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a b s t r a c t

The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental
margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the un-
derstanding of various components of the earth system, such as carbon cycles. By assuming the settling
velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal
the existence of three transport modes in the wave boundary layer associated with sediment avail-
abilities. As the sediment availability and hence the sediment-induced stable stratification increases, a
sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a
two-layer system, and (III) completely laminarized transport are observed. In general, the settling ve-
locity is a flow variable due to hindered settling and particle inertia effects. Present numerical simula-
tions including the particle inertia suggest that for a typical wave condition in continental shelves, the
effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that
the particle inertia tends (up to the Stokes number St ¼ 0.2) to attenuate flow turbulence. On the other
hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a
large amount of suspended sediments and results in the laminarized transport (III). For the simulation
with a very significant hindered settling effect due to a low gelling concentration, results also indicate the
occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate.
A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities
as a function of sediment/floc properties and erodibility parameters.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fine sediments delivered by rivers are the main vehicle to carry
terrestrial organic carbon, nutrients and anthropogenic con-
taminants to the ocean (e.g., Milliman and Farnsworth, 2011).
According to Hedges et al. (1997), about 1.5 10 g14× of particulate
organic carbon (POC) is delivered to the ocean annually. However,
only a very small amount of POC is preserved. Therefore, studying
the fate of terrestrial sediment in continental margins, such as the
physical mechanisms that control the delivery processes (e.g., Hale
et al., 2014; Kniskern et al., 2014; Kolker et al., 2014) is one of the
essential steps to better understand the global carbon cycle. The
physical processes driving sediment source to sink are classified
into three stages, namely, initial deposition, resuspension and final
article. For citation purposes,
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deposition (Wright and Nittrouer, 1995). Due to a variety of
mechanisms associated with sediment-laden riverine outflow
dynamics (e.g., trapping, flocculation), initial deposition of fine
sediment is typically located within the inner-shelf (e.g., Geyer
et al., 2000; Bever et al., 2011). Hence, resuspension can play a
crucial role to further deliver fine sediment offshore. In the past
decade, it has been well-established in many systems (e.g., Eel –
Traykovski et al., 2000; Ogston et al., 2000; Po – Traykovski et al.,
2007; Waiapu – Ma et al., 2008; Waipaoa – Hale et al., 2014) that
during large wave events, concentrated fine sediment suspension
can be maintained in the wave-current bottom boundary layer and
the resulting high buoyancy anomaly drives offshore transport of
fine sediment even over relatively mild shelf slopes. This process is
referred to as the wave-supported sediment-driven gravity flow.

A high buoyancy anomaly is clearly prerequisite for offshore-
directed gravity flow (Wright et al., 1988; Sternberg et al., 1996).
Field observations by Traykovski et al. (2000, 2007) suggest that
the occurrence of high buoyancy anomaly in fine sediment
transport requires sufficiently strong turbulence as well as the
formation of a lutocline, a sharp negative sediment concentration
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gradient near the top of the wave boundary layer (Ross and Mehta,
1989). The existence of a lutocline indicates that the flow turbu-
lence is suppressed by the sediment-induced stable density stra-
tification, which effectively traps suspended sediments within a
few centimeters near the bed, i.e., a form of convergence typically
found during the formation of gravity flow (Ogston et al., 2000).
Yet, the flow below the lutocline remains turbulent (Noh and
Fernando, 1991; Trowbridge and Kineke, 1994) or at least transi-
tionally turbulent (Ozdemir et al., 2010), so that the suspension is
sufficiently mobile to drive gravity flows on mild slopes.

Due to interactions among descending particles, upward flow
motions are generated and hence the collective settling velocity of
particles is reduced from the single particle settling velocity. This
is the well-known hindered settling effect (e.g., Winterwerp and
Van Kesteren, 2004; Fredsoe and Deigaard, 1992). For non-cohe-
sive sediments, hindered settling is a relatively well-constrained
process (Richardson and Zaki, 1954; Jimenez and Madsen, 2003).
For example, the reference concentration, often introduced in the
hindered settling parameterization, is generally agreed to be the
random-close-packing concentration of sediment (around 0.6 in
terms of volumetric concentration). For fine sediments that often
become cohesive in the coastal waters, the hindered settling plays
a critical role in the slow deposition and consolidation processes.
However, the parameterization of hindered settling for cohesive
sediment is poorly constrained due to uncertainties in flocculation.
When flocs are considered, the ‘gelling concentration’ is typically
introduced to replace the reference concentration in the hindered
settling parameterization (Dankers and Winterwerp, 2007), and it
is defined as the concentration at which floc aggregates form
concentrated aggregate networks (Winterwerp and Van Kesteren,
2004). However, the gelling concentration has a wide range of
values due to variabilities in floc structures. For more organic and
porous flocs with low fractal dimensions, the gelling concentration
can be as low as ∼100 g/L. In this case, Kampf and Myrow (2014)
argue that the fine sediment transport in the bottom boundary
layer can fall into a situation, called gelling ignition, in which the
deposition flux is always lower than the erosion flux, and this
gelling ignition will lead to a net increase of suspended sediment.

To understand fine sediment transport in the wave boundary
layer due to episodic river floodings where the sediment supply is
controlled by the river input, a series of three-dimensional (3D)
turbulence-resolving numerical simulations based on a highly
accurate pseudo-spectral scheme were carried out by Ozdemir
et al. (2010) at the Stokes Reynolds number of Re 1000=Δ . This ReΔ
corresponds to a most energetic wave condition at Eel River inner
shelf with near bed wave-induced velocity amplitude of 0.56 m/s
and wave period of 10 s (Traykovski et al., 2000). With a pre-
scribed/fixed amount of sediments in the domain in each simu-
lation, model results demonstrated that the effect of sediment-
induced density stratification is associated with the prescribed
sediment load and the settling velocity, which leads to several
distinct flow regimes. However, a more common scenario of se-
diment supply in the bottom boundary layer is due to the bottom
resuspension/deposition where sediment availability is also a flow
variable. Yu et al. (2013) developed a hybrid spectral-compact fi-
nite difference simulation model to study the fine sediment
transport in the bottom boundary layer. Comparing to the pseudo-
spectral scheme, this hybrid scheme is more flexible to incorporate
variable viscosity, and nonlinear boundary conditions. Cheng et al.
(2015) adopt this new scheme to study how a range of sediment/
bed properties associated with resuspension can control the se-
diment availability and the resulting transport. Simulation results
reveal that the sediment availability is highly dependent on the
resuspension/deposition mechanism from/to the bed. Specifically,
a decrease (increase) of critical shear stress of erosion or settling
velocity causes a growth (reduction) of sediment availability and
three distinct transport modes are revealed: transport mode I is of
dilute, well-mixed sediment distribution where the attenuation of
turbulence by sediments is negligible due to a low sediment
concentration ( 1 g/L≪ ); transport mode II is similar to the two-
layer flow in stably stratified flow signified by the formation of
lutocline due to moderate turbulence attenuation by sediment-
induced density stratification. A high concentration mud suspen-
sion layer occurs near the bed with a typical layer thickness of not
more than O(10) cm; transport mode III is characterized by very
significant attenuation of turbulence due to the presence of high
sediment concentration which laminarizes the bottom boundary
layer. As similar transport modes are observed in the field or in the
laboratory (Traykovski et al., 2007; Lamb et al., 2004; Sahin et al.,
2012; Traykovski et al., 2015), it is important to better quantify the
occurrence of these transport modes because they directly control
sediment fluxes. For example, the transport mode I is the familiar
dilute suspension and the net transport is determined by the flux
divergence of suspended load (Harris and Wiberg, 2002). When
transport mode II occurs, large buoyancy anomaly caused by high
suspended sediment concentration can encourage offshore deliv-
ery of fine sediments through gravity flows. When transport mode
III occurs, it is believed that gravity flows may be terminated or
maintained by gelling ignition due to the predominance of hin-
dered settling effect (Kampf and Myrow, 2014).

In most of the numerical models for fine sediment transport,
the particle velocity can be calculated by the equilibrium Eulerian
approximation (Balachandar and Eaton, 2010), that is, a vectorial
sum of the local fluid velocity, the settling velocity and additional
particle inertia terms associated with the Stokes number. This
approximation is only appropriate for particles of Stokes number
much smaller than unity. From the theoretical perspective (Ba-
lachandar and Eaton, 2010), the particle inertia effect is another
mechanism to deviate the particle velocity from the fluid velocity,
especially in turbulent flows with high accelerations (Cantero
et al., 2008). However, these additional terms are also ignored in
the aforementioned turbulence-resolving studies. There is a need
to quantify the effect of neglecting the particle inertia on fine se-
diment transport for typical wave conditions encountered in the
continental shelves.

The purpose of this study is to evaluate and quantify the un-
certainties associated with the parameterization of particle velo-
city of fine sediment transport in the wave boundary layer using a
series of turbulence-resolving simulation. Model formulations are
discussed in Section 2. The sensitivity of the particle inertial effect
for typical energetic wave conditions in the inner-shelves is first
evaluated (Section 3), and the effect of different degrees of hin-
dered settling due to a range of gelling concentrations is then in-
vestigated in Section 4. Further discussions on the particle inertia
effect on turbulence modulation and gelling ignition are presented
in Section 5. Concluding remarks are given in Section 6.
2. Mathematical formulations

2.1. Governing equation

Following previous studies (Ozdemir et al., 2010; Cheng et al.,
2015), the wave condition with a free-stream velocity magnitude
U 0.56 m/s0 =∼

and a wave period T 10 s=∼
is considered to re-

present a relatively energetic flow condition when fine sediments
form high concentration suspensions on continental shelves (e.g.,
Traykovski et al., 2000). The Stokes boundary layer thickness is
calculated to be 2 / 1.78 mmΔ ν ω= =∼ ∼ , in which ν is the fluid
kinematic viscosity and T2 /ω π=∼ is the wave angular frequency.
The resulting Stokes Reynolds number is Re U / 10000Δ ν= =∼∼

Δ . This



Fig. 1. Illustration of computation domain and coordinate system.
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Stokes Reynolds number is in the range of intermittently turbulent
flow where the fully turbulent condition can only be attained for a
portion of the wave cycle (e.g., Jensen et al., 1989). The dimen-
sional settling velocity is set to be W 0.5 mm/ss0 = , which is typical
for fine sediments in marine environments (Hill et al., 2000).

To generalize the simulation results, flow variables are non-
dimensionalized and a set of dimensionless equations are solved
in this study. We choose the free-stream velocity amplitude U0

∼
as

the characteristic velocity scale, and the Stokes boundary layer
thickness Δ∼ as the characteristic length scale. Consequently, the
characteristic time scale of fluid flow is calculated as t U/l 0Δ=∼ ∼ ∼

.
Hence, the non-dimensional flow variables are defined as
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where p∼ is the dynamic pressure, ρf is the fluid density, ui
∼ , ui

s∼ are
the non-dimensional fluid and sediment velocities, respectively,
and i 1, 2, 3= represents streamwise (x), spanwise (y) and vertical
(z) components, respectively (see Fig. 1). In this paper, except for
physical constants such as ,fρ ν, and the gravitational acceleration
g, variables without overhead ‘∼’ are non-dimensional variables.

In particle-laden turbulent flows, the degree of coupling be-
tween the carrier flow and dispersed particles is often character-
ized by comparing the characteristic time scale of fluid flow tl

∼ with
the particle response time tp

∼ , which is defined as

t
sd
18

, 2p

2

ν
= ( )

∼
∼

where s /s fρ ρ= is the particle specific gravity, ρs is the sediment

density, and d
∼
is the particle diameter. When tp

∼ is relatively small

compared with tl
∼ , the equilibrium Eulerian approximation (Ba-

lachandar and Eaton, 2010) can be applied. Thus, the particle ve-
locity usi can be simplified to be an algebraic sum of the fluid ve-
locity ui, the settling velocity Ws0 and an expansion in terms of the
particle Stokes number St:

u u W St
s

Du
Dt

St1
1

, 3i
s

i s i
i

0 3δ= − − ( − ) + ( ) ( )

where the particle Stokes number St t t/p l= ∼ ∼ is introduced to
quantify the particle inertia relative to the flow inertia.

By substituting Eq. (3) into the Eulerian two-phase equations
for the fluid phase (Cantero et al., 2008), and adopting the Bous-
sinesq approximation, which is appropriate for the relatively small
volumetric concentration of suspended fine sediment on con-
tinental shelves (Traykovski et al., 2007), the resulting non-di-
mensional continuity and momentum equations of the fluid phase
are written as (Cheng et al., 2015)
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where the second term on the right-hand-side of Eq. (5) re-
presents the streamwise pressure gradient that drives the pre-
scribed wave motion. The last term on the right-hand-side of Eq.
(5) results from the momentum exchange between the sediment
phase and the carrier fluid with ϕ representing the volumetric
concentration of sediment and the particle Froude number

Fr U s g/ 10 Δ= ( − ) ∼∼
is also introduced. For the bottom resuspen-

sion, this term typically represents sediment-induced stable den-
sity stratification, which can attenuate the carrier flow turbulence
(Cheng et al., 2015).

The non-dimensional mass conservation equation of the sedi-
ment phase is written as

t
u
x Re Sc x x

1
,

6
i
s

i i i

2ϕ ϕ ϕ∂
∂

+
∂
∂

= ∂
∂ ∂ ( )Δ

where Sc /ν κ= is the Schmidt number with κ denoting the sedi-
ment diffusivity. The Schmidt number is chosen to be Sc¼0.5 in
this study (Ozdemir et al., 2010; Yu et al., 2013).

The bottom boundary layer is idealized to be statistically
homogeneous in streamwise (x) and spanwise (y) directions (see
Fig. 1). Periodic boundary conditions are used along streamwise
and spanwise boundaries for fluid phase velocities and the sedi-
ment concentration. Two walls are located at the top and bottom
boundaries and no-slip and no-penetration wall boundary condi-
tions are implemented for the fluid velocity. For the sediment
concentration, a no-flux boundary condition is applied at the top
boundary:

w
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where z Lz= is located at the top of the domain, and ws is the
vertical component of the sediment velocity.

At the bottom boundary, an erodible/depositional boundary
condition is implemented for sediment concentration to allow
resuspension/deposition at the bottom:

w
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where E and D are non-dimensional erosional and depositional
fluxes from/to the bottom, respectively, and both E and D are
nondimensionalized by the free-stream velocity magnitude U0

∼
. The

continuous non-dimensional depositional flux is specified as
(Sanford and Maa, 2001; Winterwerp, 2007)

D w . 9s
z 0ϕ= − ( )=

The non-dimensional erosion rate E is calculated by the Par-
theniades-Ariathurai type formulation (e.g., Sanford and Maa,
2001):
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where me is the non-dimensional empirical coefficient of erosion

rate (normalized by U0
∼
), bτ is the non-dimensional bottom

shear stress and the non-dimensional critical shear stress of



Fig. 2. Simulation results of turbulence dissipation rate at the flow peak for Case 0.
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erosion is represented by cτ . Both bτ and cτ are normalized by Uf 0
2

ρ
∼

.

2.2. Numerical implementation

In this study, the computational domain (see Fig. 1) is kept the
same as the previous study of Ozdemir et al. (2010), which is
L L L 60 30 60x y z Δ Δ Δ× × = × ×∼ ∼ ∼ ∼ ∼ ∼, and it has been shown to be
sufficient to resolve the largest turbulent eddies at the Stokes
Reynolds number of Re 1000=Δ . Following Cheng et al. (2015), the
model domain is discretized into N N N 128 128 257x y z× × = × ×
with uniform grids in both streamwise and spanwise directions,
and Chebyshev collocation points are used in the vertical direction.
A more detailed discussion is given later to demonstrate that the
present numerical resolution is sufficient. Taking advantage of the
statistical homogeneity in the streamwise (x) and spanwise (y)
directions, ensemble-averaged (turbulence-averaged) flow quan-
tities can be calculated approximately by averaging over the x–y
plane.

A hybrid numerical scheme which maintains Fourier expan-
sions in homogeneous directions (streamwise and spanwise) and
implements sixth-order centered compact finite difference meth-
od in the wall-normal direction (Yu et al., 2013) is utilized in this
study. With this hybrid scheme, flow-dependent properties and
more flexible boundary conditions become relatively straightfor-
ward to implement. Uniform grids are used in the two homo-
geneous directions and Chebyshev collocation points are used in
the vertical direction in order to better resolve the flow near the
wall/bed. Eqs. (4) and (5) are solved with a standard projection
method (Chorin, 1968). The velocity field is first advanced to the
intermediate level. For diffusion terms, the Crank–Nicolson
scheme is used. Nonlinear advection terms are calculated by the
Arakawa method (Arakawa and Lamb, 1981) with the 2/3 de-
aliasing law. To preserve the accuracy of the 128 grids used in the x
and y directions, the nonlinear products are computed on 192
grids, while 128 unfiltered wave-numbers are retained. The tem-
poral integration is performed using a third-order low-storage
Runge–Kutta scheme. A direct solver is used to solve the pressure
Poisson equation, and once the pressure is determined, the inter-
mediate velocity field is corrected to satisfy Eq. (4). For the sedi-
ment concentration equation, similar numerical scheme are used.
More detailed discussions on the numerical schemes and im-
plementations can be found in Cortese and Balachandar (1995)
and Yu et al. (2013). The implementation of the top boundary
condition (Eq. (7)) is discussed in detail in Appendix A.

Yu et al. (2014) used the same grid resolution and domain size
as in the present study, and demonstrated that it is sufficient to
reproduce the DNS results of clear fluid oscillatory wave boundary
layer at Re 1000=Δ in Spalart and Baldwin (1989). An additional
evidence for sediment-laden condition is given here using Case 0
(see Table 1). The grid resolution can be verified by comparing
Table 1
List of simulations presented in this study.a

Case St ϕref d
∼
( mμ ) D f

∼
( mμ ) nf

0 NA NA 24 NA NA

A1 0.03 NA 24 NA NA

A2 0.1 NA NA NA NA
A3 0.2 NA NA NA NA
B1 NA 0.63 24 NA NA

B2 NA 0.2 4 52.7 2.38

B3 NA 0.13 4 66.6 2.27

B4 NA 0.05 4 107.3 2.09

a All simulations presented in this study are corresponding to non-dimensional par
with the Kolmogorov length scale, which can be estimated from
the simulation results of turbulence dissipation rate. Fig. 2 shows
the turbulence dissipation rate during the flow peak, the moment
that the turbulence dissipation rate is the largest throughout the
wave cycle. We can observe that the maximum non-dimensional
turbulence dissipation rate ϵ occurs very close to the bed, which is
about 1.6 10 3× − . Therefore, the smallest non-dimensional
Kolmogorov length scale is estimated to be about

Re1/ 2.8 103 1/4 2η = ( (ϵ )) = ×Δ
− . According to Pope (2000), l 60η= is

the length scale representing the upper bound of dissipative ran-
ges. We can verify that the non-dimensional grid size adopted
here dx¼0.47 is only about 28% of l 60η= . Hence, we verify that
the grid resolution can capture sufficient turbulence scales for the
cases considered in this study.

2.3. Simulation setup

In the previous studies (Ozdemir et al., 2010; Cheng et al.,
2015), the inertia terms associated with the particle Stokes num-
ber St in the particle velocity expression (Eq. (3)) are neglected by
assuming that the Stokes number St is sufficiently small, and the
particle velocity is calculated as

u u W . 11i
s

i s i0 3δ= − ( )

The dimensional settling velocity Ws0 is calculated via the Stokes
drag law:
eqτ∼ (Pa) eqΦ ϕmax Transport mode

0.39 1.76 10 3× − 0.012 II

0.38 1.8 10 3× − 0.013 II

NA NA NA II
NA NA NA III
0.38 1.95 10 3× − 0.014 II

0.28 4.7 10 4× − 0.021 III

0.28 7.0 10 4× − 0.026 III

0.28 NA 0.05 III

ameters Re 1000=Δ , W 9 10s0 4= × − , 6.4 10c 5τ = × − and m 5.4 10e 7= × − .
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W
s gd1

18
. 12s0

2

ν
= ( − )

( )

∼

Hence, by specifying W 0.5 mm/ss0 = (or W 9 10s0
4= × − ), these

simulations can be interpreted as corresponding to fine silt (no
flocculation) with a particle size of d 24 m= μ

∼
and the specific

gravity is s¼2.65.
As one of the objectives in this study is to evaluate the un-

certainties associated with the parameterization of settling velo-
city adopted by the previous studies, namely, Eq. (11), simulations
are designed to vary the selected parameters that stem from the
baseline Case 0 (see Table 1). Case 0 is identical to a case reported
in Cheng et al. (2015), which belongs to transport mode II. Speci-
fically, the fine sediment transport of W 9 10s0

4= × − with a relative
low dimensional critical shear stress of erosion of 0.02 Pacτ =͠ in
the wave condition of Re 1000=Δ is studied in Case 0. As reported
in Cheng et al. (2015), although transport mode II is obtained for
Case 0 where the flow is turbulent below the lutocline, the re-
sulting sediment availability is in fact quite large and further re-
ducing cτ͠ to 0.01 Pa produces laminarized transport mode III.
Therefore, in this study we focus on varying the parameterizations
of settling velocity and evaluate the results especially in terms of
the transition of transport modes. Following Cheng et al. (2015),
we also set m 5.4 10e

7= × − .
For Case 0, the particle response time and characteristic flow

time scale are t 8.5 10 sp
5= ×∼ − and t 3.2 10 sl

3≈ ×∼ − , respectively.

The resulting Stokes number is St t t/ 0.03p l= ≈∼ ∼ , which is much
smaller than unity. However, the non-dimensional settling velo-
city W 9 10s0

4= × − is also quite small. Hence, it is not obvious if
the third term in Eq. (3), representing the inertia effect, is always
smaller than the second term (Stokes settling velocity) unless flow
acceleration is small. In the present boundary layer setting with
gravitational acceleration acting only in the z direction, the main
difference is that the second term in Eq. (3) is persistent
throughout the simulation while since there is no ensemble-
averaged mean flow in the z direction, the third term in Eq. (3) can
only be large instantaneously. Because the system is nonlinear, it
remains necessary to evaluate the importance of the third term on
the resulting sediment transport at St¼0.03 and Case A1 shown in
Table 1 is presented for this purpose. To further emphasize the
effect of particle inertia, two additional numerical experiments
(Case A2 and A3) with higher Stokes numbers are carried out,
while the other non-dimensional quantities, namely, ReΔ, Ws0 and
Fr are kept the same as Case 0. The equilibrium Eulerian approx-
imation is fairly accurate for St 0.2≤ (Balachandar and Eaton,
2010), thus the largest St is chosen to be 0.2 (Case A3).

In addition, the hindered settling effects were neglected in the
previous studies (Ozdemir et al., 2010; Cheng et al., 2015). To in-
corporate the effect of hindered settling, the bulk settling velocity
Ws is corrected with a hindered settling function f ϕ( ):

W W f . 13s s0 ϕ= ( ) ( )

In this study, we choose the model of Richardson and Zaki
(1954) to parameterize the hindered settling effect:

⎛
⎝
⎜⎜f 1 ,

14ref

mϕ ϕ
ϕ

( ) = − )
( )

where ϕref is the reference concentration, i.e., a maximum packing
concentration (Richardson and Zaki, 1954; Mehta, 1986; Dankers
and Winterwerp, 2007). Clearly, the degree of hindered settling
and hence the resulting transport is highly dependent on ϕref. For
non-cohesive sediments, ϕref corresponds to the maximum pack-
ing limit, which is around 0.63, at which the mean distance be-
tween the edges of the nearest neighbors is nearly zero (Berryman,
1983). For cohesive sediments, fine particles (primary particles)
are transported as flocs and the gelling concentration is often used
for ϕref. As the gelling concentration is defined as the concentra-
tion at which floc aggregates form concentrated networks, it de-
pends on the floc structures and may vary due to floc dynamics
(Winterwerp, 1998; Dyer and Manning, 1999). In this study, we
investigate four cases with different reference/gelling concentra-
tions associated with non-cohesive particles (see Case B1 in Ta-
ble 1), and different floc structures (Cases B2–B4 in Table 1). The
empirical exponent m is related to the particle Reynolds number
(Re W d/p s0 ν=

∼
). As will be demonstrated later, the particle size (or

floc size) considered in this study is small ( Re 0.2p < ) and the
exponent m is kept constant as m¼4.6 (Richardson and Zaki,
1954).
3. Effect of particle inertia

To study the effect of particle inertia, four numerical experi-
ments are carried out and results are compared in non-dimen-
sional quantities. In Case 0 (see Table 1), the inertia terms in the
sediment velocity expression are neglected and Eq. (11) is used. In
Cases A1–A3 (see Table 1), the first-order inertia term in the se-
diment velocity expression is kept:
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Except for the difference in the particle velocity expressions, other
non-dimensional flow and sediment parameters in Case 0 and
Case A1–A3 are kept the same, and thus any difference between
these cases is due to the extra inertia term in the particle velocity
expression.

3.1. Model results

The sensitivity of the particle inertia is first investigated by
comparing the ensemble-averaged profiles (see Fig. 3) of sediment
concentration, non-dimensional streamwise velocity and non-di-
mensional turbulence intensity for Case 0 (inertia effect neglected)
and Case A1 (St¼0.03). The turbulence intensity is defined as

k2〈 〉, where ‘〈 〉’ denotes the averaging operation over the x�y
plane, and k is the turbulent kinetic energy:

k u v w , 16
1
2

2 2 2= ( ′ + ′ + ′ ) ( )

where u′, v′ and w′ are the velocity fluctuations of streamwise,
spanwise and vertical velocity components, respectively.

It is reminded here that Case 0 belongs to transport mode II, in
which the lutocline separates the upper quasi-laminar layer from
the lower turbulent layer. In this case, the lutocline is located
approximately at z 13 14= – (see circle symbols in Fig. 3(a)). By
including the first-order inertia term, the resulting sediment
concentration profile (see Fig. 3(a)) is very similar to that of Case 0.
Moreover, the relative difference of the sediment concentration is
shown in Fig. 3(d), which is defined as

Err 100%,
17
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0
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〈 〉 − 〈 〉

〈 〉
×

( )

where 0ϕ〈 〉 is the plane-averaged sediment concentration in Case
0, and Aϕ〈 〉 is the plane-averaged sediment concentration in Case
A1. The relative difference of the streamwise velocity uErr(〈 〉) and
the turbulent intensity kErr 2(〈 〉) can be calculated in a similar
manner. We can see that the overall relative difference is small
( 10%< ). A reduction of sediment concentration can be observed in
the range of z13 21< < , and the peak difference appears at



Fig. 3. Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b) streamwise velocity and (c) turbulence intensity during flow peak (ωt¼0) for Case 0
(circle symbols), Case A1 (solid curve). The relative difference (%) of these flow quantities are shown in (d), (e) and (f), respectively. The levels of zero error are denoted as
dashed lines in (d), (e) and (f).

Fig. 4. (a) Time series of free-stream velocity U(t). Three representative instants (b, c, d) are shown with open circles. The relative difference (%, solid curve) of effective
settling velocities between Case 0 and Case A1 at these three representative instants are shown in (b) flow peak (ωt¼0), (c) t /3ω π= and (d) t 2 /3ω π= ; The levels of zero
error are denoted as dashed lines in (b), (c) and (d).
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around z¼18 (about �10%), which is close to the lutocline. On the
contrary, sediment concentration below z¼13 is increased by
about 7%. This observation suggests the lowering of lutocline when
inertia effect is considered. Meanwhile, the streamwise velocities
(see Fig. 3(b)) of both cases are again very similar, and the relative
difference (see Fig. 3(e)) is generally smaller than 5%, and the peak
value can be observed near the bottom. Furthermore, the com-
parison of turbulence intensity is shown in Fig. 3(c). Although the
turbulence intensity profiles from Case 0 and Case A1 are also very
close, it is evident that the predicted turbulence is slightly lower
by including the inertia effect with the peak attenuation which
occurs at around z¼15 near the lutocline. More attenuated tur-
bulence is consistent with the lowered lutocline.

Moreover, the relative differences in effective settling velocities
at three representative instants are discussed in Fig. 4. The relative
difference in the effective settling velocity is calculated by the
ensemble-average of the additional term associated with the in-
ertia effect normalized by Ws0:

W St
s W

Err 1
1

100%
18

s

Dw
Dt
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(〈 〉) = ( − ) ×

( )

In Fig. 4(a), the wave phase (ωt) is defined such thatωt¼0 ( tω π= )
corresponds to the positive (negative) peak of free-stream velocity,
and t /2ω π= and 3 /2π correspond to flow reversals. From the
comparison of effective settling velocities (Fig. 4(b–d)), we can see
that the effective settling velocity is nearly unaffected above z¼20
due to very low turbulence above the lutocline. Between

z1.5 20< < , including the particle inertia reduces the effective
settling velocity. However, the reduction is only within 3%.
Moreover, an increase of the effective settling velocity can be ob-
served near the bottom z0 1.5< < , and the peak value of the
increment is about 5% at flow peak. However, the effective settling
velocity at the bottom is still reduced by about 2%. As the flow
decelerates to t /3ω π= , the increment of effective settling velocity
at around z¼1.5 is decreased to about 1%. After the flow reserves
and accelerates to t 2 /3ω π= , a uniform reduction of effective
settling velocity can be observed below the lutocline, and the re-
duction is less than 2%. Overall, the inertia effect slightly reduces
velocity fluctuations in the z-direction and hence the Reynolds
stress is reduced (not shown here for conciseness). This can fur-
ther lead to a reduction of turbulent production and hence more
attenuation of turbulence. However, the Stokes number con-
sidered here remains to be too small (St¼0.03) to trigger the
transition to transport mode III.

As discussed in this section, by retaining the first order St term
in the particle velocity expansion based on Case 0 with St¼0.03,
the inertia effect is demonstrated to be small on concentration
profiles, velocity profiles and turbulent intensity. This negligible
effect is consistent with the small WErr s(〈 〉) which is generally
within 5%. This sensitivity study of inertia effect justifies the pre-
vious studies where the inertia terms are neglected. Simulation
results for Case A2 and A3 demonstrating more pronounced evi-
dence that particle inertia effect can attenuate turbulence are
presented in Discussion (Section 5.1).
4. Effect of Hindered settling

Ozdemir et al. (2011) have demonstrated that the settling ve-
locity plays a key role in determining the vertical sediment flux
budget, and vertical distribution of sediment concentration.
Meanwhile, it has been shown that the settling velocity directly
affects the deposition flux at the bottom, and therefore determines
the sediment availability (Cheng et al., 2015). Both sediment
availability and vertical structure of sediment concentration have
significant impacts on the carrier flow turbulence characteristics
via stable density stratification. Therefore, it is intrinsic to study
the effect of hindered settling on fine sediment transport. As de-
monstrated in Section 3, the particle inertia has negligible effects
on the fine sediment transport for Stokes number St up to 0.03.
Therefore, in the study of hindered settling effects, the inertia ef-
fect is neglected. Neglecting the inertia effect in particle velocity
parameterization also allows us to easily isolate the hindered
settling effect. In this section, the particle velocity is expressed to
account for the hindered settling correction:

u u W f . 19i
s

i s i0 3ϕ δ= − ( ) ( )

When fine sediments are considered non-cohesive, the re-
ference concentration is chosen to be 0.63refϕ = , which corres-

ponds to Case B1 in Table 1, and the dimensional Stokes settling
velocity Ws0 is calculated by Eq. (12). Hence, for Case 0 and Case B1,

a dimensional settling velocity of W 0.5 mm/ss0 = corresponds to

fine silt of grain diameter d 24 m= μ
∼

. For cohesive sediments
forming floc aggregates, the dimensional Stokes settling velocity
should be determined by floc properties (Kranenburg, 1994):
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where D f
∼

is the floc size, and s /floc floc fρ ρ= is the specific gravity of
flocs with ρfloc being the density of flocs. The floc density depends
on floc structures, and it is calculated by adopting the fractal
model (Kranenburg, 1994) as
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where nf is the fractal dimension and d
∼
is interpreted here as the

primary particle size. For flocs, the gelling concentration is used as
the reference concentration (see Eq. (14)). The gelling concentra-
tion is also determined by floc structures, which is calculated as
(e.g., Winterwerp and Van Kesteren, 2004)
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Due to complicated processes of floc aggregation and breakup,
floc properties may vary with flow shear and floc–floc interactions
(Dyer and Manning, 1999; Winterwerp, 1998). However, this level
of complexity is beyond the scope of this study, and floc properties
are assumed to be constant in each simulation. We consider the

primary particle size to be d 4 m= μ
∼

, the floc size D f
∼

and fractal
dimension nf are then determined by keeping the Stokes settling
velocity the same as Case 0, i.e., W 0.5 mm/ss0 = (or

W 9 10s0
4= × − ). For example, in Case B2 we specify the gelling

concentration to be 0.2gelϕ = . Matching the Stokes settling velo-

city of W 0.5 mm/ss0 = gives a floc size of D 53.7 mf = μ∼
with the

fractal dimension nf¼2.38. This corresponds to typical inorganic
flocs with nf significantly greater than 2.0. On the other hand, Case
B4 with a gelling concentration of 0.05gelϕ = gives a floc size of

D 107 mf = μ∼
and nf¼2.09, which corresponds to more porous and

organic flocs. The floc properties for all the cases considered in this
study are summarized in Table 1. We can check that the maximum
particle Reynolds number considered in Table 1 remains to be very
small Rep¼0.06. Thus, a constant m¼4.6 (see Eq. (14)) can be used
in all the cases.



Fig. 5. Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b) streamwise velocity and (c) turbulence intensity during flow the peak (ωt¼0) for
Case 0 (circle symbol), Case B1 (solid curve). The relative difference (%) of these flow quantities are shown in (d), (e) and (f), respectively. The levels of zero error are denoted
as dashed lines in (d), (e) and (f).
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4.1. Model results

Using the model of Cheng et al. (2015), the sediment avail-
ability in this study is determined by the interplay of erosion and
deposition at the bottom boundary. However, the hindered set-
tling adds another layer of complexity, since the settling velocity
becomes a function of sediment concentration (see Eq. (13)) and
the deposition flux is now a nonlinear function of sediment con-
centration. Hence, it is crucial to study the uncertainty introduced
by hindered settling on the transport mode of fine sediment.

Firstly, the ensemble-averaged flow statistics in Case 0 and Case
B1 are compared in Fig. 5 to study the sensitivity of the hindered
settling for non-flocculated condition ( 0.63refϕ = ). Case 0 and Case
B1 show a similar feature of concentration profiles (Fig. 5(a)). Since
the lutoclines are observed in both Case 0 and Case B1 near z¼14,
transport mode II is also obtained for Case B1. However, Case B1
shows slightly increased sediment concentrations below the lu-
tocline. Although the increase is within 20%, this notable incre-
ment of total load in the domain is clearly associated with the
reduced settling velocity through hindered settling. Meanwhile,
the streamwise velocity profiles (see Fig. 5(b)) show that the
overshoot near the bottom in Case B1 is slightly larger (within
10%) than that of Case 0. Below the lutocline, the turbulent in-
tensity in Case B1 is consistently lower than that of Case 0 by
about 5–20% (see Fig. 5(f)). When settling velocity is effectively
reduced by hindered settling effect, more sediments are sus-
pended in the domain (Cheng et al., 2015), which leads to an en-
hanced sediment-induced density stratification and a stronger
attenuation of turbulence is observed. However, both Case 0 and
Case B1 are in transport mode II, which verifies the simulations of
Cheng et al. (2015), where the hindered settling effect is neglected
as sediments are assumed to be non-flocculated.
Though the transport mode is not altered, a noticeable damp-
ing effect of flow turbulence is observed when the hindered set-
tling is considered. It is motivated to further investigate the hin-
dered settling effect with different reference (gelling) concentra-
tions (see Cases B2-B4 with different gelling concentration shown
in Table 1). As a result of different gelling concentrations, distinct
transport modes are observed. These distinct transport modes are
first examined from the ensemble-averaged flow statistics for Case
B1 and B2. Fig. 6 illustrates the hindered settling effect on the
vertical structure of sediment concentration, streamwise velocity
and turbulent intensity. As discussed before, transport mode II
with a lutocline is observed for Case B1 (see solid curves in Fig. 6
(a) and (d)). By reducing the reference (gelling) concentration
from 0.63refϕ = to 0.2refϕ = , Case B2 (see dashed curve in Fig. 6
(a) and (d)) shows a very different feature of sediment con-
centration. The lutocline is not observed in the concentration
profile of Case B2, and nearly exponential profile is obtained. From
the velocity profiles shown in Fig. 6(b) and (e), a reduction of
bottom boundary layer thickness is also observed. More im-
portantly, the turbulent intensity below z¼14 is completely sup-
pressed in Case B2, which indicates that the flow turbulence is
completely attenuated by sediment-induced stable density strati-
fication. Above z¼14, a weak turbulent intensity can still be ob-
served, and this is introduced by the turbulent fluctuation from
the upper wall. During the flow reversal, significantly attenuated
turbulence (or laminar-like features) is also obtained for Case B2.
From the flow statistics, we observe that Case B1 is in transport
mode II, while further reducing the reference (gelling) con-
centration associated with hindered settling triggers the transition
from transport mode II to laminarized transport mode III.

To further illustrate the effect of hindered settling on the tur-
bulent structure and the resulting turbulence-sediment



Fig. 6. Ensemble-averaged profiles of (a) sediment concentration, (b) streamwise velocity and (c) turbulent intensity during flow peak (ωt¼0) for Case B1 (solid curve), Case
B2 (dashed curve). (d), (e) and (f) are the corresponding profiles during flow reversal.
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interaction, the iso-surfaces of local swirling strength λci are
shown along with the iso-surface of sediment concentration for
Case 0, B1 and B2 during the flow peak in Fig. 7. λci is the ima-
ginary part of the complex eigenvalue of the velocity gradient
tensor and its magnitude can be used to quantify the strength of
local swirling motion (Zhou et al., 1999). The threshold is chosen
here to be 4% of the maximum value obtained in Case 0, and this
threshold value is applied to the other cases to facilitate the
comparison. It is evident that sparse coherent vortex structures
can be observed in part of the near-bed region in Case 0 (see Fig. 7
(a)). This region is corresponding to a stripe of more irregular/
chaotic and higher sediment concentration structures. In regions
where no coherent turbulence structures are observed, a regularly
spaced streaks of lower sediment concentration are observed.
When hindered settling is considered with reference concentra-
tion 0.63refϕ = (see Case B1 in Fig. 7(b)), similar sparse coherent
vortex structures can be seen but with slightly sparser distribution
than that in Case 0. On the other hand, no coherent vortex
structures can be observed in Case B2 (see Fig. 7(c)), which in-
dicates that the turbulence in Case B2 is completely suppressed. As
a result, a nearly uniform sediment concentration structures ap-
pears in the sediment concentration field of Case B2. Although not
shown here, further reducing the reference concentration to

0.13refϕ = (Case B3) and 0.05refϕ = (Case B4) also shifts the flow
to laminarized transport mode III, and the flow turbulence struc-
tures for Case B3 and Case B4 are similar to Case B2.

These distinct flow features are caused by different degrees of
hindered settling effect. Fig. 8 presents the normalized effective
settling velocity, which is defined as the difference between the
sediment velocity and the fluid velocity in the z-direction nor-
malized by the Stokes settling velocity. Since the features are si-
milar during the entire wave cycle, only the comparison at the
flow peak is shown here. We can see that different reference
(gelling) concentrations render different degrees of reduction in
the effective settling velocity, and the reduction of effective set-
tling velocity is larger near the bottom, where the sediment con-
centration is larger. For Case B1 ( 0.63refϕ = ), the reduction is less
than 10%. When the reference concentration ϕref is reduced to 0.2
(or 0.13) in Case B2 (in Case B3), the reduction of settling velocity
is significantly enhanced and near the bed, the effective settling is
only 60% (37%) of that in Case 0. Finally, the complete hindered
effect, where the effective settling velocity approaches zero near
the bottom is observed for reference concentration 0.05refϕ =
(Case B4).

It has been revealed that settling velocities play an important
role in vertical structure of sediment-induced density stratification
(Ozdemir et al., 2011) and sediment availability (Cheng et al.,
2015), which determines the flow transport modes. Fig. 9
(a) further illustrates the hindered settling effect on the time series
of domain-averaged sediment concentration, which is defined as
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It is evident from Fig. 9(a) thatΦ is significantly affected by the
hindered settling. For non-flocculated condition (Case B1, ϕ
ref¼0.63), the temporal variation of domain-averaged sediment
concentration is similar to that of Case 0. An equilibrium state in
transport mode II is established, in which the wave-averaged
erosion flux E balances the wave-averaged deposition flux D with
‘ ’ representing wave-averaged operator. The deposition flux at
the bottom boundary is determined by the bottom concentration,
which plays a key role in controlling the sediment availability in
the domain. Therefore, the evolution of the ensemble-averaged
bottom concentration bϕ〈 〉 is also presented in Fig. 9(b). For both
Case 0 and Case B1, time series of bϕ〈 〉 are similar to that of Φ and
an equilibrium state is achieved after about 20 repeated wave
motions. To facilitate the comparison, we also examine the time
averaged Φ over one wave period at the equilibrium stage and



Fig. 7. Turbulent coherent structures at flow peak (ωt¼0) for (a) Case0, (c) Case B1, and (e) Case B2. The turbulent coherent structures are visualized using the swirling
strength (λci), and the contour level used here is 4% of the maximum λci value in Case 0. The iso-surface of concentration ϕ field corresponding to (b) Case 0, (d) Case B1 and
(f) Case B2 are also shown, and their contour levels are 8.2 10 3× − , 9.8 10 3× − and 0.015, respectively.
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formally define it as sediment availability eqΦ (see Table 1). The

sediment availability for Case B1 ( 1.95 10eq
3Φ = × − ) is slightly

greater than that of Case 0 ( 1.76 10eq
3Φ = × − ), which is consistent

with the slightly lower settling velocity in Case B1. This equili-
brium state reflects transport mode II and the turbulent nature of
this mode sustain a notable amount of sediment (see Table 1).

However, when the gelling concentration is further reduced to
0.2refϕ = and 0.13refϕ = , a different trend of sediment con-

centration evolution can be observed. The domain-averaged se-
diment concentration Φ increases to about 2.1 10 3× − (2.4 10 3× − )
in Case B2 (Case B3) at t T/ 10= (t T/ 12= ). Afterward, Φ starts to
decrease. As discussed previously (see Figs. 6 and 7(c)), the flow
turbulence in Case B2 (or Case B3) is completely suppressed (la-
minarized transport mode III) and the viscous suspension alone
can not sustain such amount of sediment in the domain. As a re-
sult, the domain-averaged concentration drops until a final equi-
librium state in the laminarized transport mode III is reached and
a much lower eqΦ is found. Notice that the decreasing rate of do-
main-averaged sediment concentration in Case B3 is smaller than
that in Case B2, and this difference can be explained by the dif-
ferent effective settling velocities as shown in Fig. 8.

More insights can be revealed by examining the time series of
bottom concentration bϕ〈 〉. In in Fig. 9(b), bϕ〈 〉 of Case B2 increases
slightly faster than that of Case B1 (compare the blue curve with
the red curve). Similar features in the bottom concentrations are



Fig. 8. Normalized effective settling velocity profile for Case 0 (dashed curve), Case
B1 (circle symbols), Case B2 (curve with cross symbols), Case B3 (dash-dot curve)
and Case B4 (thick solid curve) during flow peak (t¼15 T).
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also observed for Case B3 (black curve in Fig. 9(b)). This sharper
increase of bottom concentration is clearly associated with the
collapse of flow turbulence at around t¼13 T for Case B2 (or
t¼10 T for Case B3), and hence a larger increment rate of the
bottom concentration must then occur for the next couple of wave
cycles. This process is more clearly demonstrated in Fig. 10(a) and
(b). Before the flow laminarizes ( t 13 T< ), the flow is evidently
turbulent with peak turbulent intensity exceeding 0.15 (see Fig. 10
(b)), and a lutocline is observed from the corresponding con-
centration profiles. At t¼13 T, the turbulent intensity drops sig-
nificantly and the peak value is of no more than 0.04. Two more
wave periods later at t¼15 T, the turbulent intensity is almost
Fig. 9. Temporal evolution of (a) domain-averaged sediment concentration Φ and (b) en
curve), Case B1 (circle symbols), Case B2 (curve with cross symbols), Case B3 (dash-dot
vanished. To respond to the suppression of turbulence, sediment
concentrations in the range of z5 20< < is reduced. Meanwhile,
an accumulation of sediment concentration near the bottom
(z 5< ) is observed. The increased sediment concentration near the
bed can further reduce the effective settling velocity (see Eq. (14)),
however the deposition rate is increased (demonstrated later in
Fig. 13), thus the bottom concentration then generally drops until
the final equilibrium state is reached (see Fig. 9(b)). The interplay
between the deposition flux and bottom concentration after la-
minarization further determines the equilibrium balance between
erosion flux and deposition flux. Quantitatively, the erosion flux
after laminarization in the numerical simulation is only de-
termined by viscous suspension, which is sensitive to the Schmidt
number Sc specified. However, the qualitative feature discussed
here is unaffected by the value used for Sc.

From the above discussions, we can clearly observe that sig-
nificantly suppressed turbulence and laminarized transport mode III is
obtained for Cases B2 and B3 due to initially high sediment availability,
which is consistent with the finding discussed in Cheng et al. (2015).
However, in Cheng et al. (2015), the high sediment availability is ob-
tained via a lower critical shear stress of erosion (lower than the value
used here), while in this study, the higher sediment availability is
associated with a significant hindered settling effect. Indeed, Cheng
et al. (2015) also demonstrated that by systematically reducing the
settling velocity used in each simulation, larger availability is obtained
which can also lead to laminarization.

If we further reduce the reference concentration as in Case B4
( 0.05refϕ = ), we would expect laminarized transport mode III with

even lower sediment availability eqΦ than that in Case B3. How-
ever, the time series of domain-averaged concentration shows
unexpected features. We can observe that the domain-averaged
concentration continue to increase as wave motion persists.
Eventually the increment rate becomes relatively constant, how-
ever, an equilibrium state such as those of Cases B1–B3 cannot be
established. This unbounded mode of suspended sediment load in
the domain is caused by the significantly reduced deposition flux
semble-averaged sediment concentration at the bottom bϕ〈 〉 for Case 0 (thin solid
curve) and Case B4 (thick solid curve).



Fig. 10. Plane-averaged (a) sediment concentration profiles and (b) turbulent intensity profiles for Case B2 at five different instants: t¼11 T (solid curve), t¼13 T (dashed
curve), t¼15 T (curve with cross symbols), t¼17 T (dash-dot curve), t¼19 T (curve with circle symbols). The corresponding plane-averaged profiles for Case B4 are shown in
(c) and (d) at five different instants: t¼6 T (solid curve), t¼9 T (dashed curve), t¼12 T (curve with cross symbols), t¼15 T (dash-dot curve), t¼18 T (curve with circle
symbols).
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(or nearly zero deposition flux) associated with very large hin-
dered settling effect.

According to the time series of bottom concentration of Case B4
shown in Fig. 9(b), the larger increment rate after the laminarization at
t¼10 T is consistent with that of Cases B2 and B3. However, the
subsequent time series of bϕ〈 〉 of Case B4 again shows a trend of
continue increment, which indicates that the equilibrium balance
between the erosion flux and the deposition flux cannot be estab-
lished. From the snapshots of sediment concentration and turbulent
intensity profiles (see Fig. 10(c) and (d)), during the early stage of the
simulation at t¼6 T (or t¼9 T), a lutocline can be observed in the
concentration profile and the flow is turbulent. After the onset of la-
minarization, the flow turbulence is almost completely suppressed
(see t¼12 T) and the sediment concentration shows the expected
concave-upward profile. What is unexpected is that by comparing the
concentration profile between t¼15 T and t¼18 T, it becomes clear
that the total amount of suspended sediment in the domain (or se-
diment availability) continues to increase cycle by cycle. Hence, by
considering the hindered settling with a very low gelling concentra-
tion, the flow feature obtained in Case B4 after the onset of laminar-
ization is distinctly different from that of Cases B2 and B3. The flow
feature demonstrated in Case B4 is similar to the gelling ignition dis-
cussed in Kampf and Myrow (2014). It is reminded that when the
sediment concentration becomes large, the assumptions of the equi-
librium Eulerian approximation and Boussinesq approximation may
be violated. To confirm this, the maximum concentrations ϕmax in
each case are also shown in Table 1. We can see that the maximum
concentration in each is no more than 0.05, which is sufficiently small.
In Case B4, the simulation is terminated as the bottom concentration
exceeds 0.05, however, the fate of the sediment transport at this point
is already clear.

In summary, the transition from transport mode II to transport
mode III can be triggered by the hindered settling with a low reference
(gelling) concentration. This transition of transport modes is due to the
reduction in the effective settling velocity when the hindered settling
is considered. As discussed in Cheng et al. (2015), the reduced settling
velocity can increase the sediment availability, and the resulting se-
diment-induced stable density stratification is enhanced that further
triggers the flow laminarization. Interestingly, in the laminarized
transport mode III, an unstable mode, where the deposition flux be-
comes always smaller than the erosion flux, is obtained when a suf-
ficiently low gelling concentration is used. In the next section, we will
show that the observed unstable mode is indeed the gelling ignition as
described in Kampf and Myrow (2014) and a sufficient condition for
its occurrence is proposed.
5. Discussion

5.1. Turbulence modulation due to increasing St

Although including the inertia terms in the particle velocity
expression for fine sediment in typical continental shelf condition
(St¼0.03) makes no more than %10 difference on the mean
quantities (see Fig. 3), it is likely that the inertia effect can be more
pronounced when the Stokes number St is larger in Cases A2 and
A3 (see Table 1). We like to also point out that Cases A2 and A3 are
numerical experiments with increased Stokes number, while other



Fig. 11. Comparisons of (a) sediment concentration, (b) streamwise velocity and (c) turbulence intensity for Case A1 (solid curve), Case A2 (dashed curve) and Case A3 (dash-
dot curve).
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non-dimensional parameters are kept the same. Since the physical
condition of Cases A2 and A3 may not occur for typical fine sedi-
ment in the continental shelf, we focus on comparing non-di-
mensional quantities and turbulence modulation.

Ensemble-averaged sediment concentration, fluid streamwise ve-
locity and turbulent intensity are compared in Fig. 11 for cases with
different Stokes numbers (Case A1–A3). From the concentration pro-
files (Fig. 11(a)), we can see that the lutoclines, which is typical for
transport mode II, appear in both Cases A1 and A2. However, the lu-
tocline is absent in Case A3, and a rapid decaying sediment con-
centration is observed. The boundary layer thickness is significantly
reduced in Case A3, which is evident in the streamwise velocity pro-
files (Fig. 11(b)). Meanwhile, from the turbulence intensity profile, we
observe that increasing the Stokes number, the flow turbulence is
evidently decreased. Particularly, for Case A3 with St¼0.2, the flow
turbulence is almost completely suppressed. By increasing the St to
about 0.2, laminarized mode III is obtained.

Previous studies found that intense and persistent local vortical
structures can influence the local particle concentration field, and
the effect of large particle inertia would bias the particle trajectory
towards regions of high strain rate and low vorticity due to the
centrifugal effect. This biased distribution of inertia particles has
been identified as preferential accumulation (e.g., Wang and
Maxey, 1993). If we take the divergence of the particle velocity
shown in Eq. (15), due to the incompressibility of the carrier flow,
the following relationship is obtained:
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2 1
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where S∥ ∥ is the magnitude of strain-rate tensor, and Ω∥ ∥ is the
magnitude of rotation-rate tensor. In an incompressible flow, the
second invariant SQ 1/2 2 2Ω= (‖ ‖ − ‖ ‖ ) is a local measure of the excess
rotation rate relative to the strain rate (Chakraborty et al., 2005). When
s 1> , i.e., particles are denser than the carrier fluid, the divergence of
particle velocity has the same sign as Q, indicating that the particles
tend to accumulate in regions where the strain rate is larger than the
rotation rate (i.e. S 2 2Ω‖ ‖ > ‖ ‖ ). Meanwhile, it is noted that the effect of
particle inertia grows as the particle Stokes number increases, which is
evident from Eq. (24).

To identify the preferential concentration phenomenon, the
iso-surface of the second invariant Q field is plotted against the
plane cut (z¼1.5) of the sediment concentration field at t¼10 T for
Cases 0 and A3 (see Fig. 12). At the moment of t¼10 T presented
here, both cases are still turbulent. As discussed before, denser-
than-fluid inertial particles prefer to concentrate in regions of low
vorticity and high strain rate. Hence, we expect that regions with
negative Q values would correspond to high concentration fields.
From Fig. 12(a), we can see that when inertia terms are ignored in
the sediment velocity (Eq. (15)), the turbulence structures re-
presented by negative Q value typically cover both high and low
concentration regions (see the sub-panels in (a) for enlarged
view). However, when the inertia terms are included with high St
(see Fig. 12(b)), the high correlation between turbulence structures
represented by negative Q and high sediment concentration region
can be observed (the sub-panels in (b) for enlarged view). It is
evident that the inertia terms in the sediment velocity expression
is responsible for the preferential concentration of sediment ob-
served in Fig. 12(b).

In summary, two additional numerical experiments are carried
out by increasing St, while keeping the other non-dimensional
parameters the same as Case 0. Analysis of the mean profiles re-
veals that large particle inertia tends to attenuate flow turbulence.
The well-known preferential concentration effect is illustrated
using Case A3.

5.2. Gelling ignition

The unbounded resuspension of sediments in Case B4 is an
interesting phenomenon, which may have profound implications
on the fine sediment transport on continental shelves. Similar
results are also reported by Kampf and Myrow (2014) using an
eddy-viscosity based model, and it is named gelling ignition. Here,
the more sophisticated turbulence-resolving simulation results are
used to further investigate the occurrence of gelling ignition. The

time-averaged deposition flux over one wave cycle D
∼

is calculated
and approximated as:

⎛
⎝
⎜⎜

⎛
⎝
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We need to point out that this approximation shown on the
right-hand-side is only appropriate when the variation of bottom
concentration during one wave cycle is small (see Fig. 9(b)). Since
m 0≠ , the wave-averaged deposition flux is clearly a nonlinear



Fig. 12. Turbulent coherent structures at flow peak (t¼10 T) for (a) Case 0 and (b) Case A3. The turbulent coherent structures are visualized using the second invariant Q, and
the contour level used here is 0.04− (non-dimensional). The plane cuts of the concentration ϕ field at z¼1.5 are also shown. The sub-panels show enlarged views for better
visualization of the preferential concentration effect.
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Fig. 13. Wave-averaged depositional flux D
∼

as a function of wave-averaged bottom
concentration bϕ for Case B1 (circle symbols), Case B2 (curve with cross symbols),
Case B3 (dash-dot curve) and Case B4 (thick solid curve). The dashed curve El

∼
is the

wave-averaged erosion flux at the bottom calculated using laminar solution of
bottom shear stress at Re 1000=Δ (Cheng et al., 2015). The dimensional value for
the critical shear stress of erosion is 0.02 Pacτ =∼ for all the cases.
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function of wave-averaged bottom sediment concentration that
also depends on the reference (gelling) concentration ϕref. In

Fig. 13, D
∼

is plotted against bϕ with m¼4.6 for four different ϕref

considered in this study. It is noted that for a given ϕref, there

exists a maximum D
∼

and this maximum deposition flux is smaller
for lower gelling concentration due to hindered settling effect.

On the other hand, the erosional flux averaged over one wave
cycle is calculated as

E m 1 ,
26

e
b

c

τ
τ

≈ ( − )
( )

∼
∼

∼ ͠

where the approximation of the wave-averaged erosional flux is
appropriate for relatively small critical shear stress (Cheng et al.,
2015). Once the wave-averaged bottom shear stress bτ∼ can be

estimated, E
∼
is determined. Two scenarios can be expected. If E

∼
is

lower than the maximum D
∼
, an equilibrium state exists, which

corresponds to one of the interceptions between E
∼

and D
∼

(see
Fig. 13). The transport mode of this equilibrium state is further
determined by the degree of sediment-induced density stratifica-
tion (Ozdemir et al., 2010; Cheng et al., 2015). On the other hand, if
the erosion flux is always greater than the deposition flux, no
equilibrium state exists, and this will further result in the un-
limited resuspension, or gelling ignition, as observed previously.

Because sediments can attenuate the flow turbulence and
hence reduce the bottom stress, in general it is not straightforward
to estimate the wave-averaged bottom stress magnitude bτ∼ in

order to estimate E
∼
. Numerical simulation carried out in this study

can provide information on bottom stress and bτ∼ at the equili-
brium state are shown as eqτ∼ in Table 1. Because a large (or un-
limited) supply of resuspended sediment is expected when gelling
ignition occurs, laminarized transport mode III is surely to follow.
Indeed, model results discussed here suggest when gelling ignition
occurs in Case B4, bτ∼ reduces to 0.28 Pa (Table 1), which is iden-
tical to the laminar solution at Stokes Reynolds number of

ReΔ¼1000 (Cheng et al., 2015). The corresponding erosion flux El
∼

associated with 0.28 Pabτ =∼ is shown in Fig. 13 (see the dashed
line). It is evident that the deposition flux associated with a gelling

concentration of ϕref¼0.05 is always lower than El
∼

while for Cases
B1, B2 and B3 with higher gelling (reference) concentration, there
are always interceptions between D
∼

and El
∼
.

Through the above analysis, we can see that the gelling ignition
can be triggered by a low gelling (reference) concentration in the
hindered settling model. When the gelling concentration is low
enough, the deposition flux curve is always below the erosional
flux line. Consequently, the net flux at the bottom boundary is
always positive (net erosional), and more sediments are re-
suspended into the domain. In this process, although the flow is
initially turbulent, as the sediment availability increases, the se-
diment-induced density stratification is enhanced. Eventually, the
laminarized transport mode III is obtained. It is noted that even in
the laminarized stage, the viscous suspension in the laminarized
flow can keep sediment suspended. In reality, viscous suspension
further depends on the closure of rheological stress, which is ne-
glected here, and we parameterize the viscous suspension process
simply with a constant Schmidt number Sc¼0.5.

With findings learned so far, it is possible to propose a simple
parameterization for the occurrence of the gelling ignition. We
consider that the critical condition to initiate gelling ignition is
when the wave-averaged erosion flux at equilibrium balances the
maximum wave-averaged depositional flux. For the deposition/
erosion formulations adopted here and the resulting wave-aver-
aged form shown in Eqs. (25) and (26), the critical condition oc-
curs at m/ 1b refϕ ϕ= ( + ) with

D W
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By evaluating E Dmax=
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at equilibrium, we obtain
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For cohesive sediments, this expression involves several em-
pirical parameters associated with flocs, including the floc settling
velocity Ws0, and erodibility parameters me͠ and cτ∼ . It is reminded
that the floc properties are assumed to be constant throughout the
simulation, and the complexity of variable viscosity due to rheol-
ogy is neglected. This assumption may not hold true in reality.
Nevertheless, our model results provide the first step to under-
stand the condition for the occurrence of gelling ignition. As de-
monstrated in this study, the gelling ignition is likely to occur near
laminarization, we specify 0.28 Pabτ =∼ as in the laminarized flow
at Stokes Reynolds number ReΔ¼1000. Using the values of me͠ and
Ws0 identical to those used in the numerical simulations (see Ta-
ble 1), a 2D map for the occurrence of gelling ignition as a function
of critical shear stress of erosion and gelling (reference) con-
centration is shown in Fig. 14(a). The curve shown in Fig. 14
(a) represents Eq. (28) with 0.28 Pabτ =∼ and the region below the
curve signifies the occurrence of gelling ignition. The corre-
sponding values for Cases B1–B4 are also plotted, and the pre-
diction of Eq. (28) is consistent with the numerical results of this
study for ReΔ¼1000. Since the main flow variable in Eq. (28) is the
wave-averaged bottom stress bτ∼ and we have demonstrated that
the laminar solution value is appropriate for the present purpose,
we can further present the prediction formula of Eq. (28) for other
(lower) Stokes Reynolds number by specifying bτ∼ using the cor-
responding value obtained from the laminar solution (see Fig. 14
(b)). As mentioned before, the gelling concentration can be related
to the fractal dimension nf, and more porous, organic flocs tend to
have lower nf and hence lower gelling concentration. Fig. 14
(b) indicates that for cohesive sediment with lower critical shear
stress of erosion cτ͠ , gelling ignition can be triggered at higher
gelling concentration (higher nf). Moreover, when the oscillatory
flow is more energetic (larger ReΔ), the gelling ignition can also be
triggered at higher gelling concentration (higher nf).



Fig. 14. (a) A predictor of gelling ignition as a function of dimensional critical shear
stress cτ∼ and gelling concentration ϕref at Re 1000=Δ . The black filled circles denote
Cases B1–B4 in this study. (b) A predictor of gelling ignition as a function of cτ∼ and ϕ

ref at Re 500=Δ (solid curve); Re 600=Δ (dashed curve); Re 700=Δ (curve with
circle symbols); Re 800=Δ (curve with triangle symbols); Re 1000=Δ (dash-dot
curve). All the results shown here are for W 0.5 mm/ss = and m 3.05 10 m/se 7= ×͠ − .
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6. Conclusion

In this study, the uncertainties due to model simplifications in
sediment phase velocity, namely particle inertia and hindered
settling for fine sediment transport in the wave boundary layer are
investigated. Continuing the work of Cheng et al. (2015), fine se-
diment resuspension/deposition in the oscillatory boundary layer
with Stokes Reynolds number Re 1000=Δ is carried out by using a
highly accurate turbulence-resolving model (Yu et al., 2013; Cheng
et al., 2015). It is revealed that retaining the particle inertia at the
Stokes number of St¼0.03, which corresponds to the value typical
for fine sediment transport in energetic continental shelves, makes
a very minor difference in the numerical results. Attenuation of
flow turbulence is increased by no more than 10% by considering
the particle inertia at St¼0.03 and the resulting transport mode is
unchanged. Therefore, previous numerical studies neglecting the
particle inertia effect at Stokes number up to 0.03 is justified.
However, further numerical experiments with larger St reveal that
particle inertia tends to damp flow turbulence, and the transport
mode II in Case 0 shifts to transport mode III when the Stokes
number St increases to 0.2.

At a fixed critical shear stress ( 0.02 Pacτ =∼ ) for erosion, the
sediment availability in the domain is increased due to the re-
duced deposition flux by hindered settling. However, the degree of
hindered settling is highly dependent on the reference (gelling)
concentration used. For non-flocculated sediment with ϕref¼0.63,
the increase of sediment availability is only about 10%, while the tur-
bulence attenuation is slightly increased, no shift of transport modes is
observed. However, when flocs of relatively high fractal dimension are
considered, which results in ϕref¼0.2 and 0.13, more significant hin-
dered settling effect enhances sediment availability, significantly at-
tenuates flow turbulence and a laminarized transport mode III is ob-
tained. After laminarization, an equilibrium state can be established
with a balance between the depositional flux and the erosion flux due
to viscous suspension. However, for more porous flocs of a low fractal
dimension that gives ϕref¼0.05, we demonstrate that an equilibrium
state cannot be achieved. An unlimited increase of sediment in the
domain is obtained in the simulation because the depositional flux is
always lower than the erosion flux. This unlimited sediment avail-
ability is caused by the gelling ignition as described in Kampf and
Myrow (2014).

Simulations carried out in the previous studies (Ozdemir et al.,
2010; Cheng et al., 2015) and this study show a bimodal behavior, in
which large amount of fine sediments can be kept in suspension
driven by an energetic wave condition at high gelling concentration (ϕ
ref¼0.63) in the turbulent transport mode II and at very low gelling
concentration in laminarized transport mode III as the gelling ignition
is triggered. These findings provide critical insights into the formation
and the fate of wave supported sediment-driven gravity flows.

Finally, a criterion for the occurrence of gelling ignition is proposed.
From the theoretical perspective, we provide a framework of such
criteria and demonstrate that the laminar solution can be used for the
specification of bottom stress. However, we need to also note that
other critical quantities related to floc structures, such as the Stokes
settling velocity, erodibility parameters (e.g., cτ∼ and me͠ ) and gelling
concentration are still highly empirical and rely on in situ data.
Characterizing and modeling those parameters for cohesive sediment
is complex due to consolidation, sand content and bio-chemical ef-
fects, thus more future studies are needed.
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Appendix A. Top boundary treatment

In this section, we focus on the implementation of the top
boundary condition for sediment concentration. To satisfy the
mass conservation at the top boundary, the no-flux boundary
condition (Eq. (7)) should be satisfied. Notice that the effective
settling velocity may vary with x and y if hindered settling or
particle inertia is considered. In the present numerical schemes,
Fourier expansions are adopted in both streamwise and spanwise
directions. If we transfer Eq. (7) into Fourier space, convolution
terms will arise from the nonlinear multiplication term (first term
on left-hand-side of Eq. (7)), which is difficult to handle. To resolve
this problem, the sediment velocity at the top boundary is de-
composed into x–y plane-averaged component ws〈 〉 and the fluc-
tuation component ws′:

w w w . A.1s s s= 〈 〉 + ( )′

Substituting Eq. (A.1) into Eq. (7) will result in
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However, the sediment concentration ϕ on the right-hand-side
of the above equation is part of the solution, to make sure that the
top boundary has the same accuracy in terms of time integration,
the right-hand-side term is approximated by using a second-order
accurate scheme:
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where n denotes the time steps, and c dt dt dt/6, 5 /24, /8= { } is the
coefficient for the diffusion term in the third-order low-storage
Runge–Kutta method with dt being the time-step (Yu et al., 2013). In
this study, the time step is chosen based on the Courant-Friedrichs-
Lewy (CFL) criterion. nϕ( ⁎) is the approximation of ϕ at the bottom at
the n step, and n 1ϕ( − ) and n 2ϕ( − ) are sediment concentration at the
previous two time steps n 1( − ) and n 2( − ), respectively.
Appendix B. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2015.07.009.
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