth

Beringer et al. (2002) NCAR LSM Reduced form model lai, z0
Collins and Avissar (1994) LAID FAST lai, z0
Franks et al. (1997) TOPUP RSA Surfa
Gao et al. (1996) BATS Feature curves wp, z
Göhler et al. (2013) CLM3.5 Eigendecomposition rl_n,

esis f
Henderson-Sellers (1993) BATS Factorial z0m,
Hou et al. (2012) CLM4 MRE
Jacquemin and Noilhan
(1990)

NP-89 OAT lai, z0

Li et al. (2013) CLM Local, SOT, MARS, delta, Morris OAT dl, rl_
Liang and Guo (2003) 10 LSMs Factorial lai, st
Liu et al. (2004) NCAR LSM MOGSA dmx,

synth
Pitman (1994) BATS OAT lai, sc
Rosero et al. (2010) Noah LSM Sobol' lai, st
Schwinger et al. (2010) CLM3.5 Linearized model lai, z0
Srivastava et al. (2014) PF-CLM Morris OAT lai, w

a Biosphere–Atmosphere Transfer Scheme (BATS), Common Land Model (CLM), La
Center for Atmospheric Research (NCAR), Noilhan Planton (NP-89), Variable Infiltration

b Fourier amplitude sensitivity test (FAST), Multiobjective generalized sensitivity ana
Entropy (MRE), one-at-a-time (OAT), regionalized sensitivity analysis (RSA), sum-of-tree

c Study included subsurface parameters that were identified as important; see refer
models while others focus on one model. The studies in Table 1
identify important model input parameters like leaf area index,
aerodynamic roughness length and stomatal resistance, but often
lack specific recommendations for how to use this information.
Other studies, not included in Table 1, focus on the sensitivity of
energy fluxes to meteorological inputs, subsurface properties or
the spatial scale of the domain, as opposed to the model inputs
used to characterize the land surface (Abramowitz et al., 2008;
Chen and Dudhia, 2001; Pau et al., 2014; Rihani et al., 2010).

Only one of the studies included in Table 1 evaluates the sen-
sitivity of an integrated hydrologic model. Srivastava et al. (2014)
evaluated the sensitivity of latent heat and streamflow to soil and
surface parameters using the ParFlow-Common Land Model (PF-
CLM). Single column OAT SA were completed to determine the
most important CLM parameters (i.e., leaf area index, field capa-
city, stem area index, wilting point and aerodynamic roughness
length). The sensitivity of latent heat and streamflow estimates
were then assessed using the Morris OAT method and a wa-
tershed-specific domain of the Santa Fe River Basin located in
northern Florida (Srivastava et al., 2014). Vertically-variable sub-
surface units and spatially-variable surface characteristics were
used to represent the domain. Results of the Morris OAT show that
latent heat is sensitive to the hydraulic conductivity in both con-
fined and unconfined regions of the domain and that leaf area
index (in confined regions) and wilting point (in unconfined re-
gions) are also important input parameters (Srivastava et al., 2014).

In this work we use the recently developed active subspace
method (Constantine, 2015) to build a low-dimensional model of
the relationship between energy flux predictions from PF-CLM and
19 of its input parameters. The active subspace also identifies the
parameters whose perturbations cause the greatest change in
predictions, and we compare these important parameters to pre-
vious sensitivity analyses. Different from Srivastava et al. (2014),
this work focuses only on land surface parameters, evaluates ad-
ditional energy fluxes, uses a different SA method and presents
reduced-dimension models of surface energy fluxes. Furthermore,
we study two idealized domains which allows us to more easily
interpret the SA and dimension reduction results. The low-
rface parameters.

tive land surface parameters Number of
simulations

i0, sai, z0m, stomatal resistance, soil and root layer
s, root functionc

750–3000

m, displacement height 200
m, stomatal resistance 13,000
ce resistancec 20,000
0mc 4150
rs_n, soil resistance factor and layer depth, photosynth-
actorsc

3000

photosynthesis factorc 96
128

m, stomatal resistancec 450

n, tl_n, wp, z0m, photosynthesis factorc E400
omatal resistancec 41000
rl_n, tl_n, xl, canopy and displacement height, photo-
esis factorc

500–20,000

, z0m, root layer depthc E200
omatal resistancec 405,000
mc 72
pc 340

nd–Atmosphere Interactive Dynamics (LAID), Land surface model (LSM), National
Capacity (VIC).
lysis (MOGSA), Multivariate adaptive regression splines (MARS), Minimum Relative
s (SOT).
ence for additional details.
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dimensional model is used to gain insight into the behavior of
latent, sensible and ground heat fluxes for a specific set of me-
teorological conditions. Active subspaces are novel tools for di-
mension reduction and have not been previously applied within
the field of hydrology.
2. PF-CLM integrated hydrologic model

2.1. Model applications and description

PF-CLM has been used to investigate a range of hydrologic
questions in both idealized and watershed-specific domains. Sev-
eral studies have used PF-CLM to identify and understand re-
lationships between subsurface heterogeneity and energy fluxes
(Condon et al., 2013; Kollet, 2009; Maxwell and Kollet, 2008; Ri-
hani et al., 2010). PF-CLM has also been used to compare energy
fluxes before and after land cover changes due to the infestation
and spread of the mountain pine beetle in the Rocky Mountains of
Colorado (Mikkelson et al., 2013). Irrigation and water manage-
ment decisions in agricultural settings perturb the hydrology of a
watershed by altering energy feedbacks between the subsurface
and land surface; this has been studied extensively using a PF-CLM
model of the Little Washita watershed in Oklahoma (Condon and
Maxwell, 2014a, 2014b, 2013; Ferguson and Maxwell, 2011).

Latent, sensible and ground heat fluxes are the three major
components of the surface energy balance. The CLM para-
meterizations used to quantify these fluxes originate from the
Biosphere Atmosphere Transfer Scheme (BATS; Dai et al., 2003)
but have been modified to incorporate subsurface moisture con-
ditions. Subsurface pressures are approximated in PF using the
Richards' equation:

⎡⎣( ( ( (ψ
ψ

ϕ
ψ

ψ ψ)
∂

∂
+

∂ )

∂
= ∇· − ( ) )·∇ − )] + ( )S S
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S

t
x k z qK 1s p

p p
r p p ss

where Ss is the specific storage [L�1], S is the relative saturation
[dimensionless] which is a function of the pressure head ψp [L], t is
Table 2
Selected bare soil and grass surface input parameters.

Parameter description Name

Maximum dew on canopy dmx
Leaf area index (maximum) laib

Leaf area index (minimum) lai0
Stem area index sai
Leaf and stem orientation index xl
Leaf dimension dlc

Leaf reflectance (visible light) rl_vd

Leaf reflectance (near infrared light) rl_nd

Stem reflectance (visible light) rs_vd

Stem reflectance (near infrared light) rs_nd

Leaf transmittance (visible light) tl_vd

Leaf transmittance (near infrared light) tl_nd

Stem transmittance (visible light) ts_vd

Stem transmittance (near infrared light) ts_nd

Field capacity fce

Wilting point wpe

Aerodynamic roughness length (bare soil) z0mf

Aerodynamic roughness length (grass) z0mf

Soil color sc
Water table depth (below surface) wt

a Uniform (minimum value, maximum value) and LogNormal (mean, standard devi
b Friedl et al. (1994).
c Smith and Geller (1980).
d Asner et al. (1998).
e Campbell and Norman (1998).
f Park et al. (2010), Wieringa (1993).
time [T], ϕ is the porosity of the soil [dimesionless], Ks(x) is the
saturated hydraulic conductivity tensor [LT�1], kr is the relative
permeability [dimensionless] which depends on the pressure
head, z is the depth below the surface [L] and qs is the source/sink
term which includes infiltration, evaporation and transpiration
[T�1]. PF approximates the subsurface pressure head using a cell-
centered finite difference approach in space and an implicit
backward Euler scheme in time; the discretized system is solved
with a Newton–Krylov method (Jones and Woodward, 2001;
Maxwell, 2013; Osei-Kuffuor et al., 2014). This method, along with
the use of preconditioners to accelerate the solving process, has
been used in several geoscience applications (Dawson et al., 1997;
Jenkins et al., 1999; White and Borja, 2011).

The parameterizations of latent, sensible and ground heat re-
quire several input parameters to describe vegetation and soil
properties (Table 2). Parameters used to describe the root dis-
tribution or to compute rates of photosynthesis are not included
here. The selected input parameters are connected to the output
energy fluxes through a series of intermediate variables (Fig. 1).
Latent heat is computed differently depending on whether or not
vegetation is present. Bare soil evaporation Egr (kgm�2s�1) is
computed as

βρ= − ( )⁎ ⁎E u q 2gr a

where β (dimensionless) is a soil resistance factor, ρa (kgm�3) is
the air density, un (ms�1) is the friction velocity and qn (di-
mensionless) is the humidity scaling parameter. When vegetation
is present on the land surface, evapotranspiration is computed as

⎡⎣
⎡
⎣⎢ (ρ

= + ] − )]
( )

E R L L
r

q q
3

veg pp dry w SAI
a

b
sat af,

where the air density, boundary resistance factor rb (sm�1), sa-
turated humidity at the land surface qsat (dimensionless) and hu-
midity within the canopy qaf (dimensionless) combine to form the
potential evapotranspiration. Potential evapotranspiration is par-
titioned between transpiration Rpp,dry (dimensionless), which de-
pends on the dry fraction of the canopy Ld (dimensionless), and
Distribution (Range)a Default value Units

U(0.05, 0.15) 0.1 mm
U(1, 4) 2 –

U(0.05, 3) 0.5 –

U(0.5, 4) 4 –

U(�0.3, 0.4) �0.3 –

U(0, 0.16) 0.04 m
U(0.06, 0.13) 0.11 –

U(0.35, 0.55) 0.58 –

U(0.3, 0.4) 0.36 –

U(0.5, 0.6) 0.58 –

U(0.01, 0.09) 0.07 –

U(0.1, 0.45) 0.25 –

U(0.15, 0.25) 0.22 –

U(0.3, 0.4) 0.38 –

U(0.3, 1) 1 –

U(0.1, 0.3) 0.1 –

LN(�8.83, 1.47) 0.01 m
LN(�5.11, 0.52) 0.03 m
U(1, 8) 2 –

U(�10, �1) – m

ation).



Fig. 2. Three dimensional (top) and plan view (bottom) of the tilted-v domain.
Units of plan view are in meters. Sx and Sy are slopes in the x- and y-directions,
respectively, and the dark square indicates a resolution of 10 m.

Table 3
Model setup for single column and tilted-v model domains.

Parameter Single Column Tilted-V Units

Dimensions
Length 10 300 m
Width 10 300 m
Thickness 10 10 m
Δx 10 10 m
Δy 10 10 m
Δz 0.1 0.1 m

Subsurface
Saturated hydraulic conductivity,
Ksat

0.04465 mh�1

Specific storage, Ss 1.00E�06 m�1

van Genuchten α 4.0738 m�1

van Genuchten n 2.19 –

Residual saturation, Sres 0.11 –

Porosity, Φ 0.512 %

Surface
Slope (x, y) 5, 0 10, 5 %
Land cover bare soil, grass –

Manning's roughness 1E�06
hm�1/3

Forcing
Climate Plains –

Event duration 144 h
Δt 1 h

Fig. 1. Major connections between latent, sensible and ground heat output fluxes and input parameters in PF-CLM. Dashed lines indicate that intermediate variables and
corresponding input parameters are similar for each of the variables along the solid lines; for example, both SHveg and Rlw,c depend on rb.
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evaporation, which depends on the fraction of foliage covered by
the water Lw (dimensionless). The sum of the leaf and stem area
indices LSAI (dimensionless) quantifies the total surface fromwhich
evaporation can occur. Transpiration only occurs from the leaf
surface, quantified by the leaf area index LAI (dimensionless), and
from the dry fraction of the canopy, so Rpp,dry is computed as
⎡
⎣⎢=

+
+

+
]

( )
R

L r
L

L

r r

L

r r 4
pp dry

d b

AI

AI sun

b s sun

AI sh

b s sh
,

,

,

,

,

where rs (sm�1) is the stomatal resistance. The leaf area index and
stomatal resistance are further partitioned between the sunlit
(subscript sun) and shaded (subscript sh) portions of the canopy.
When photosynthesis is not limited by light rs depends on the
subsurface moisture, which is accounted for through

∑β
ϕ ϕ
ϕ ϕ

=
−
− ( )=

=

f
S S

S S 5
veg

l

l

root l
l wp

fc wp1

10

,

where Sl is the degree of saturation (passed from PF to CLM) and
froot,l (dimensionless) is the fraction of roots in soil layer l. PF and
CLM exchange data across the 10 layers directly beneath the sur-
face. Bare soil evaporation and evapotranspiration are expressed as
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Fig. 4. Initial depth to water table for the tilted-v domain simulations. Orientation
of figure is similar to Fig. 2.

Fig. 3. Precipitation rates and air temperature (dashed line; right axis) for July 23-
29, 1998 (144 h) for the Little Washita watershed in Oklahoma.
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latent heat fluxes when multiplied by the latent heat of vapor-
ization λv (2.5104e–6 Jkg�1).

Sensible heat fluxes also depend on whether or not vegetation
is present. Sensible heat from bare soil SHgr (Wm�2) is computed
as

ρ=
−

( )
c

T T

r
SH

6
gr a p

gr air gr

ah

,

where cp is the specific heat of dry air (1004.67 Jkg�1K�1), Tair,gr is
the air temperature at the ground surface (K), Tgr is the ground
temperature (K), which depends on the subsurface pressure head,
and rah is the aerodynamic resistance factor (sm�1) which ac-
counts for atmospheric stability. The sensible heat flux from a
vegetated surface SHveg (Wm�2) is computed as

(ρ= − − )
( )

c
L
r

C T C T C TSH
7

veg a p
SAI

b
veg veg air gr air gr gr gr, ,

where Cveg is the normalized heat conductance of vegetation, Tveg
is the vegetation temperature, Cair,gr is the normalized heat con-
ductance of air at the ground surface and Cgr is the normalized
heat conductance of the ground.

The ground heat flux GH (Wm�2) depends strongly on long-
wave radiation and accounts for both latent and sensible heat
fluxes from bare soil, if present

(ε ε σ

λ

= + + − + Δ ) −

− ( )

− −R R R T T T SH

E

GH 4

8

gr lw c gr lw gr gr t gr t gr gr

v gr

, , 1
3

, 1

where Rgr is the radiation absorbed by the ground surface
(Wm�2), Rlw,c is the longwave radiation below the canopy
(Wm�2), Rlw is the downward longwave radiation obtained from
the atmospheric forcing (Wm�2), εgr is the emissivity of the
ground taken as 0.96 (dimensionless), s is the Stefan–Boltzmann
constant (5.67e�8 Wm�2K�4), Tgr,t�1 is the ground temperature
at the previous time step and ΔTgr is the difference in soil tem-
perature between the previous and current time step.
2.2. Domain setup

Two domains are used for the sensitivity analysis – a single
column and a tilted-v (Fig. 2). The single column represents the
simplest hydrologic case with no lateral flow. The tilted-v is a
standard test problem in hydrology (Kollet and Maxwell, 2006;
Maxwell et al., 2014; Panday and Huyakorn, 2004; Sulis et al.,
2010) and represents an idealized watershed with lateral subsur-
face and overland flow; two hillslopes intersect to form a channel
that directs flow out of the domain. The dimensions and dis-
cretization of each domain were selected so that the single column
domain represents approximately one column of the tilted-v do-
main (Table 3). Each domain was simulated with uniform land
cover, either as bare soil or grass, for a total of four cases. In order
to isolate the sensitivity of land surface parameters, subsurface
parameters were set to be homogeneous and representative of an
average loam soil for all simulations (Table 3; Schaap and Leij,
2000).

Computing energy fluxes in PF-CLM requires meteorological
forcing data. Eight atmospheric variables are required for each
time step of the model simulation: shortwave radiation, longwave
radiation, precipitation rate, air temperature, east–west and
north–south wind speeds, atmospheric pressure and specific hu-
midity. A 144-hour segment of meteorological data from the Little
Washita watershed in Oklahoma is used for both the single col-
umn and tilted-v domains (Fig. 3). In the tilted-v simulations the
water table drains by gravity to reach a steady state of subsurface
storage before the forcing is applied (Fig. 4); this ensures lateral
flow is occurring and that energy fluxes are a result of the pre-
cipitation event. The 144-hour segment of meteorological data
from July 23–29, 1998 was selected because it captures both wet
and dry periods in the late summer when the energy fluxes are
expected to be near their maximum values. Evaluating the do-
mains on a seasonal or annual basis is likely of interest for practical
applications, but for purposes of this study a short period was
selected so that multiple simulations could be completed quickly.
3. Active subspace method

In this hydrologic application active subspaces are used to
study the relationship between the PF-CLM input parameters and
the predicted quantities of interest – namely, latent heat, sensible



Fig. 5. Input parameter weights (left column) and sufficient summary plots (right columns) for latent, sensible and ground heat fluxes from bare soil (gray) and grass (black)
single column domain simulations. The quadratic polynomial (solid line), 95% confidence interval (light gray shading) and R2 value are shown on the sufficient summary
plots for each land cover and flux type.
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heat and ground heat. The active subspace is the span of a set of
directions. These directions are eigenvectors of a matrix derived
from the gradient of the map between model inputs and quantities
of interest. Parameter perturbations along these directions change
quantities of interest more, on average, than parameter pertur-
bations in orthogonal directions. To compute these directions, one
randomly samples the gradient and computes the uncentered
principal components (as opposed to centered principle compo-
nents where the mean is subtracted from the data) from the col-
lection of samples. However, this method requires access to the
gradient of the quantity of interest with respect to the parameters,
which is not available in PF-CLM. Finite difference approximations
are not feasible, since they would require up to 19 runs per gra-
dient sample.

Without gradients, one must estimate gradients with a model.
In this case, a linear model is used to approximate the input–
output map which is discussed in Chapter 1 of Constantine (2015)
and briefly summarized below. The normalized gradient of the
linear model defines one direction in the 19-dimensional space of
input parameters. This approach is appropriate when (i) the active
subspace is one-dimensional and (ii) the quantity of interest is
roughly monotonic with respect to each of its input parameters.
Both of these conditions can be verified with a sufficient summary
plot, which displays the relationship between the modeled
quantity of interest and a linear combination of the input para-
meters (i.e., the active variable); the weights of the linear combi-
nation are the components of the linear model’s normalized gra-
dient. Each point on the sufficient summary plot corresponds to
the inputs and corresponding output from one model realization.

The algorithm is written for a generic function f(x), where f is
the quantity of interest, and x is the vector containing the nor-
malized input parameters; for PF-CLM, x contains 19 components.



Fig. 6. Outflow from tilted-v domain for bare soil (gray) and grass (black) land
cover over the 144-hour forcing segment.
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The following procedure is applied to each of the four cases using
M¼300, for a total of 1200 simulations:

1. For i ¼ 1, . . . , M, draw xi independently according to the joint
density on x.

2. For each xi, compute fi ¼ f(xi), which involves shifting and
scaling xi to the PF-CLM input ranges and running PF-CLM.

3. Use least-squares to fit the coefficients â0 and ^ = [^ … ^ ]a aa , , M
T

1 of
a linear model,

^≈ ^ + ( )f a a x , 9i
T

i0

using the pairs xi and fi.

4.
Compute the normalized gradient of the linear model

^ ^
^=

‖ ‖ ( )
w

a
a

.
10

5. Plot the pairs ^( )fw x ,
T

i i , which is the sufficient summary plot.

If the sufficient summary plot reveals a strong, univariate re-

lationship between ŵ x
T

and f, then

⎜⎛⎝ ^( ) = )
( )

f gx w x
11

T

where g is a univariate, scalar-valued function fit with the pairs
^( )fw x ,

T
i i – e.g., linear, quadratic or cubic polynomial. Fitting a

function in this manner allows for visual confirmation of the re-
lationship between the inputs and the outputs using the sufficient
summary plot. Appendix A.1 contains the derivation of the pre-
vious algorithm.

Additionally, the weights of the linear combination (i.e., the
components of ŵ) identify the input parameters that contribute
the most to the one-dimensional active subspace. Parameters with
relatively large (in magnitude) weights are the important
parameters; perturbations in these parameters change the quan-
tity of interest more than perturbations in other parameters. The
sign of the weight indicates the direction moved along the hor-
izontal axis (i.e., the active variable) of the sufficient summary plot
as the input parameter value increases or decreases. In other
words, the weights allow for analysis of the model's sensitivity to
changes in parameter values.

Active subspaces not only provide insight into which para-
meters are important, but also approximate the relationship be-
tween model inputs and outputs with fewer parameters than the
number of inputs. While this method has never been applied in
the field of hydrology, successful applications to aerospace models
include shape optimization (Lukaczyk et al., 2014) and safety en-
gineering (Constantine et al., 2014).
4. Results and discussion

4.1. Single column domain

The weights in Fig. 5 quantify the importance of the parameters
for the single column domain; weights with large magnitudes
imply that the corresponding parameters cause more change in
the heat fluxes than those with small weights. The aerodynamic
roughness length (z0m) is the most important input parameter for
bare soil latent and ground heat energy fluxes. Soil color is also
important and influences the bare soil sensible heat flux the most.
The magnitudes of soil color weights are greater for bare soil than
for grass, where soil color showed little to no importance. The
location of the initial water table influences latent and ground heat
fluxes from grass more than from bare soil. As the initial water
table depth decreases in magnitude (i.e., becomes closer to the
surface) the latent heat flux increases whereas the sensible heat
decreases.

The weights of the 16 remaining parameters for grass land
cover are not consistent between the different fluxes. Latent heat
is most influenced by the maximum leaf area index (lai) followed
by the maximum dew that the canopy can hold (dmx), field ca-
pacity (fc), initial water table depth (wt), wilting point (wp) and
aerodynamic roughness length. Similar to latent heat, the depth of
dew, wilting point, field capacity and water table are important for
sensible heat, but not as much as the near-infrared leaf transmit-
tance (tl_n). Two other parameters, the near-infrared leaf re-
flectance (rl_n) and stem area index (sai), have approximately the
same weights as the dew depth for sensible heat. Weights of the
reflectance and transmittance input parameters for sensible heat
have the largest magnitude and most variability compared to the
other two fluxes. In contrast, weights for ground heat are the least
variable and only two of the 19 parameters show significant in-
fluence (lai and sai).

4.2. Tilted-v domain

The tilted-v domain simulations do not include the initial water
table as an input parameter because the spin-up process elim-
inates the need for a user-selected value. The primary difference
between the single column and tilted-v domains is the presence of
lateral subsurface flow. The tilted-v domain has flow out of the
domain throughout most of the 144-hour forcing period (Fig. 6).
Fig. 6 also shows that there is little variability in the predicted
outflow between the bare soil and grass simulations. Only small
differences (o0.14) exist between input parameter weights for the
single column and tilted-v domains (Fig. 7). The relationship be-
tween the input parameters and output fluxes for each domain
setup are also similar. These similarities indicate that lateral flow
does not change the parameter sensitivity or relationship for this



Fig. 7. Input parameter weights (left column) and sufficient summary plots (right columns) for latent, sensible and ground heat fluxes from bare soil (gray) and grass (black)
tilted-v domain simulations. The quadratic polynomial (solid line), 95% confidence interval (light gray shading) and R2 value are shown on the sufficient summary plots for
each land cover and flux type.
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particular simulation. Additional simulations comparing other
domain setups and vegetation types are necessary to validate this
preliminary conclusion.
4.3. Sufficient summary plots

In both domains, energy fluxes for bare soil and grass exhibit a
univariate trend with respect to the linear combination of inputs
(i.e. the active variable); see Figs. 5 and 7. The relationship for
these scenarios is described by a quadratic polynomial:
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for variables sampled from a uniform distribution with upper
‵x U and lower limits ′x L, and

μ
σ

= ( ‵) −
( )x

xlog
, 14

for variables sampled from a lognormal distribution with a mean μ
and standard deviation s, where x is the normalized input para-
meter and ‵x is the actual PF-CLM input value sampled from its
respective distribution. The function g(y) returns the total latent,
sensible or ground heat per unit area (Wm�2) and y is the active
variable – the weighted sum of the scaled input parameters (12).
The total energy per unit area is obtained by multiplying the flux
rate from each CLM tile by the tile area (i.e., 100 m2) and then



Table 4
Summary of quadratic model coefficients.

Model output C0 C1 C2 R2

Single column
Bare soil
Latent heat 8.41Eþ03 1.11Eþ03 1.04Eþ02 0.98
Sensible heat 1.81Eþ03 5.27Eþ02 �1.57Eþ02 0.92
Ground heat 9.10Eþ02 2.05Eþ02 1.01Eþ01 0.99

Grass
Latent heat 7.22Eþ03 1.53Eþ03 3.17Eþ02 0.89
Sensible heat 2.28Eþ03 1.54Eþ03 �1.48Eþ02 0.84
Ground heat 3.54Eþ02 2.95Eþ02 7.36Eþ01 0.95

Tilted-V
Bare soil
Latent heat 8.34Eþ03 1.06Eþ03 9.74Eþ01 0.99
Sensible heat 1.86Eþ03 4.99Eþ02 �1.56Eþ02 0.95
Ground heat 8.22Eþ02 1.95Eþ02 8.99Eþ00 0.99

Grass
Latent heat 7.09Eþ03 1.33Eþ03 2.62Eþ02 0.73
Sensible heat 2.36Eþ03 1.47Eþ03 �1.48Eþ02 0.86
Ground heat 3.19Eþ02 2.80Eþ02 7.08Eþ01 0.96
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normalizing by the entire domain area. Table 4 lists the coeffi-
cients C0, C1 and C2 and the R2 value for each land cover and do-
main setup. A comparison of R2 values for a linear versus quadratic
function are included in Appendix A.2 (Table A1). In general, the
Fig. 8. Two examples of how sufficient summary plots can used (1) to evaluate how e
predict input parameter values using observed data. The black dashed line in the left pan
areas show the range of output estimates using the default values except for the param
quadratic model fits better for bare soil simulations as compared
to grass and for the tilted-v domain as compared to the single
column domain (Table 4); better quadratic model fits coincide
with circumstances where the water table has less influence. In-
creased scatter (i.e., lower R2 values) in the sufficient summary
plots of grass simulations could also be due to the larger number
of input parameters. Sufficient summary plots for latent and sen-
sible heat fluxes from the single columns have less scatter when
the water table is not included as an input parameter (not shown
here). From a physical perspective, the water table depth can have
a more dramatic effect on energy fluxes than variations in the
other parameters because conditions can range between saturated
and dry over a short period of time. Soil moisture influences both
the ground temperature as well as the amount of water available
for evaporation and transpiration. As a result, it is possible that
water table variations introduce nonlinear behavior that cannot be
captured by a linear model.

The parameter weights and sufficient summary plots are a
powerful combination of information that can be used to under-
stand land surface dynamics. The sign of the input parameter
weight can predict whether the output parameter will increase or
decrease with changes in the input parameter. For example, since
the leaf area index weight is positive for latent heat, greater leaf
area index increases the latent heat flux. However, because the
weight for the leaf area index is negative for ground heat, greater
leaf area index decreases the ground heat flux. These relationships
agree with physical intuition; more leaf area means evaporation
and transpiration can occur from a larger area which results in a
greater latent heat flux. Conversely, more leaf area decreases the
amount of radiation reaching the ground surface and therefore
stimates of output change with respect to input parameter values (left) and (2) to
el corresponds to the active variable computed using default PF-CLM values; shaded
eter noted (e.g., lai and/or z0m).
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reduces the ground heat flux. Similar logic can be used to explain
the connection between other input parameters and their influ-
ence on the output of interest.

The leaf area index example can also be described quantita-
tively (Fig. 8). The active variable is 0.39 when all input parameters
assume their default values (shown in Table 2). The active variable
is simple to compute using (12) and the substitution shown in (11).
It is easy to study how output estimates are affected by changes in
input parameters. For the case of leaf area index, decreasing lai by
one unit reduces the latent heat estimates by approximately 7.5%
whereas increasing lai by one unit results in estimates approxi-
mately 8.5% larger (Fig. 8). Fig. 8 includes another example
showing the sensitivity bounds as a result of changes in the
aerodynamic roughness length. This type of evaluation can be
completed for combinations of input parameters as well (e.g., both
lai and z0m).

Univariate sufficient summary plots can also be used to solve
the inverse problem. Observed data can be plotted on the y-axis
and the input–output relationship can be used to identify the ac-
tive variable which constrains the input parameter values (Fig. 8).
There are an infinite number of input combinations that can pro-
duce the same active variable value. Choosing from these combi-
nations requires either more data or a choice of regularization.
Unfortunately, AmeriFlux energy flux data for Little Washita is not
available for the 144-hour period analyzed here. Latent heat flux
observations from two years prior are within the y-axis range of
Fig. 8 which provides confidence that estimates using the simpli-
fied domain are the correct order of magnitude.
5. Conclusions

In this work the active subspace method was applied to the PF-
CLM integrated hydrologic model to analyze the sensitivity of la-
tent, sensible and ground heat fluxes to 19 land surface para-
meters. The use of each input parameter depends on the type of
energy flux. The active subspace method identifies which of the
input parameters are most important and how the combination of
inputs relate to the output of interest. Of the three input para-
meters evaluated for bare soil, the aerodynamic roughness length
was important for all energy fluxes. Estimates of energy fluxes
from a vegetated surface were sensitive to approximately half of
the 19 input parameters: five parameters exerted the most influ-
ence on the latent heat flux (lai, dmx, fc, wp, z0m), 6 on the sensible
heat flux (tl_n, dmx, rl_n, sai, wp, fc) and 3 on the ground heat flux
(lai, sai, z0m). The initial water table depth was also important for
the grass single columns. Sensible heat fluxes were sensitive to a
similar number of parameters as the latent heat fluxes and also
showed the greatest variability in parameter weight magnitudes.
The parameters with large weights are similar to parameters
identified in SA studies completed on other hydrologic models
(Table 1). Furthermore, the relationship between the input para-
meters and each output flux could be described using a quadratic
function of the active variable for all cases.

In addition to comparing fluxes from bare soil and grass ve-
getation, two domain setups were evaluated to determine if lateral
flow changed the input parameter sensitivity. The weights and
relationships shown in the sufficient summary plots are similar for
the single column and tilted-v domains suggesting that lateral
flow has a negligible effect on the land surface parameter–flux
relationship. While lateral flow will influence soil moisture mag-
nitudes and patterns systematically across a domain, it will not
change the relationship between soil moisture and ET. Srivastava
et al. (2014) effectively assumed that lateral flow was not im-
portant when the parameters identified as sensitive from a single
column domain were the only parameters varied in their
watershed domain. These findings support their assumption, as
long as PF-CLM has been simulated for a long enough duration
that the subsurface storage is not changing appreciably. The active
subspaces method could be applied to a watershed-domain be-
cause the required input parameters are the same regardless of the
domain configuration, but vary in magnitude based on land cover
type. However, the results shown here suggest that a simple,
computationally cheaper domain can potentially be used to pro-
vide insight into more complex domains. The ability to isolate
sensitive parameters without the expense of multiple simulations
of a complex domain makes SA more tractable.

Results from this proof-of-concept example show how active
subspaces can be used in the context of hydrology. The application
of this method to hydrologic models has great potential; this
method could be used to derive relationships between any com-
bination of surface or subsurface inputs and outputs, for any cli-
mate, soil type or period of interest. We anticipate that this
method is applicable during both water- and energy-limited times
of the year but that the input parameter weights and input–output
relationships will vary. For example, estimates of energy fluxes
from a snow-dominated alpine location are likely to be sensitive to
different input parameters in the summer (i.e., water-limited) than
in the winter (i.e., energy-limited). Including a heterogeneous
subsurface will further complicate feedbacks between the sub-
surface and atmosphere and it is plausible that more than one
dimension will be needed to approximate the relationship be-
tween the inputs and outputs. For high-dimensional problems the
dimension reduction from this method preserves the fine scale
processes and physical intuition behind the model and works to
average functions not quantities. Furthermore, the usefulness of
sufficient summary plots allows for investigation into model re-
sponse and behavior. Once a reduced-form model is established
and validated, expensive simulations may be bypassed altogether.
Calibration of input parameters using observations and the sim-
plified system is possible if the simulation setup matches ob-
servation locations. Recent research using CLM suggests that re-
duced-form models can be used to reduce the number of simu-
lations required for parameter optimization (Gong et al., 2015),
adjust parameter values used to predict methane emission from
wetlands (Müller et al., 2015) and calibrate parameters identified
as important for latent heat estimates (Ray et al., 2015).

As hydrologic models continue to be used to estimate hydro-
logic outputs such as energy fluxes, the need for efficient and
accessible means to evaluate the sensitivity and behavior of model
output becomes even more important. While active subspaces
approximate the physics of a modeled system they can improve
our confidence and understanding of processes within the model
and also provide ways to reduce the computational demands of
completing multiple simulations of expensive domains. The ana-
lysis of two hypothetical domains suggests that use of this method
can be extended far beyond this proof-of-concept example. Active
subspaces have the potential to quantify uncertainty and reduce
the dimension of other PF-CLM scenarios as well as be applied to
other high-dimension hydrologic models.
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Table A1
Comparison of R2 values for sufficient summary plot relationships.

Model output R2 (quadratic) R2 (linear)

Single column
Bare soil
Latent heat 0.9846 0.9723
Sensible heat 0.9211 0.8300
Ground heat 0.9900 0.9907

Grass
Latent heat 0.8881 0.8654
Sensible heat 0.8408 0.8353
Ground heat 0.9456 0.9167

Tilted-V
Bare soil
Latent heat 0.9900 0.9850
Sensible heat 0.9453 0.8349
Ground heat 0.9900 0.9945

Grass
Latent heat 0.7255 0.7065
Sensible heat 0.8580 0.8525
Ground heat 0.9567 0.9268
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Appendix

A.1 Derivation of the active subspace method

The active subspace is derived for a general continuously dif-
ferentiable, nonlinear, scalar-valued function of several variables;
complete details are found in (Constantine, 2015). We denote this
function by f(x), where x is the vector ofm continuous inputs, and f
returns a scalar. The gradient ∇f(x) is the column-oriented vector
of m partial derivatives with respect to the components of x. We
assume that the domain of f – i.e., the space of x – is equipped with
a normalized probability density function ρ(x), which enables us
to compute weighted averages. In the PF-CLM grass-covered case, f
is a heat flux, x has m¼19 components, and ρ is the product of a
uniform density over 18 parameters times a normal density over
the log of roughness length (z0m).

The active subspace is defined by the eigenvectors of the fol-
lowing symmetric, positive semidefinite matrix,

∫ ρ Λ= ∇ ∇ = ( )f f dC x W W , A1
T T

where W is the orthogonal matrix of eigenvectors, and Λ is the
diagonal matrix of non-negative eigenvalues in decreasing order.
The ith eigenvalue λi satisfies

(∫λ ρ= ∇ ) ( )f dw x, A2i i
T 2

where wi is the corresponding eigenvector. In words, this says that
the λi quantifies the average squared change in the function sub-
ject to small perturbations along wi – i.e., the directional derivative
along wi. A large gap between large and small eigenvalues iden-
tifies an active subspace, defined by the eigenvectors correspond-
ing to the large eigenvalues; a small perturbation to inputs along
directions in the active subspace changes f more, on average, than
a perturbation along the orthogonal inactive subspace.

To estimate the eigenvectors and eigenvalues, we estimate C
using independent random samples of the gradient vector and
compute its eigenvalue decomposition,

( (∑ Λ^ ^ ^≈ = ∇ )∇ ) = ^
( )=M

f fC C x x W W
1

,
A3i

M

i i
T

T

1

where xi are drawn independently at random according to ρ(x).
When gradients of f are not available, as in the case of PF-CLM, we
must estimate the gradients from evaluations of f. Finite differ-
ences are inappropriate when m is large and f is expensive to
evaluate and/or noisy. Another option is to fit a least-squares
polynomial model to a set of pairs (xj, f(xj)) and compute the
gradient of the polynomial approximation; this is the approach we
take in Section 3. When the polynomial approximation is a linear
function of x (i.e., a polynomial of degree at most 1 in each vari-

able), the computation of Ŵ reduces dramatically. The gradient of
the global linear model is constant for all x,

^ ^( ) ≈ ^ + ∇ ( ) ≈ ( )f a fx a x x a, . A4
T

0

In this case, Ĉ becomes

∑ λ^ ^^ ^^ ^ ^≈ = = ^
( )=M

C aa aa w w
1

,
A5i

M
T T T

1

where λ ^^ = ‖ ‖a 2 and ^ ^ ^= ‖ ‖w a a/ as in Eq. (10) in Section 3. This is
identical to the algorithm in Section 3. With the linear model, we can
identify only the one-dimensional active subspace. Input perturbations
along any direction orthogonal to ŵ are deemed inactive. The ap-
propriateness of this approach is validated by the sufficient summary
plots as in Section 4.3. The strong univariate trends assure us that a
one-dimensional active subspace is sufficient to explain the relation-
ship between the inputs x and the outputs f.

A.2 Comparison of reduced dimension model fit

Table A1 displays the R2 values for various polynomial models
of the heat fluxes as a function of the active variable. These values
suggest that a quadratic polynomial is an appropriate choice for
the data shown in Figs. 5 and 7.
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