
Computers & Geosciences 93 (2016) 45–54
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m
journal homepage: www.elsevier.com/locate/cageo
Research paper
Reducing disk storage of full-3D seismic waveform tomography (F3DT)
through lossy online compression

Peter Lindstrom a, Po Chen b,n, En-Jui Lee c

a Lawrence Livermore National Laboratory, USA
b Department of Geology and Geophysics, University of Wyoming, USA
c Department of Earth Sciences, National Cheng Kung University, Taiwan
a r t i c l e i n f o

Article history:
Received 30 October 2015
Received in revised form
16 April 2016
Accepted 18 April 2016
Available online 5 May 2016

Keywords:
Seismic tomography
Full-3D tomography
Scattering-integral method
Waveform tomography
Full-waveform
Full-wave
Compression
Lossy compression
Online compression
x.doi.org/10.1016/j.cageo.2016.04.009
04/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: pchen@uwyo.edu (P. Chen).
a b s t r a c t

Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can as-
similate broadband, multi-component seismic waveform observations into high-resolution 3D subsur-
face seismic structure models. The main drawback in the current F3DT implementation, in particular the
scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O over-
head of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain
tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the
Jacobian matrix in the Gauss–Newton optimization algorithm. In this study, we have successfully in-
tegrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space
for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the
error, and can be integrated into our finite-difference wave-propagation simulation code used for
computing the strain fields. The decompressor can be integrated into the kernel calculation code that
reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propa-
gation simulations, we compress the strain fields before writing them to the disk. To compute the data
sensitivity kernels, we read the compressed strain fields from the disk and decompress them before
using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT
project have shown that we can reduce the strain-field disk storage by at least an order of magnitude
with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow sig-
nificantly. The integration of the lossy online compressor may potentially open up the possibilities of the
wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Seismic tomography has been one of the most effective means
for imaging the internal structure of the Earth in the past few
decades (e.g., Anderson and Dziewonski, 1984; Nolet, 1987a,
1987b; Iyer, 1993; Nolet, 2008,, 2012). The techniques used in
seismic tomography have been constantly improving. Recent ad-
vances in computing technology has drastically reduced the
computational cost for solving the 3D (visco)elastic seismic wave
equation, which has enabled full-3D tomography (F3DT) (e.g.,
Chen et al., 2007a, 2007b; Fichtner et al., 2009; Tape et al., 2010;
Lee et al., 2014a, 2014b; Chen and Lee, 2015). In F3DT, the starting
seismic structural model can be fully three-dimensional and the
Fréchet (sensitivity) kernels are computed by numerically solving
the inhomogeneous equations of motion for a heterogeneous, (an)
elastic solid. It accounts for the nonlinearity of waveform inver-
sions through iterated cycles of wave-propagation simulations,
misfit measurements, sensitivity kernel calculations and
inversions.

There are two complementary F3DT implementations: the ad-
joint-wave-field method (F3DT-AW), which constructs the gra-
dient of the objective function using the adjoint method and
solves the optimization problem using gradient-based algorithms
(e.g., Fichtner et al., 2009; Tape et al., 2010), and the scattering-
integral method (F3DT-SI), which sets up the Jacobian of the ob-
jective function by calculating and storing the data sensitivity
(Fréchet) kernel for each misfit measurement and solves the op-
timization problem using the Gauss–Newton algorithm (e.g., Chen
et al., 2007a; Lee et al., 2014a). These two types of implementa-
tions are based on the same physics, but their computational re-
quirements can be highly different (Chen et al., 2007b). For to-
mography problems involving a large number of seismic sources
F3DT-SI may significantly reduce the total amount of computing
time at the expense of substantially higher disk storage cost. For

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.04.009
http://dx.doi.org/10.1016/j.cageo.2016.04.009
http://dx.doi.org/10.1016/j.cageo.2016.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.04.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.04.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.04.009&domain=pdf
mailto:pchen@uwyo.edu
http://dx.doi.org/10.1016/j.cageo.2016.04.009

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–5446
the F3DT inversion in Southern California (Lee et al., 2014a), the
peak disk storage for F3DT-SI was about 39 TB, while the peak disk
storage for F3DT-AW was only about 200 GB, a nearly 200 times
difference. The high disk storage cost of F3DT-SI is becoming the
main obstacle to the wide adoption of F3DT-SI in routine seismic
tomography, especially on small to medium-sized shared compu-
ter clusters without large amounts of high-speed disk storage.

In this paper, we describe a potential solution for significantly
reducing the disk storage of F3DT-SI through lossy but error-
bounded online compression. Our compression algorithm, named
zfp, provides high compression ratios with minimal CPU overhead
and can work inside the wave-propagation simulation code and
the sensitivity kernel calculation code in a streaming setting dur-
ing the I/O stage (Lindstrom, 2014). Whereas zfp was originally
designed for fixed-rate compression in order to support random
access, we use its fixed-accuracy (variable-rate) mode in order to
limit compression-induced errors. Although this mode sacrifices
the ability to perform constant-time random access, we require
only sequential reads and writes of entire strain fields. Moreover,
relaxing the fixed-rate constraint can significantly improve the
quality per bit of compressed storage. Preliminary experiments
using realistic simulations in our California statewide F3DT-SI in-
version show highly promising results. On average, the disk space
for storing the 4D strain tensor fields can be reduced by at least an
order of magnitude with much improved I/O performance. The
kernels computed from the compressed strain fields have negli-
gible differences from those computed using the raw strain fields.
By integrating zfp, we expect to make F3DT-SI much more af-
fordable on small clusters.
2. Disk storage cost of F3DT-SI

F3DT is often implemented using gradient- or Hessian-based
iterative optimization algorithms. The discretized earth structural
model m is iteratively updated through a finite series of pertur-
bations,

= + Δ = … ()+ k Km m m , 0, 1, 2, , 1k k k1

where k is the iteration index. The perturbation for the kth itera-
tion, Δmk, can be obtained by minimizing an objective function,

χ () = () ()

+ (−) (−) ()

−

−

m m d m m C d m m

m m C m m

, , ,

2

k k d k

k m k

2 T 1

T 1

where m is the “target” structural model, ()d m m, k is a column-
vector composed of misfit measurements that quantify the dis-
crepancies between the ith-component observed seismogram
generated by the sth seismic source and recorded at the rth re-
ceiver, ¯ ()u tx ,i

s
r , and the corresponding synthetic seismogram

()u tx ,i
s

r computed using the latest structural model mk, Cd and Cm

are respectively the data and model covariance matrices.
In F3DT-SI, the objective function in Eq. (2) is minimized using

the Gauss–Newton algorithm, which requires the solution of the
Gauss–Newton normal equation

Δ =
()

−

−

−⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

C A

C
m C d

0 3

d k

m

k d k
1/2

1/2

1/2

where = ∂ ∂A d m/k k k is the Jacobian matrix for the kth iteration. In
F3DT-SI, the Jacobian matrix is explicitly constructed and Eq. (3) is
solved using the scalable parallel LSQR algorithm (Lee et al., 2013).

Each row of the Jacobian is a discretized data sensitivity kernel,
which can be computed using the 4D strain fields from the source
and those from the receiver. Equations for constructing the data
sensitivity kernels using the receiver-side strain Green's tensors
(RSGTs) have been given in (e.g., Zhao et al., 2005,, 2006; Chen
et al., 2007a, 2007b; Chen and Lee, 2015). The calculation involves
temporal convolution between the strain field from the source and
the RSGT for the corresponding receiver, which can be computed
by placing a point impulsive source at the receiver location (Zhao
et al., 2006). To construct the kernels for all misfit measurements,
we need to store either the RSGTs or the source-side strain fields.
When seismic sources outnumber receivers, it is more economical
to store the RSGTs.

In practice, the kernels are usually smoother than the strain
fields and we often regularize the inverted model perturbation
Δmk through smoothness damping. Therefore we can sample the
kernels on a mesh that is sparser than the mesh used for the wave-
propagation simulations. The accuracy of the temporal convolu-
tion is usually sufficient if we have 10 time samples per dominant
period. Because of these considerations, the disk space for storing
strain fields can be reduced significantly through decimation in
space and time. But even after decimation, the disk storage for all
strain fields used in a realistic inversion can still be significant.
3. Lossy online compression of strain fields

Previous studies on seismic data compression mainly focused
on the compression of observed active-source seismic data in the
space-time domain in an off-line setting (e.g., Wood, 1974; Jonsson
and Spanias, 1990; Mandyam et al., 1996; Villasenor et al., 1996;
Wang and Wu, 2000; Averbuch et al., 2001). Blind application of
traditional lossless compression algorithms on observed active-
source seismic wavefields can only provide low compression ratios
of around 2 (e.g., Villasenor et al., 1996), while applications of lossy
compression algorithms were able to achieve compression ratios
ranging from ∼20 to over 100 with acceptable losses of useful
seismic information (e.g., Villasenor et al., 1996; Wang and Wu,
2000; Averbuch et al., 2001). For the 4D synthetic RSGTs from the
California statewide inversion considered in this study, perfectly
lossless compression using a state-of-the-art floating-point loss-
less compressor FPZIP (Lindstrom and Isenburg, 2006) provided a
compression ratio of merely 1.55. For F3DT purposes, a lossless
compression of synthetic strain fields is both unnecessary and
inefficient. A more desirable compression scheme is a lossy algo-
rithm that can work in an online I/O setting fromwithin the wave-
propagation simulation code with minimal CPU overhead and can
achieve significant compression ratios without introducing sig-
nificant artifacts into the data sensitivity kernels.

Lossy compression of observed active-source seismic data has
been extensively studied in the past two decades (e.g., Lervik et al.,
1996; Villasenor et al., 1996; Vassiliou and Wickerhouser, 1997;
Wang and Wu, 2000; Averbuch et al., 2001; Al-Moohimeed, 2004;
Wang et al., 2004; Aparna and David, 2006; Wu et al., 2006; Xie
and Qin, 2009; Aqrawi and Elster, 2011; Zheng and Liu, 2012; Fa-
jardo et al., 2015). The majority of the compression algorithms
usually follow a 3-stage process: de-correlating transformation,
quantization and coding. In the transformation stage, suitable
basis functions can lead to a much sparser representation of the
original data in the transformed domain. Wavelets, wavelet
packets, (adaptive) local trigonometric functions and various
combinations of the above have been widely used in previous
studies (e.g., Villasenor et al., 1996; Al-Moohimeed, 2004; Wang
and Wu, 2000; Wu et al., 2006; Zheng and Liu, 2012). The floating-
point transform coefficients are then mapped to a set of integers in
the quantization stage. The majority of previous studies adopted
uniform quantization schemes (e.g., Lervik et al., 1996; Al-Moo-
himeed, 2004; Aparna and David, 2006; Wu et al., 2006; Fajardo
et al., 2015). In general, as the number of quantization bits de-
creases, the compression ratio, as well as the loss of useful

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–54 47
information, increases. In the final stage, the quantized transform
coefficients are encoded using a lossless coding scheme, usually an
entropy encoding technique such as Huffman coding (e.g., Villa-
senor et al., 1996; Vassiliou and Wickerhouser, 1997; Wang et al.,
2004; Aqrawi and Elster, 2011; Fajardo et al., 2015) or arithmetic
coding (e.g., Lervik et al., 1996; Averbuch et al., 2001; Wu et al.,
2006; Xie and Qin, 2009; Fajardo et al., 2015). The primary goal in
previous studies was to increase the compression ratio while
minimizing the loss of useful seismic information.

When integrating a lossy compressor into the F3DT-SI work-
flow in an online fashion, we face new challenges. (1) Our wave-
propagation simulation code has been carefully optimized and is
highly efficient (Cui et al., 2009). For the California statewide si-
mulation, evolving the entire 9-component wavefield (i.e., 3 par-
ticle-velocity components and 6 stress components, about 6.75 GB
data in memory) by one time step takes around 0.163 s of wall-
time on 256 cores, which amounts to about 165.64 MB/s/core of
calculation speed. It is desirable if the speed of the compressor is
comparable to the calculation speed. (2) The memory size per core
is usually too small to allow buffering the entire time history of the
simulated wavefields, which means that the online compressor
has to work with the 3D spatial wavefields at only one or a few
buffered time steps. This limitation prevents the online com-
pressor from fully exploiting the data redundancy in the time di-
mension, which can be significant for simulated wavefields.
Therefore it is harder for an online compressor to reach com-
pression ratios comparable to those obtained by off-line com-
pressors that can work with the full 4D wavefields. (3) Realistic
F3DT-SI applications usually involve a large number of data sen-
sitivity kernels. At the current stage of the California statewide
F3DT, each F3DT-SI iteration requires ∼24,000 kernel runs to
construct 893,911 kernels. Each kernel run requires reading two
4D strain fields from disk repeatedly. The kernel code is heavily I/O
bound. A typical kernel run spends over 90% of time on reading
the two 4D strain fields repeatedly. If the compressed 4D strain
fields are sufficiently small and the decompressor is sufficiently
fast, we can then read the two compressed 4D strain fields once
and replace slow disk reads with decompression operations to
reduce the I/O overhead.

The zfp open source compressor (Lindstrom, 2014) adopted in
this study was originally inspired by ideas from fixed-rate texture
compression algorithms widely implemented in graphics hard-
ware (e.g., Iourcha et al., 1999; Fenney, 2003; Ström and Akenine-
Möller, 2005; Nystad et al., 2012), but specialized for high-preci-
sion floating-point data. We used zfp version 0.4.1, which improves
upon the original version (Lindstrom, 2014) in both speed and
compression ratio, and also supports fixed-precision and fixed-
accuracy modes for setting relative respectively absolute error
tolerances.

The wave-propagation simulation code is the parallel Anelas-
tic-Wave-Propagation (AWP) code, which solves the 3D (visco)
elastic wave-equation in the velocity-stress form using the 4th-
order staggered-grid finite-difference method (Olsen, 1994; Cui
et al., 2009). At each saved time step we obtain the strain fields
from the stress fields using the constitutive relation (Zhao et al.,
2005; 2006).

Each component of the strain tensor is represented as a 3D
array of floating-point numbers inside the memory. Following
most texture compression formats, as well as image and video
compression formats like JPEG and MPEG, we divide the 3D array
into blocks of dimensions 4�4�4. (Blocks near array boundaries
are padded if the array dimensions are not multiples of four.) The
following 6 steps are then conceptually applied to each block
independently:

1. Block-floating-point transform,
2. De-correlating transform,
3. Coefficient reordering,
4. Conversion from signed to unsigned integer,
5. Embedded coding of integers,
6. Bit stream truncation.

The truncated bit streams for all blocks of the 6 independent
strain components are then aggregated and written to disk at the
end of each saved time step. Steps 1, 2 and 6 are potentially lossy,
while the others are guaranteed lossless. Each step is described in
more detail below.

3.1. Block-floating-point transform

In this step, all the sixty-four 32-bit floating-point values in a
block are normalized by expressing them with respect to the lar-
gest floating-point exponent ê in the block. For efficiency of sub-
sequent operations, each floating-point value = (−) (+)x m1 2 1s e ,
with mantissa ≤ <m0 1, is rewritten as a 31-bit signed integer y
times some power of two, i.e., = ()−^y xround 2 e29 , such that
− < <y2 230 30. A single-precision floating-point number has 24
bits of mantissa (including the implicit leading one) plus one sign
bit. By directly transferring the 24-bit mantissa plus the sign bit to
the 31-bit signed integer, we actually have gained as many as
6 bits of precision in this step. However, if the ratio of the largest
value to the smallest value within a block exceeds =2 646 , then
some loss of least significant bits is possible in the smaller-mag-
nitude number. The same type of loss also happens in floating-
point hardware during floating-point calculations, such as those in
the finite-difference simulations. This type of loss is inherent to
the floating-point format and its machine representation and can
usually be ignored in practical seismic modeling. Before moving on
to the next step, zfp transmits the 8-bit common exponent ê
verbatim.

3.2. De-correlating transform

The signed integers obtained from step 1 are transformed with
respect to a set of basis functions to reduce their correlation. For
suitably chosen basis functions, this transform often results in
many near-zero coefficients, which are particularly amenable to
compression. For regularly gridded 3D data, such as a component
of the strain field computed in AWP, we adopt a separable 3D
transform that can be implemented as three 1D transforms along
each spatial axis. The 3D separable basis function can then be
expressed as

() = () () () ()B x y z b x b y b z, , 4ijk i j k

where ≤ ≤i j k0 , , 3 and ‖ ‖ =B 1ijk . The indices i j k, , correspond to
the polynomial degrees of the 1D basis functions ()b xi , ()b yj and

()b zk . In this study we have adopted the orthogonal Gram polynomial
basis functions and an efficient lifted implementation of the 1D
transform, similar to (Lindstrom, 2014). An important advantage of
using those basis functions is that the matrix-vector multiplications
involved in the 1D transforms can be implemented very efficiently
through in-place bit-shift and addition operations. The complete 3D
transform based on this lifting scheme involves 4.5 bit shifts and
7.5 additions (amortized) per compressed value, which compares
very favorably with the 64 multiplications and 63 additions per
compressed value for implementations based on conventional ma-
trix-vector multiplications. This integer transform preserves the
range of (−)2 , 230 30 , but involves a number of divisions by two
(implemented as bit shifts) that can potentially cause loss of the least
significant bit. But since we have gained as many as 6 bits from the
previous step, this potential loss is usually not a problem.

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–5448
3.3. Coefficient reordering

The indices i j k, , of the basis functions in Eq. (4) can be con-
sidered as proxies for the wavenumber (i.e., spatial frequency) of
the strain field. We use the summation of the three indices

≤ + + ≤i j k0 9 to represent the total degree of the 3D basis
function. The corresponding coefficients resulting from the de-
correlating transform in step 2 are then reordered according to the
total degree of the 3D basis function, much akin to how 2D JPEG
DCT coefficients are arranged in +i j zig-zag order. The motivation
for this reordering is based on the observation that the power of
the strain field tends to decrease with increasing wavenumber.
Thus by reordering the coefficients according to the total degree,
we obtain a list of coefficients sorted roughly by their magnitude.

3.4. Conversion to unsigned integer

Before encoding the integer coefficients, we first transform
them from two's complement signed integers to an unsigned re-
presentation. We have chosen the negabinary representation with
base �2, for three reasons: (1) This mapping can be computed
very efficiently using only one integer addition and one bitwise
exclusive or. (2) Compared to other representations, it results in
improved rate distortion when the bit stream is truncated, i.e.,
when zeroing some of the least significant bits during quantiza-
tion. (3) The lack of a dedicated sign bit reduces conditionals and
simplifies the logic of the encoder. Bit k in negabinary has place
value (−)2 k, and the sign thus alternates between consecutive
bits. This lossless transformation shifts the range of values from
(−)2 , 230 30 to [×)0, 7/8 232 .

3.5. Embedded coding

The reordered, unsigned coefficients of a block can be trans-
formed into a sequence of bits (i.e., a bit stream) that can be easily
transmitted or stored. Several embedded coding strategies exist,
and the one adopted in this study is a more efficient variation on
the one documented in (Lindstrom, 2014). Because the de-corre-
lating transform is orthogonal, all the coefficient bits in the same
“bit plane” (i.e., a set of coefficient bits at the same bit position)
have the same impact on L2 error, and are thus equally “important.”
We therefore encode one bit plane at a time, from most to least
significant bit, using a group testing procedure (Hong and Ladner,
2002). Anticipating that the coefficients are arranged roughly in
decreasing order of magnitude, and with most of them having
many leading zeros, we achieve (lossless) compression by identi-
fying large groups of zero-bits. We begin by testing if all bits
within a bit plane are zero (a negative group test), and if so emit a
zero-bit and move on to the next bit plane. Otherwise (a positive
group test), we output a one-bit followed by a string of coefficient
value bits, in order of increasing polynomial degree, until we en-
counter and emit a one-bit. We then perform another group test
on the remaining bits and repeat until either all remaining bits in
this bit plane are zero or none remain. In this manner, the first

≤ ≤n0 64 value bits of the current bit plane are explicitly output;
the remaining − n64 zero-bits are encoded with a single bit. To
encode the next bit plane, we first emit its first n bits, which are
presumed random, before we proceed with group testing the re-
maining bits, incrementing n as necessary from one bit plane to
the next. This coding strategy losslessly encodes all ×64 32 integer
coefficient bits, and usually using far fewer bits.

3.6. Bit stream truncation

By initializing all coefficients to zero on the decoder side, we
note that any prefix of the resulting bit stream allows the decoder
to produce a valid reconstruction of some number of leading bits
of each coefficient, which after the inverse transformation results
in an approximate representation of the original floating-point
values. Such truncation of the bit stream affords great flexibility
and granularity in choosing the compression ratio or quality. In
zfp's fixed-rate mode, the bit stream for each block is truncated at a
fixed number of bits to ensure fixed-size storage for each block
and random access at block granularity. (In practice, bit stream
truncation is implemented by pre-empting the encoder once the
bit budget has been reached). Alternative truncation strategies
include fixed precision—by encoding a fixed number of bit planes—
and fixed accuracy—by encoding all bit planes up to some given bit
plane number q, which is equivalent to applying uniform quanti-
zation with step size 2q. Note that in fixed-accuracy mode, the
number of encoded bit planes depends both on q and on the block
exponent ê. For a given q, a worst-case analysis reveals that the
maximum reconstruction error in 3D is at most +2q 6. We may,
thus, choose q so as to guarantee that the decompressed data falls
within a user-specified error tolerance. In this study, we used this
fixed-accuracy mode of zfp.
4. Results

We have successfully applied our lossy online compression al-
gorithm to significantly reduce the disk storage in the current
California statewide F3DT-SI inversions. At the current stage we
have carried out 4 iterations following the tomographic navigation
approach as discussed in Lee et al. (2014a).

Fig. 1 shows the S-wave velocity at 10 km depth in our starting
model CAF3D00 and the model CAF3D04 after the 4th iteration.
About 24,000 seismic waveforms have been used in our inversion.
The misfit function used in the 4 iterations was defined as the L2-
norm of the frequency-dependent group-delay anomalies mea-
sured at frequencies ranging from 0.03 Hz to 0.1 Hz. Fig. 2 shows
about 40% misfit reduction of about 893,000 measurements after
the 4 iterations.

Synthetic waveforms computed using CAF3D04 show sub-
stantially better fit to observed waveforms than those computed
using CAF3D00. We measured the differences between an ob-
served waveform ¯ ()u t and its corresponding synthetic waveform

()u t within a time window []t t,0 1 using the relative waveform
misfit (RWM) defined by (e.g., Zhu and Helmberger, 1996; Tape
et al., 2010; Lee et al. 2014b)

∫

∫ ∫
=

¯ () − ()

¯ () [()] ()

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

RWM
u t u t dt

u t dt u t dt 5

t

t

t

t

t

t

2

2 2

0

1

0

1

0

1

Fig. 3 shows the histograms of the RWMs for CAF3D00 and
CAF3D04.

Through the 4 iterations, the median of the RWM (mRWM) has
dropped from 1.4 to 0.73 (Fig. 4) and the median absolute devia-
tion (MAD) (Hoaglin et al., 1983) has dropped from 0.65 to 0.35.
The mRWM and the MAD provide robust measures of the location
and the spread of the RWM distributions (Lee et al., 2014b).

The inversion is being carried out on the IBM System X cluster,
“Mount Moran” (284 nodes, each with two 8-core Intel E5-2670),
at University of Wyoming. For this study, each AWP wave-propa-
gation simulation runs on 256 CPU cores for ∼35 min. Each F3DT-
SI iteration requires 227 AWP simulations (∼33,900 core-hours).
Each kernel calculation takes ∼1.2 min on 256 cores. We have
∼24,000 kernel calculations per iteration (∼122,880 core-hours).
The total amount of core-hours for one F3DT-SI iteration is roughly
160,000.

Fig. 1. Seismic shear-wave velocity (Vs) at 10 km depth in the starting model CAF3D00 (left) and in the latest updated model CAF3D04. Warm colors: lower Vs; cold colors:
higher Vs. Coast lines, state boundaries and major faults are shown in black solid lines. Black dots: locations of the 227 broadband seismic stations used in this study.

Fig. 2. Histograms show the distributions of the frequency-dependent group-delay
time misfits for the starting model CAF3D00 (black) and the updated model
CAF3D04 (red). The misfits quantify the discrepancies between synthetic seismo-
grams computed using the CAF3D00 or CAF3D04 and the corresponding observed
seismograms. Smaller misfits indicate better agreement between synthetic and
observed seismograms. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Histograms show the distribution of the RWM for the starting model
CAF3D00 (black) and the updated model CAF3D04 (red). The RWM quantifies the
energy of the waveform differences between observed and synthetic seismograms
normalized by the geometrical mean of the observed and synthetic waveform
energy. Smaller RWM indicates better waveform fit. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of
this article.)

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–54 49
4.1. Disk storage without compression

The AWP simulations are carried out on a uniform mesh with
∼201.3 million grid points with 1-km grid spacing. The simulation
volume is 1000-km wide, 2000-km long and 100-km deep (Fig. 1).
Each AWP simulation computes the strain and particle-velocity
fields for 12,282 times steps (∼700 s). The synthetic wavefields
computed using this spatial-temporal discretization set-up is ac-
curate for frequencies up to 0.12 Hz. We are not considering visco-
elastic attenuation. At the current stage, we are using the vertical
components of 227 stations from the California Integrated Seismic
Network (CISN) and the Transportable Array (TA) of the Earth-
Scope project.

Along the time axis, we decimate by a factor of 10, which gives
∼18 samples per dominant period of the simulated fields. Table 1
lists the disk storage with and without compression for all RSGTs
with 6 different spatial decimation settings: (a) Dx¼Dy¼8, Dz¼2;
(b) Dx¼Dz¼8, Dy¼2; (c) Dx¼Dy¼4, Dz¼2; (d) Dx¼Dz¼4, Dy¼2;
(e) Dx¼Dy¼Dz¼2; (f) no decimation. Here Dx,y,z are decimation
rates in x, y and z, respectively. At each saved grid point and time
step, we store the 6 independent components of the strain tensor
and the 3 components of the particle velocity in single-precision.
At the current stage we are using setting (c).

Fig. 4. The median of the RWM (mRWM) at different iteration number. At iteration
0, synthetic seismograms were computed using the starting model CAF3D00 and at
iteration 4, synthetics were computed using the updated model CAF3D04.

Fig. 5. The average relative kernel error (RKE) as defined in Eq. (6) in the text as a
function of the error tolerance ε used by the compressor for truncating the bit
streams. A larger error tolerance indicates that more bits in the bit stream are being
discarded. Larger average RKE indicates larger discrepancies between the kernels
computed using the uncompressed strain fields and those computed using the
compressed strain fields.

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–5450
4.2. Error tolerance

The average compression ratio mainly depends upon two fac-
tors: (1) the criteria used for truncating the bit stream (Sections
3.6) and (2) the spatial smoothness (i.e., redundancy) of the wa-
vefields. When truncating the bit stream, we used an error toler-
ance of ε = 2t . All coefficient bits lying on a bit plane below −2t 6 are
discarded. The effective precision in terms of the number of bits
used for representing each integer coefficient is

= (−) + ^ − (−) = ^ − +p e t e t32 29 6 9 restricted to ≤ ≤p0 32,
where ê is the exponent associated with the block.

In practice, we determine the error tolerance ε through trial-
and-error based on the relative kernel error (RKE) defined as

∫

∫ ∫
=

() ¯ () − ()

() ¯ () () () ()

⎡⎣ ⎤⎦
RKE

V K K

V K V K

x x x

x x x x

d

d d 6

V

V V

2

2 2

Here ()K x and ¯ ()K x are the data sensitivity kernels computed
using the strain fields with and without compression, respectively.
Fig. 5 shows the average RKE (averaged over 1000 kernels with
respect to the two Lamé parameters) as a function of ε. We
computed the average RKE using 4 different error
tolerances: ε = ≈ ×− −2 9.09 1040 13, ε = ≈ ×− −2 5.68 1044 14,
ε = ≈ ×− −2 7.11 1047 15, ε = ≈ ×− −2 8.88 1050 16. For the strain fields
used in our inversion, when ε = ≈ ×− −2 5.68 1044 14, the average
RKE is ∼10�6 (Fig. 5). Examples of the frequency-dependent
group-delay kernels with respect to the Lamé parameter μ com-
puted using the strain fields without compression and those
computed using the strain fields compressed with the 4 different ε
Table 1
RSGT disk storage with and without compression for different decimation settings. Dx, D
respectively.

Spatial decimation rates Number of saved grid
points

Saved time
steps

Number of
RSGTs

Dx Dy Dz

8 8 2 1,572,864 1228 227
8 2 8 1,572,864 1228 227
4 4 2 6,291,456 1228 227
4 2 4 6,291,456 1228 227
2 2 2 25,165,824 1228 227
1 1 1 201,326,592 1228 227
values are shown in Fig. 6. The compression ratios in Table 1 were
computed using ε = −2 44. Compression-introduced kernel errors
have negligible effects on the inverted structure model for two
reasons: (1) the relative kernel errors (Fig. 5) are much smaller
than the estimated noise level in the misfit measurements (a few
percent for the dataset used in our current inversion); (2) com-
pression-introduced errors are random and tend to cancel each
other's effects during the LSQR inversion step (Zhao et al., 2005;
2006).

Even though zfp is a block-based compression algorithm, it is
more resilient to block artifacts than traditional block-based
compression algorithms, such as JPEG. For the error tolerances we
have tried, no block artifacts were observed in the compressed
strain fields or the kernels. Fig. 7 shows a snapshot of the zz-
component of the strain tensor at 2-km depth with no compres-
sion and those compressed using the 4 different error tolerances.
This lack of block artifacts is due to (1) the smaller block size
(4�4�4 in zfp compared with 8�8 in JPEG), which reduces the
mismatch across block boundaries; (2) the fixed-accuracy mode in
zfp, which bounds the error across blocks to a uniform value; and
(3) zfp's uniform quantization of transform coefficients by bit
plane (Lindstrom 2014).

4.3. Compression ratios

Compression ratios for the 6 grid decimation settings are
summarized in Table 1 and Fig. 8. At lower spatial decimation rates
y and Dz are decimation rates in the two horizontal axes x, y and the vertical axis z,

Disk storage without com-
pression (TB)

Disk storage with com-
pression (TB)

Average compression
ratio

14.36 0.98 14.69
14.36 0.99 14.56
57.42 2.89 20.03
57.42 2.91 19.83

229.69 8.95 25.86
1837.50 48.09 38.37

Fig. 6. An example of the data sensitivity kernels computed using raw strain fields without compression (a) and those computed from strain fields compressed at error
tolerance ε = ≈ ×− −2 8.88 1050 16 (b), ε = ≈ ×− −2 7.11 1047 15 (c), ε = ≈ ×− −2 5.68 1044 14 (d) and ε = ≈ ×− −2 9.09 1040 13(e). Map-view plots of the data sensitivity kernels
are at 10 km depth. Warm colors: negative sensitivity; cold colors: positive sensitivity. The kernel is computed for a frequency-dependent group-delay misfit measured at
0.1 Hz on a vertical-component Rayleigh wave with respect to the second Lamé parameter μ.

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–54 51
the correlation among the strain values on neighboring saved grid
points is higher and the de-correlating transform allows us to
compress more redundant information efficiently, which increases
the average compression ratio. As shown in Table 1 and Fig. 8, the
average compression ratio increases from about 15 for the highest
decimation rate to about 38 (i.e., less than one bit per value) for
the lowest decimation rate.

The total number of saved grid points for decimation setting
(a) is identical to that in setting (b). In setting (a), the decimation
rate is 2 on the z-axis and 8 on the y-axis, while in setting (b) the
decimation rate is 8 on the z-axis and 2 on the y-axis. The average
compression ratios for these two settings are similar, indicating
that on average the redundancy (smoothness) of the strain fields
in the horizontal dimensions is similar to that in the vertical di-
mension. For decimation settings (c) and (d), we observe similar
results.

4.4. Compression performance in wave-propagation simulations

The AWP simulation code was parallelized using the message-
passing interface (MPI) and a domain decomposition approach.
The uniform mesh used in the finite-difference simulations was
divided evenly into a number of sub-meshes and each CPU core
handles the computation, compression and output of the wave-
fields on one sub-mesh.

During the simulation we measured the time used for com-
pressing the wavefields and for writing the compressed fields to
disk on each core. The wall time for each run was obtained by
taking the maximum value of the estimates generated by all the
CPU cores.
Fig. 9 shows the performance improvements for the AWP si-
mulations using our online compressor with 4 different error
tolerances. The amount of time used for compression combined
with writing the compressed wavefields to disk is less than the
amount of time used for writing the uncompressed wavefields to
disk. The compression time increases with decreasing error tol-
erance. For smaller error tolerance, more bit planes need to be
encoded, therefore more time is spent on compression. For
ε = ≈ ×− −2 5.68 1044 14, the compression time was ∼8.87 s and the
time spent on writing the compressed wavefields to disk was
∼2.36 s. The compression-output combined time, 11.23 s, is about
one fourth of the time spent on writing the raw wavefields to disk
(Fig. 9). The average speed of the online compressor was
∼116.80 MB/s/core. For the higher error tolerance
ε = ≈ ×− −2 9.09 1040 13, the number of bit planes need to be en-
coded is fewer and the speed of the compressor was ∼137.35 MB/s/
core. For the lower error tolerance ε = ≈ ×− −2 8.88 1050 16, the
compression speed was ∼87.86 MB/s/core.

4.5. Decompression performance in kernel calculations

The kernel calculation involves temporal convolutions of two
strain fields at every saved grid point. The kernel code, named ker,
is parallelized using a domain decomposition approach, in which
each MPI process computes the kernel on the saved grid points of
one sub-mesh. The number of sub-meshes (i.e., MPI processes) is
determined by the AWP simulation. If each process has access to
sufficient amount of memory, only two disk-read operations per
process are needed to load the two 4D strain fields on one sub-
mesh.

Fig. 7. Comparison of the snapshots of 4D zz-component strain fields at 2-km depth without compression (a), compressed at error tolerance ε = ≈ ×− −2 8.88 1050 16 (b),
error tolerance ε = ≈ ×− −2 7.11 1047 15 (c), error tolerance ε = ≈ ×− −2 5.68 1044 14 (d) and error tolerance ε = ≈ ×− −2 9.09 1040 13 (e).

10

15

20

25

30

35

40

45

(a) 8,8,2 (b) 8,2,8 (c) 4,4,2 (d) 4,2,4 (e) 2,2,2 (f) 1,1,1

Decimation Rates

C
om

pr
es

si
on

 R
at

io

Fig. 8. Box plot of the RSGT compression ratios for the 6 different grid decimation
settings discussed in the text at the error tolerance ε = ≈ ×− −2 5.68 1044 14 . The red
line inside each box indicates the median over the 227 RSGTs. The top and bottom
edges of each box indicate the 75th and 25th percentile, respectively. The whiskers
extend to approximately 72.7 standard deviations and points lying outsize of the
ranges are plotted as red plus symbols. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

compression time
disk write time

Fig. 9. The average time for compressing and writing the strain fields in AWP wave-
propagation simulations for the spatial decimation setting (c). From left to right,
the columns are for error tolerance values ε = ≈ ×− −2 9.09 1040 13,
ε = ≈ ×− −2 5.68 1044 14 , ε = ≈ ×− −2 7.11 1047 15, ε = ≈ ×− −2 8.88 1050 16 and no
compression. Blue: compression time; red: disk-writing time. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–5452
The memory-per-core on Mount Moran (∼2GB), and also many
other small- to medium-sized clusters, is often not sufficient to
hold the entire time history of two 4D strain fields. In our inver-
sion, the 4D wavefields on all saved grid points (decimation setting
c) and all saved time steps of one sub-mesh occupies about 1.1 GB
without compression. To hold two 4D strain fields on one sub-
mesh, we would need 2.2 GB/core, not including memory for other
data.

The approach adopted in ker is to divide each sub-mesh into
smaller portions so that the entire time history of the strain fields
on each portion can fit inside the memory of each process. For
each disk-read, we load the entire time history of the strain fields

Fig. 10. The average time for reading the compressed strain fields from disk (blue),
decompression (green) and kernel computation (red) in the new kernel code kerz and
the original kernel code ker. From left to right, the columns are for error tolerance
values ε = ≈ ×− −2 9.09 1040 13, ε = ≈ ×− −2 5.68 1044 14 , ε = ≈ ×− −2 7.11 1047 15,
ε = ≈ ×− −2 8.88 1050 16 and no compression. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–54 53
on one portion of a sub-mesh, compute the kernels on that portion
and then repeat on every portion. The number of disk-reads de-
pends upon the memory size per core. The code ker worked well
on supercomputers with powerful I/O sub-systems but its perfor-
mance deteriorates significantly on smaller clusters.

The compressed strain fields have much smaller sizes than the
raw strain fields. For the California statewide F3DT, even at the
smallest error tolerance (ε = ≈ ×− −2 8.88 1050 16), the maximum
size of the 4D strain field on a sub-mesh is about 364 MB. It is now
feasible to load the entire time history of two compressed 4D
strain fields of one sub-mesh into the memory of one core, which
takes two disk-reads per process. We still divide each sub-mesh
into a number of smaller portions, whose sizes depend upon the
remaining memory. We decompress the 4D strain fields on one
portion of the sub-mesh, compute the kernels on that portion and
repeat on every portion. We therefore replace multiple disk-reads
for loading the strain fields of all the portions with the same
number of decompression operations. The speed of the decom-
pressor is therefore critical for the overall performance of our new
kernel code kerz.

Fig. 10 shows the performance of kerz compared with the
performance of ker for the 4 compression error tolerances. For
ε = ≈ ×− −2 5.68 1044 14 used in our inversion, the speed of kerz is
about 5.3 times that of ker. The amount of time spent on com-
puting the kernels is roughly the same in kerz at the 4 different
error tolerance values and also in ker. The amount of time spent on
reading the compressed 4D wavefields from disk increases slightly
with decreasing error tolerance due to the fact that the size of the
compressed wavefields increases with decreasing error tolerance.
The amount of time used for decompressing the two 4D wave-
fields also increases with decreasing error tolerance. For
ε = ≈ ×− −2 5.68 1044 14 the decompression speed is ∼353.52 MB/s/
core.
5. Summary and discussion

In this study, we have shown that by integrating lossy com-
pression into the F3DT-SI workflow, we can substantially reduce
disk storage and improve I/O performance, which makes it feasible
to adopt F3DT-SI to solve practical F3DT problems of realistic size
on small clusters. The main idea of our implementation was to
utilize the compute cycles previously wasted in waiting for the I/O
of strain fields to compress/decompress the strain fields. Because
the online compressor can be implemented very efficiently, we not
only reduced disk storage substantially but also improved the
overall I/O performance of the entire F3DT-SI workflow
significantly.

The effectiveness of our compressor can be further enhanced. At
the current stage, only the redundancies in the 3 spatial dimensions
have been exploited by the compressor. It is also possible to reduce
the redundancy in the temporal dimension by using a 4D separable
basis function in the de-correlating transform.

Even though the compressor can effectively reduce the re-
dundancy within the wavefields, it does not account for smoothing
during kernel calculations and through smoothness damping
when solving the linear system in Eq. (3). The redundancy in-
troduced through those smoothing processes can be reduced more
effectively through a judicious choice of the spatial decimation
rates. In practice, combining spatial decimation with online com-
pression can provide higher overall storage reduction without
compromising the accuracy of the inverted structure model.
Acknowledgment

The work performed at University of Wyoming was supported
by the United States Geological Survey under Grant number
G10AP00032 and Crust LLC. This work was performed in part
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344. This material is based upon work supported by the U.
S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research.
References

Al-Moohimeed, M.A., 2004. Towards an efficient compression algorithm for seismic
data. In: Proceedings of IEEE Radio Science Conference, 2004. Asia-Pacific, pp.
550–553.

Anderson, D.L., Dziewonski, A.M., 1984. Seismic tomography. Sci. Am. 251, 60–68.
Aparna, P., David, D.S., 2006. Adaptive local cosine transform for seismic image

compression. In: Proceedings of IEEE International Conference on Advanced
Computing and Communications. ADCOM 2006, pp. 254–257.

Aqrawi, A., Elster, A.C., 2011. Bandwidth reduction through multithreaded com-
pression of seismic images. In: Proceedings of 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), pp. 1730–1739.

Averbuch, A.Z., Meyer, F., Strömberg, J.O., Coifman, R., Vassiliou, A., 2001. Low bit-
rate efficient compression for seismic data. IEEE Trans. Image Process. 10 (12),
1801–1814.

Chen, P., Jordan, T.H., Zhao, L., 2005. Finite-moment tensor of the 3 September 2002
Yorba Linda earthquake. Bull. Seism. Soc. Am. 95 (3), 1170–1180.

Chen, P., Zhao, L., Jordan, T.H., 2007a. Full 3D tomography for the crustal structure of
the Los Angeles region. Bull. Seism. Soc. Am. 97 (4), 1094–1120.

Chen, P., Jordan, T.H., Zhao, L., 2007b. Full three-dimensional tomography: a com-
parison between the scattering-integral and adjoint-wavefield methods. Geo-
phys. Journal. Int. 170 (1), 175–181.

Chen, P., Lee, E.J., 2015. Full-3D Seismic Waveform Inversion: Theory, Software and
Practice. Springer, Berlin, Germany, p. 511.

Cui, Y., Olsen, K., Chourasia, A., Moore, R., Maechling, P., Jordan, T., 2009. The Ter-
aShake computational platform for large-scale earthquake simulations. In:
Xing, H. (Ed.), Advances in Geocomputing. Springer, Berlin, Heidelberg, pp. 229–
277.

Fajardo, C., M Reyes, O., Ramirez, A., 2015. Seismic data compression using 2D
lifting-wavelet algorithms. Ing. Y. Cienc. 11 (21), 221–238.

Fenney, S., 2003. Texture compression using low-frequency signal modulation. In:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. Eurographics Association, pp. 84–91.

Fichtner, A., Kennett, B.L., Igel, H., Bunge, H.P., 2009. Full seismic waveform tomo-
graphy for upper-mantle structure in the Australasian region using adjoint
methods. Geophys. J. Int. 179 (3), 1703–1725.

Hoaglin, D.C., Mosteller, F., Tukey, J.W., 1983. Understanding Robust and Ex-
ploratory Data Analysis. John Wiley & Sons, United States, pp. 404–414, ISBN:

http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref1
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref1
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref2
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref2
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref2
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref2
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref7
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref7
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref7
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref8
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref8
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref8
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref11
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref11
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref12
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref12
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref12
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref16

P. Lindstrom et al. / Computers & Geosciences 93 (2016) 45–5454
0-471-09777-2.
Hong, E.S., Ladner, R.E., 2002. Group testing for image compression. IEEE Trans.

Image Process. 11 (8), 901–911.
Iourcha, K.I., Nayak, K.S., Hong, Z., 1999. U.S. Patent No. 5,956,431. U.S. Patent and

Trademark Office, Washington, DC.
Iyer, H.M., 1993. Seismic Tomography: Theory and Practice. Springer Science &

Business Media, Berlin, Germany.
Jonsson, S.B., Spanias, A.S., 1990. Seismic data compression. In: Proceedings of the

IEEE Ninth Annual International Phoenix Conference on Computers and Com-
munications, 1990. Conference, pp. 276–279.

Lee, E.J., Chen, P., Jordan, T.H., Maechling, P.B., Denolle, M.A., Beroza, G.C., 2014a.
Full‐3-D tomography for crustal structure in Southern California based on the
scattering-integral and the adjoint-wavefield methods. J. Geophys. Res.: Solid
Earth 119 (8), 6421–6451.

Lee, E.J., Chen, P., Jordan, T.H., 2014b. Testing waveform predictions of 3D velocity
models against two recent Los Angeles earthquakes. Seism. Res. Lett. 85 (6).
http://dx.doi.org/10.1785/0220140093.

Lee, E.J., Huang, H., Dennis, J.M., Chen, P., Wang, L., 2013. An optimized parallel LSQR
algorithm for seismic tomography. Comput. Geosci. 61, 184–197.

Lervik, J.M., Rosten, T., Ramstad, T., 1996. Subband seismic data compression: op-
timization and evaluation. In: Proceedings of the IEEE Workshop on Digital
Signal Processing, pp. 65–68.

Lindstrom, P., Isenburg, M., 2006. Fast and efficient compression of floating-point
data. IEEE Trans. Vis. Comput. Graph. 12 (5), 1245–1250.

Lindstrom, P., 2014. Fixed-rate compressed floating-point arrays. IEEE Trans. Vis.
Comput. Graph. 20 (12), 2674–2683.

Mandyam, G., Magotra, N., McCoy, W., 1996. Lossless seismic data compression
using adaptive linear prediction. In: Proceedings of the IEEE International
Symposium on Geoscience and Remote Sensing. IGARSS'96. ‘Remote Sensing
for a Sustainable Future’, vol. 2, pp. 1029–1031).

Nolet, G., 1987a. Seismic wave propagation and seismic tomography. In: Nolet G.
(Ed.), Seismic Tomography. Springer, Netherlands, pp. 1–23.

Nolet G., 1987b. Waveform tomography In: Nolet G. (Ed.), Seismic Tomography.
Springer, Netherlands, pp. 301–322.

Nolet, G., 2008. A Breviary of Seismic Tomography. A Breviary of Seismic Tomo-
graphy, by Guust Nolet. Cambridge University Press, Cambridge, UK, p. 1.

Nolet, G. (Ed.), 2012. Seismic Tomography: with Applications in Global Seismology
and Exploration Geophysics 5. Springer Science & Business Media, Berlin,
Germany.

Nystad, J., Lassen, A., Pomianowski, A., Ellis, S., Olson, T., 2012. Adaptive scalable
texture compression. In: Proceedings of the Fourth ACM SIGGRAPH/Euro-
graphics Conference on High-Performance Graphics. Eurographics Association,
pp. 105–114.

Olsen, K.B., 1994. Simulation of Three-dimensional Wave Propagation in the Salt
Lake Basin. University of Utah, Salt Lake City, UT.

Ström, J., Akenine-Möller, T., 2005. i PACKMAN: High-quality, low-complexity tex-
ture compression for mobile phones. In: Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS Conference on Graphics Hardware. ACM, pp. 63–70.

Tape, C., Liu, Q., Maggi, A., Tromp, J., 2010. Seismic tomography of the southern
California crust based on spectral-element and adjoint methods. Geophys. J. Int.
180 (1), 433–462.

Vassiliou, A.A., Wickerhouser, M.V., 1997. Comparison of wavelet image coding
schemes for seismic data compression. In: Optical Science, Engineering and
Instrumentation'97. International Society for Optics and Photonics, pp. 118–126.

Villasenor, J.D., Ergas, R.A., Donoho, P.L., 1996. Seismic data compression using high-
dimensional wavelet transforms. In: Proceedings of IEEE Conference on Data
Compression DCC'96, pp. 396–405.

Wang, X.Z., Teng, Y.T., Gao, M.T., Jiang, H., 2004. Seismic data compression based on
integer wavelet transform. Acta Seism. Sin. 17 (1), 123–128.

Wang, Y., Wu, R.S., 2000. Seismic data compression by an adaptive local cosine/sine
transform and its effects on migration. Geophys. Prospect. 48 (6), 1009–1031.

Wood, L.C., 1974. Seismic data compression methods. Geophysics 39 (4), 499–525.
Wu, W., Yang, Z., Qin, Q., Hu, F., 2006. Adaptive seismic data compression using

wavelet packets. In: Proceedings of IEEE International Conference on
Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. pp. 787–789.

Xie, X., Qin, Q., 2009. Fast lossless compression of seismic floating-point data. In:
Proceedings of IEEE International Forum on Information Technology and Ap-
plications, 2009. IFITA'09, vol. 1, pp. 235–238.

Zhao, L., Jordan, T.H., Olsen, K.B., Chen, P., 2005. Fréchet kernels for imaging regional
earth structure based on three-dimensional reference models. Bull. Seism. Soc.
Am. 95 (6), 2066–2080.

Zhao, L., Chen, P., Jordan, T.H., 2006. Strain Green's tensors, reciprocity, and their
applications to seismic source and structure studies. Bull. Seism. Soc. Am. 96
(5), 1753–1763.

Zheng, F., Liu, S., 2012. A fast compression algorithm for seismic data from non-
cable seismographs. In: Proceedings of IEEE World Congress on Information
and Communication Technologies (WICT) 2012, pp. 1215–1219.

Zhu, L., Helmberger, D.V., 1996. Advancement in source estima- tion techniques
using broadband regional seismograms. Bull. Seism. Soc. Am. 86 (5), 1634–1641.

http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref17
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref17
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref17
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref18
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref18
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref22
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref22
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref22
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref22
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref22
http://dx.doi.org/10.1785/0220140093
http://dx.doi.org/10.1785/0220140093
http://dx.doi.org/10.1785/0220140093
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref24
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref24
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref24
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref26
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref26
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref26
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref27
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref27
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref27
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref30
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref30
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref31
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref31
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref31
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref31
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref32
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref32
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref34
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref34
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref34
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref34
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref36
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref36
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref36
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref37
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref37
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref37
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref38
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref38
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref40
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref40
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref40
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref40
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref41
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref41
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref41
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref41
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref42
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref42
http://refhub.elsevier.com/S0098-3004(16)30109-1/sbref42

	Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
	Introduction
	Disk storage cost of F3DT-SI
	Lossy online compression of strain fields
	Block-floating-point transform
	De-correlating transform
	Coefficient reordering
	Conversion to unsigned integer
	Embedded coding
	Bit stream truncation

	Results
	Disk storage without compression
	Error tolerance
	Compression ratios
	Compression performance in wave-propagation simulations
	Decompression performance in kernel calculations

	Summary and discussion
	Acknowledgment
	References

