
Computers & Geosciences 89 (2016) 239–251
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m
journal homepage: www.elsevier.com/locate/cageo
Research paper
Reconstruction of binary geological images using analytical edge
and object models

Mohammad J. Abdollahifard n, Sadegh Ahmadi
Electrical Engineering Department, Tafresh University, Tafresh, Markazi Province, Iran
a r t i c l e i n f o

Article history:
Received 14 September 2015
Received in revised form
29 November 2015
Accepted 29 December 2015
Available online 4 January 2016

Keywords:
Prior model
Training image
Gradient descent
Inverse problems
x.doi.org/10.1016/j.cageo.2015.12.018
04/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail address: mj.abdollahi@tafreshu.ac.ir (M.J. A
a b s t r a c t

Reconstruction of fields using partial measurements is of vital importance in different applications in
geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training
images (TI) are widely employed as strong prior models for solving these problems. However, in the
absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field
behavior properly. In this paper a very simple and general model is introduced which is applicable to a
fairly wide range of binary images without any modifications. The model is motivated by the fact that
nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this
model allows us to formulate the template matching problem as a convex optimization problem having
efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative
information provided by geologists. The image reconstruction problem is also formulated as an opti-
mization problem and solved using an iterative greedy approach. The proposed method is capable of
recovering the image unknown values with accuracies about 90% given samples representing as few as
2% of the original image.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Characterization of environmental variables is accomplished
using samples acquired by either in situ data-acquisition or remote
sensing. Although with the development of complex acquisition
methods the amount of data available for characterization of
geological variables is becoming abundant, the complete sampling
of a field is performed very rarely in practice due to financial and
practical limitations. In other words there are always unsampled
regions between acquired data which should be estimated using
interpolation techniques.

Reconstruction of missing image data can be considered as an
ill-posed inverse problem with many possible solutions. Therefore
it is necessary to confine the solution space to geologically realistic
patches using either regularization techniques (Lee and Seinfeld,
1987; Calderon et al., 2015) or probabilistic prior models. A multi-
Gaussian distribution can be easily parameterized by mean and
spatial covariance. Although mathematically convenient proper-
ties of multi-Gaussian distributions make them popular for mod-
eling spatial variables (Chu et al., 1995; Li et al., 2003; Emery,
2007; Mariethoz et al., 2009; Abdollahifard and Faez, 2013b), their
limited variability results in overly smoothed maps not consistent
bdollahifard).
with realistic heterogeneities. Such methods are unable to re-
produce the connectivity patterns appropriately for modeling flow
and transport processes (Western et al., 2001; Knudby and Carrera,
2005; Bastante et al., 2008; Klise et al., 2009; Green et al., 2010). To
alleviate this problem, some nonlinear and non-Gaussian high-
order statistics models were developed based on spatial con-
nectivity measures including spatial cumulants (Dimitrakopoulos
et al., 2010) and copulas (Bárdossy and Li, 2008).

Object-based methods are able to produce realistic patterns
with good spatial connectivity through defining basic shapes re-
presenting geobodies and placing them in the model domain
based on a probability model (Deutsch and Tran, 2002; Allard
et al., 2005; Keogh et al., 2007; Pyrcz et al., 2009; Michael et al.,
2010). As an important advantage, object-based methods are able
to control the parameters of geobodies (e.g. the channel width and
orientation) to some extent. However, the conditioning to ob-
served samples is usually achieved using a trial and error process
resulting in a significant increase in computational complexity
(Lantuéjoul, 2002; Allard et al., 2005).

The use of training images (TIs) has recently gained significant
popularity for modeling environmental variability (Strebelle,
2002; Feyen and Caers, 2006; Zhang et al., 2006; Honarkhah and
Caers, 2010; Mariethoz et al., 2010; Mariethoz and Renard, 2010;
Abdollahifard and Faez, 2013a; Abdollahifard, 2015). The TI is an
interesting tool for geologists allowing them to represent the de-
sired geological concept in a direct manner (Feyen and Caers,
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2006). To reconstruct an incomplete patch, multiple-point simu-
lation (MPS) methods seek the TI to find a patch consistent with
local samples. MPS methods are capable of producing realistic
images conditioned to observed samples. The problem of finding a
suitable patch among thousands of training patches (known as
template matching problem) should be solved several times. As a
result, MPS methods are CPU-intensive. Extensive effort was de-
voted to overcome this problem by using search trees or lists
(Strebelle, 2002; Straubhaar et al., 2011), approximate gradient
descent (Abdollahifard and Faez, 2013a), search space reduction
(Abdollahifard, 2015), and training pattern clustering (Zhang et al.,
2006; Honarkhah and Caers, 2010). Although the efforts have
brought significant improvements in CPU-time, the approaches
are still remarkably slower than their two-point predecessors
because of their search-based nature.

The problem of selecting a proper training image is also a
challenge in MPS approaches, especially when enough information
is not available for such a decision. Selection of an inadequate TI
may lead to realizations incompatible either with observed data or
real field variations (Pyrcz et al., 2008; de Almeida, 2010). Even
when the geological context is clear, constructing a complex 3D
training image that adequately represents the complexity of geo-
logical structures requires lengthy computations (Mariethoz and
Kelly, 2011).

Furthermore, unlike multi-Gaussian models or object-based
models, it is not straightforward to parameterize the training
images. In other words, the problem of TI selection is a discrete
decision (either image A or B) and there is no parameter in a
specific TI to be controlled continuously. Suzuki and Caers (2008)
proposed a parameterization allowing several discrete choices of
geological architectures within the prior. Another interesting TI
Fig. 1. Top row: three binary geological images (all images are obtained from the web
depositional system with white as sand and black as shale (Strebelle, 2002) of size 25
243�243 image constructed based on a satellite image of the Ganges delta (Bangladesh
row: 10�10 patches randomly extracted from binary images of top row.
parameterization is proposed by Mariethoz and Kelly (2011) by
using small elementary training images as basic structural ele-
ments of the field and applying some parameterized transforma-
tions (e.g. rotation and affinity) on the lag vectors. Although the TIs
selected are smaller than traditional ones, the additional con-
tinuous freedom degree (e.g. rotation) causes a remarkable in-
crease in the search space.

The aim of this paper is, first, to introduce a single model
capable of modeling a wide range of binary images and then, to
exploit this model for reconstruction of missing image values.
Consider the binary images depicted in Fig. 1(a)–(c). Although the
images seem very different in macro-scale, their micro-scale
building blocks are very similar as depicted in Fig. 1(d)–(f). In the
selected scale, the patches have very simple structures and can be
modeled effectively using one or a combination of two linear
edges. This holds true for every binary geological image (either
simpler or more complicated), if the proper patch size is
considered.

In this paper an analytical model for linear edges is suggested
with parameters controlling the edge orientation and sharpness.
Thanks to the convenient mathematical properties of the sug-
gested model, for any given incomplete patch (or a complete noisy
patch) its corresponding match in the model space can be found in
a few iterations using classical optimization techniques. This is in
contrast to TI-based approaches whereby CPU-intensive ex-
haustive search is usually required to find a match in the TI. To
achieve further flexibility, we have enriched the model space by
allowing a combination of two linear edges capable of approx-
imating narrow channels and nonlinear edges. Geologists’
knowledge can also be incorporated by controlling the edge or-
ientation range and setting relational constraints on two edges in
site of the book, Mariethoz and Caers, 2014). (a) A simplification of a channelized
1�251, (b) a 245�245 image obtained from truncated Gaussian simulation, (c) a
), with soil properties classified as channel (white) and alluvial bars (black). Bottom



Fig. 2. (a) Sigmoid function and (b) two 21�21 patches synthesized using ( )f x w; for = [ ]w 1, 1, 2 and = [ − ]w 2, 0.3, 0.2 ( ∈ { − − … }x 10, 9, , 10 2).

Fig. 3. Some templates synthesized using combinatorial model of Eq. (2) with
different parameter settings.

Table 1
Image reconstruction algorithm.

1: Inputs: Is, Parameters λ( )n N, ,iters ,
2: Outputs: Ir,
3: ←I Ir s,
4: ← ( ( ))I zeros size It r ,
5: for =iter N1: iters do
6: for =i M1: do
7: ←pi extract and vectorize ith patch from Ir,
8: ←qi extract the known values from the corresponding patch extracted

from Is,
9: w-step: ( )←c w find a match in the model space for pi,
10: p-step: update pi using Eq. (5),
11: Insert pi in the corresponding position in It, take average for over-

lapping values,
12: end for
13: ϕ← ( )I Ir t ,
14: end for
15: Return Ir
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the combinatorial model. In contrast to sequential simulation
methods, in this paper the image content is retrieved using an
iterative refinement method.

The paper is organized as follows. In Section 2 an overview of the
proposed method is presented and the notations are introduced. In
Section 3 two analytical models are introduced for image edges and
objects. In Section 4 an image reconstruction algorithm is presented
using the models. Section 5 is concerned with a gradient-descent
algorithm for finding a match for a given patch in the model space.
The results and comparisons are presented in Section 6.
2. Overview and notations

In this paper the goal is to reconstruct a binary two-dimen-
sional image from a sparse set of samples extracted from random
locations. The image is composed of M overlapping ×n n patches
denoted by ˜ ∈ ( = … )× i Mp 1, ,i

n n . The patches are vectorized for
ease of mathematical manipulation and the vectorized form is
denoted by ∈ ( = )N npi

N 2 . The ith patch contains a limited
number of known values gathered in the vector ∈qi

Ki where
⪡K Ni . In terms of mathematical notation, qi can be shown as
=q H pi i i where Hi is a sampling matrix. Each row of Hi is re-

sponsible for extracting one sample. Therefore each row is com-
posed of zeros in all indices except the sample location where the
row element is equal to one.

Given qi, finding pi is a severely ill-posed problem with many
possible solutions. Therefore, it is necessary to confine the solution
space by a patch model . Three models namely Unconstrained Linear
Edge Model (ULEM), Unconstrained Combinatorial Model (UCM) and
Constrained Combinatorial Model (CCM) are developed in this paper to
confine the solution space. The reconstruction problem is formulated as
a multi-objective optimization problem with two objectives for the
patch: honoring the hard samples and fitting well in the model space.

The models are defined based on a parametric analytic function
( )f x w; where = [ ]x xx , T

1 2 is a two-dimensional location vector
and w is a vector containing the set of parameters. Assuming that
n is an odd integer and w is a fixed vector, the function evaluated
on all ∈ { − ( − ) … ( − ) }n nx 1 /2, , 1 /2 2 constitutes a ×n n syn-
thetic patch denoted by ˜( ) ∈ ×c w n n. The vectorized counterpart is
also denoted by ( ) ∈c w N . The set of all such patches for different
parameter values constitute the model space. In this paper, the
expanded form of the location vector is denoted by ^ = [ ]x xx 1, , T

1 2 .
3. Model

In order to solve an underdetermined inverse problem, a model
is required to compensate the lack of sufficient observations. The
model employed here is based on the key observation that, at a
given scale, the image patches can be efficiently described using
one or two linear edge models (see Fig. 1). In this section, a
parametric model will be presented which confines the variability
of patches to specific forms containing one or a combination of
two linear edge models.
3.1. Unconstrained Linear Edge Model (ULEM)

In order to model the sharp transitions present in binary ima-
ges an analytical edge model is introduced in this section. As-
suming such a transition model for image patches, they will be
reconstructed using a limited number of samples. The transition is
modeled using a sigmoid function in the form:

( ) =
+ ( )−g z

e
1

1
.

1z

As depicted in Fig. 2(a), the sigmoid function is zero for ⪡z 0 and
one for ⪢z 0. The transition from zero to one occurs around z¼0.
Suppose that = [ ]x xx , T

1 2 is a location vector in a 2D space and
^ = [ ]x xx 1, , T

1 2 . The edge model is considered as ( ) = ( ^)f gx w w x; T

where = [ ]w w ww , , T
0 1 2 is a weight vector. ( )f x w; is composed of

two regions with values around zero and one and the transition
between the two regions occurs at a line identified by

+ + =w w x w x 00 1 1 2 2 (see Fig. 2(b)). This simple analytical model
can produce any linear edge with desired slope, x2-intercept and
sharpness. For binary images, however, we are concerned about
the slope and the x2-intercept of the edge not its sharpness.



Fig. 4. For a synthetic noisy patch p̃ produced using sigmoid function with known parameter setting, the distance ( ˜ ( ))d fp x w, ; is evaluated for fixed w0 and different values
of w1 and w2 using Eqs. (6) and (9). The results are depicted in (a) and (b) respectively showing that the first objective function is non-convex and the second one is convex in
terms of w. (c) and (d) show ( ) = ( − )d z z z z,s 1 2 1 2

2 and ( ) = − ( ) − ( − ) ( − )d z z z z z z, log 1 log 1log 1 2 1 2 1 2 for ∈ ( )z z, 0, 11 2 (see the text for more information).

Fig. 5. Left pane: original synthetic noisy patch. Right pane: quantized form of ( )f x w; for w obtained from different iteration of gradient descent, from iteration 0 (random
initialization) to iteration 4.

Original Patch:

Random Samples:

Reconstructed:

Fig. 6. Finding a match for a given patch using different sets of samples.
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3.2. Combinatorial models

The limited variability of the above mentioned model causes
difficulties for modeling narrow channels, nonlinear edges and
jagged patterns. Different combinations of two sigmoid functions
can be employed to enrich the model variability. Considering both
pattern modeling capability and mathematical convenience, the
following model can be constructed by superimposing two linear
edge models:

( ) = ( ) ( ) = ( ^) ( ^) ( )f f f g gx w x w x w w x w x; ; ; 2T T
1 1 2 2 1 2

where = [ ]w w w,T T T
1 2 is a parameter vector containing 6 para-

meters: = [ ]w w ww , , T
1 10 11 12 and = [ ]w w ww , , T

2 20 21 22 . As illu-
strated in Fig. 3, this model is capable of synthesizing a broad
variety of binary patterns containing narrow or thick channels,
curved edges, and jag-like patterns. In the remainder of the paper
this model is referred as Unconstrained Combinatorial Model
(UCM). The Constrained Combinatorial Model (CCM) will be ob-
tained by applying some constraints on UCM.
4. Image reconstruction

Image reconstruction is performed given the input hard sam-
ples along with the geologist's knowledge coded in the form of
some constraints confining the model variability. Inspired by the
work of Peyré (2009), in this paper the image reconstruction is
formulated as an optimization problem with two objectives and a
two-stage iterative optimization algorithm is proposed to handle
the problem. For a specific patch, the objectives are to first max-
imize the fit to the conditioning data, and then to be confined in
the model space as much as possible. This problem can be for-
mulated as follows:

= ∥ − ∥ ∈
( )

⁎p q Hp parg min subject to ,
3p

2
2

where ∥ ∥. 2 denotes the l2 norm. Using Lagrange multipliers the
constrained optimization problem can be converted to an un-
constrained one as follows:

λ{ } = {∥ − ∥ + ∥ − ( )∥ }
( )

⁎ ⁎p w q Hp p c w, arg min ,
4p w,

2
2

2
2

where λ controls the relative importance of the two objectives.
( )c w is a vectorized form of a ×n n patch obtained from the model
( )f x w; for all Ω∈ = { − ( − ) … ( − ) }x n n1 /2, , 1 /2 2.
A greedy optimization algorithm can be employed to solve this

problemwhereby in the first step (w-step)w is computed by fixing p,
and in the second step (p-step) the problem is solved with respect to p
assuming fixed w. Interestingly, the above-mentioned objective func-
tion is quadratic in terms of p. Therefore assuming constant w, the
optimum value for p can easily be found in closed form as follows:

( )λ λ= + ( + ( )) ( )⁎ − ⁎p H H I H q c w . 5T T1

On the other hand, for fixed p the first term of the objective
function reduces to a constant. Therefore, the optimum vector w is
the one which minimizes the distance ( ( )) = ∥ − ( )∥⁎ ⁎d p c w p c w, 2.
In other words, in the w-step the nearest patch in the model space,

, to the given patch ⁎p (or the projection of ⁎p on ) should be
determined.

The reconstruction algorithm is summarized in Table 1. Is de-
notes the grid associated to the field of interest, which has values
at the sampling locations and is unknown at other places. Ir de-
notes the reconstructed binary image. ϕ (·) is a binary thresholding
function applied to all pixels of the temporary variable It:

⎧⎨⎩ϕ ( ) = ≤
>

c
c
c

0: 0.5
1: 0.5

.

It should be noted that since the image values are updated at once
(line 14 of Table 1), the algorithm is insensitive to the scanning



Fig. 7. Reconstruction of incomplete images sampled at different rates R¼2%, 3%, 5%, 8% and 16% using DS (Mariethoz and Renard, 2010) and the proposed method with
different models ULEM, UCM, and CCM. The tests are performed on randomly distributed samples extracted from Fig. 1(a).
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Fig. 8. Reconstruction accuracies for images depicted in Fig. 7.

Fig. 9. Uncertainty map = | − |U I Ir s for CCM model with R¼2% and n¼21.
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path. Therefore, a fixed raster path from top-left corner to the
bottom-right corner of the image is considered in the algorithm.
Furthermore, increasing the overlap between subsequent patches
increases the reconstruction accuracy. Then, the algorithm is im-
plemented with maximum possible overlap between subsequent
patches. Hence, the window of a new patch is obtained by shifting
the previous window by only one pixel.
5. Finding the match in the model space (w-step).

In this section the goal is to find a match in the model space
for a given patch p. This problem is formulated using gradient-
descent optimization for ULEM and UCM.

5.1. Linear edge model

Minimizing the distance between p and ( )c w is equivalent to
minimizing the distance between the matrix counterparts p̃ and

( )f x w; over the grid Ω where Ω may be defined as the full grid
{ − ( − ) … ( − ) }n n1 /2, , 1 /2 2 or any subset of it:

∑( ( )) = ( ˜ ( )) = ( ˜ ( ) − ( ))
( )Ω∈

d d f fp c w p x w p x x w, , ; ; .
6x

2

Note that the origin is assumed to be placed at the center of the
patch. Assuming linear edge model, taking gradient with respect
to the parameters w leads to:

∑
Ω

∇ =
| |

{( ˜ ( ) − ( ))( ( ) − ) ( ) ^}
( )Ω∈

d f f fp x x w x w x w x
2

; ; 1 ; ,
7x

w

where Ω| | indicates the number of the members of Ω. Using the
gradient vector, the parameters can be updated using gradient-
descent as follows:

η= − ∇ ( )+ dw w , 8t t
w

1

where η is a constant which controls the step size of gradient-
descent algorithm.

Unfortunately, the objective function of Eq. (6) is non-convex in
terms of w. For a synthetic noisy patch p produced using sigmoid
function with known parameters, the function evaluated for dif-
ferent values of w1 and w2 is depicted in Fig. 4(a) by fixing w0 to its
true value. From the figure one can verify that the function has
small gradient in much of its support, even far from the optimum
point. As a result, the gradient descent approach to the optimum is
typically very slow, requiring numerous iterations. Furthermore,
non-convex functions are likely to have local minima where gra-
dient descent is prone to be trapped.

Such a problem was previously posed in machine learning lit-
erature where approximate solutions exist (Bishop, 2006). Inspired
by the idea used for classification problems, we suggest to replace
the squared distance ( ) = ( − )d z z z z,s 1 2 1 2

2 with a logarithmic dis-
tance in the form ( ) = − ( ) − ( − ) ( − )d z z z z z z, log 1 log 1log 1 2 1 2 1 2 for

∈ ( )z z, 0, 11 2 . As depicted in Fig. 4(c) and (d), the distances ds and
dlog have similar behavior for ∈ ( )z z, 0, 11 2 . Based on this, the ob-
jective function of Eq. (6) is modified as follows:

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭( )∑

( ˜ ( ))

= − ˜ ( ) ( ( )) + ( − ˜ ( )) − ( )

( )
Ω∈

d f

f f

p x w

p x x w p x x w

, ;

log ; 1 log 1 ;

. 9
x

Taking gradient with respect to w results in

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭( )∑

Ω
∇ =

| |
( ) − ˜ ( ) ^

( )Ω∈

d f x w p x x
1

; .
10x

w

Analyzing the Hessian matrix it can be verified that the modified
objective function is convex in terms of w. For illustration, the
same patch employed previously to produce Fig. 4(a) is used for
evaluation of the new objective function of Eq. (9) and the result is
depicted in Fig. 4(b). The convex behavior of the modified objec-
tive function makes gradient descent very efficient in finding the
optimum.

For a given synthetic noisy patch p̃ shown in the left pane of
Fig. 5, the results produced with parameters of different iterations
of gradient descent algorithm is depicted in the right pane ( p̃ is a
11�11 patch). It is worth indicating that, TI-based exhaustive
search methods require at least 540 comparisons to solve such a
template matching problem assuming 36 discrete choices for an-
gle and ( = ⌊ ⌋)15 11 2 choices for displacement.

The method is also applicable using incomplete sets of samples.
Fig. 6 shows the reconstruction results of the method for a patch
using just 5% of its samples extracted randomly. Interestingly, in all
cases the produced results are close to the original patch.

5.2. Combinatorial model

The w-step for the combinatorial model can be carried out by
minimizing the function (9) where f is defined in Eq. (2). The
gradient-descent approach of Eq. (8) can be employed to solve this
optimization problem. The gradient of d with respect to w can



Fig. 10. Reconstruction of an incomplete image sampled at 3% rate using ordinary DS (Mariethoz et al., 2010) and SIMPAT (Arpat and Caers, 2007). (a) A representative image
used as TI. (b) and (c) the results of DS and SIMPAT when using the appropriate TI of (a). The reconstruction accuracy is 92.25% and 90.13% respectively. (d) and (e) the results
of DS and SIMPAT when using the inadequate TI of Fig. 1(b). The reconstruction accuracy is 84.80% and 84.93% respectively.

1 The ordinary DS code is downloaded from http://www.minds.ch/gm and
slightly modified to conform to the algorithm of Mariethoz and Renard (2010).
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easily be obtained based on the partial derivatives given below:

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎧⎨⎩
⎫⎬⎭

⎫
⎬
⎭∑∂

∂
= ^ ( − ( )) ( ) − ˜ ( )

− ( ) ( )Ω∈

d
w

f
f

f
x x w

x w p x
x w

1 ;
;

1 ;
,

11ij
j i i

x

where ∈ { }i 1, 2 and ∈ { }j 0, 1, 2 .

5.3. Constrained models

As indicated before, it is difficult to incorporate the qualitative
and quantitative information provided by the geologists in the
training images (TIs) in multiple-point statistics approaches. For
example, if a geologist believes that a specific field is composed of
a number of channels with a specific width ω, this information
could be incorporated in a relatively large TI composed of a
number of channels with different orientations. Fig. 1(a) can be
considered as a subset of such an image which needs to be en-
riched by incorporating remaining orientations in order to re-
present the geologist's conceptual view. In order to add an addi-
tional degree of freedom, the TI needs to be enlarged several
times. For example consider the case where the geologist is un-
certain about the channel width and suggests an interval of ω ω[ ],1 2

for this parameter. Handling such a large TI requires excessive
computational effort.

The geologist viewpoints can be incorporated in our approach
by applying appropriate constraints to the solution space of the
optimization problem. One way to solve a constrained optimiza-
tion problem is first to ignore the constraint and find a solution to
the unconstrained problem, and then to apply the constraint to the
solution obtained from unconstrained optimization. In other
words, the final solution is considered as the nearest point to the
unconstrained optimization solution located in the allowed space.
For example, this strategy can be incorporated in the combina-
torial model by enforcing the two edges (sigmoids) to be parallel
with a fixed distance of ω.
6. Results and comparisons

This section is concerned with the evaluation of the proposed
method on different binary fields. Here, our method is compared
with Direct Sampling (DS) which is a training-image based
method (Mariethoz et al., 2010). Note that the proposed method
does not exploit any additional data (like training images). For a
fair comparison, our method is compared with a modified version
of DS which uses the conditioning data itself as the training da-
taset, instead of exploiting a separate training image (Mariethoz
and Renard, 2010).1 This method completes an incomplete grid by
scanning the grid in a random order. For each unknown value in
the grid, a data-event containing nDS known neighbors is extracted
around it within a radius of r. Then, the data-event is compared
with the corresponding neighbors of the known grid values to find
an acceptable match. Next, the central value is copied from the
found match to the query point. This process is repeated for all
unknown pixels until the grid is completed. This is clearly a time-
consuming method because it requires solving numerous

http://www.minds.ch/gm


Fig. 11. Reconstruction of incomplete images sampled at different rates R¼2%, 3%, 5%, 8% and 16% using DS (Mariethoz and Renard, 2010) and the proposed method with
models ULEM and UCM. The tests are performed on randomly distributed samples extracted from Fig. 1(b).
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exhaustive search problems. To alleviate this problem the authors
suggest to search a fraction f of the image ( < ≤ )f0 1 . However, to
achieve acceptable results f is set to 1 in all of our tests. Further-
more, nDS and r are set to 50 and 20 respectively.

The proposed method is implemented using three different
models at its core: ULEM, UCM and CCM. There are a number of
parameters in the proposed algorithm which can be adjusted by
the user, namely Niters, n, and λ in the main algorithm and η in
gradient descent optimization. Fortunately, for most of the para-
meters a certain setting works quite well for different sampling
rates in different images. In all tests we set =N 1iters , λ¼1, and
η¼15. As will be discussed later in more detail, the combinatorial
model allows larger patch sizes.

The first experiment is carried out on the channelized image of
Fig. 1(a) as the original image. The original image is sampled at
randomly distributed locations with the sampling rate of R (%) to
form an incomplete image Is. Then different methods are em-
ployed to reconstruct the image using Is. The patch size is set to
13�13 for ULEM and 21�21 for combinatorial models. The re-
sults of DS are compared with our results in Fig. 7 for sampling
rates R¼2%, 3%, 5%, 8%, and 16%. Given the original image Io and
the reconstructed image Ir, the reconstruction accuracy is defined
as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= − | ( ) − ( )| ×

( )Λ( )∈

A
N

I x x I x x1
1

, , 100,
12I x x

o r
,

1 2 1 2

1 2

where NI denotes the number of pixels of Io and Λ denotes the set
of all positions at which Io is defined. The accuracies obtained
using Eq. (12) are reported in Fig. 8.

Fig. 7 (d) depicts the results of our method using CCM, where
the constraint is applied by forcing the channel width to 8 pixels.
For high sampling rates, all models perform equivalently well.
However, at lower sampling rates, which are of particular interest
in practice, the combinatorial models outperform the ULEM. Spe-
cifically, CCM provides significantly better results for 2% and 3%
sampling rates from both quantitative and qualitative viewpoints.

DS provides poor performance in low sampling rates. The
reason lies in the fact that DS does not exploit any model in the
reconstruction process and relies only on conditioning data. The
very simple model employed in this paper, which encourages step-
like transitions between regions, makes it possible to achieve
higher reconstruction accuracy. For example, the result obtained
using CCM for 3% sampling is comparable to the one obtained
using DS for 16% sampling. In other words, the proposed method
makes it possible to achieve a certain level of accuracy using only
one-fifth of the samples required by DS. This leads to a significant
reduction in the sampling cost.

One may be concerned with the uncertainty associated with
the estimations. The uncertainty can be assessed based on the
unthresholded image It. The values which are close to zero or one
in It are highly certain. The uncertainty can be estimated as

= | − |U I It r . The uncertainty map for the CCM model with R¼2%
and n¼21 is depicted in Fig. 9. As expected, the estimations are
highly uncertain near the image edges: the algorithm needs many
more samples to determine the exact location of the edges.
However, estimations made far from edges are highly certain.

To illustrate the effectiveness of the proposed modeling
scheme, another experiment is arranged by comparing our results
with ordinary DS (Mariethoz et al., 2010) for R¼3%. This is done by
allowing DS to use all the training patterns of the complete TI of
Fig. 10(a) as its model. DS achieves the reconstruction accuracy of
92.25 in this scenario (Fig. 10(b)).

SIMPAT is also a patch-based simulation algorithm with pro-
mising results (Arpat and Caers, 2007). Fig. 10(c) shows the output
of SIMPAT for R¼3% using the TI of Fig. 10(a). The reconstruction
accuracy is 90.13 in this case. Interestingly, the best result of our
algorithm obtained using CCM shows an accuracy of 92.48, which
is slightly better than DS and SIMPAT (Fig. 7(d)). In other words,
the simple and general model proposed in this paper presents
results comparable or even better than the results produced using
the appropriate training image of Fig. 10(a).

It should be emphasized that although the TI-based methods
produce results comparable to the newly developed algorithm,
they are sensitive to the selected TI. This can be demonstrated by
using an inadequate TI which is not a good representative for the
field of interest. Fig. 10(d) and (e) shows the results of DS and
SIMPAT for R¼3% using the inadequate TI of Fig. 1(b). The re-
construction accuracy of TI-based methods is significantly de-
creased when using a wrong TI.

The algorithm is also tested on the binary image of Fig. 1(b) and
the results are depicted in Figs. 11 and 12. Here, no constraint is
applied to our models and the algorithm is implemented using
only ULEM and UCM. The patch sizes are considered as 19�19 and
21�21 for ULEM and UCM respectively. Because of the specific
structure of the image, UCM does not provide meaningful im-
provement compared to ULEM. Again, the proposed algorithm
significantly outperforms the DS method, especially for lower
sampling rates.

The tests are repeated for the more complex image of Fig. 1
(c) and the results are depicted in Figs. 13 and 14. Here, the patch
sizes are considered as 13�13 and 17�17 for ULEM and UCM
respectively. It should be emphasized that the results presented
are not the best results achievable using the proposed approach.
As illustrated in supplementary materials, by changing the patch
size, slightly higher reconstruction accuracies are also achievable.

6.1. Sensitivity to the patch size

The proposed algorithm is sensitive to the patch size to some
extent. Fig. 15(a), (b), and (c) illustrates the reconstruction accu-
racy of our algorithm for the channelized image of Fig. 1(a) for
different sampling rates and different window sizes using ULEM,
UCM, and CCM respectively. Several different results can be in-
ferred from these plots. Firstly, the plots show that the proper
patch size is a function of sampling rate: for lower sampling rates
it is reasonable to employ larger patches. The patch should also be
sufficiently large to include enough samples to be used in gra-
dient-descent optimization.

Secondly, the combinatorial models present their best results
with larger patch sizes compared to ULEM. The higher flexibility of
combinatorial models enables them to handle the variability of
larger patches. It should be noted that the proper patch size de-
pends on the field behavior as well. Thirdly, UCM provides more
stable results compared to the other two models. For different
sampling rates, UCM presents equivalently good results for all



Fig. 13. Reconstruction of incomplete images sampled at different rates R¼2%, 3%, 5%, 8% and 16% using DS (Mariethoz and Renard, 2010) and the proposed method with
models ULEM and UCM. The tests are performed on randomly distributed samples extracted from Fig. 1(c).
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≥n 13. This could also be justified by higher flexibility of UCM
which enables it to perform well for different patch sizes. On the
other hand, CCM provides relatively poor results for ≤n 13 be-
cause it is difficult to enforce a channel width of 8 pixels with such
small patches.

Fig. 15 (a) shows that the ULEM performance decreases by in-
creasing the patch size beyond a certain value. This can be justified
by the limited variability of the ULEM model for modeling large
patterns.

6.2. Algorithm performance

The algorithm performance is also assessed using the image
shown in Fig. 1(a). All experiments are carried out in MATLAB
environment on a laptop computer with a 2.6 GHz processor. The
CPU-time depends on the patch size, the sampling rate, and the
selected model. The sampling rate also affects the CPU-time of DS.
For comparing the performances, the DS parameters are fixed to

= =n r50, 20DS , and =f 1. Then, the CPU-time of DS is compared
Fig. 15. Sensitivity of the proposed method to the patch size (n) for dif
with the proposed method for different patch-sizes, different
sampling rates and different models. In Fig. 16, = ( )

( )G t DS
t OA

is plotted

versus patch size, where t(DS) and t(OA) denote the CPU-time of
DS and our algorithm respectively. The plots show that the pro-
posed algorithm performs faster than DS by a factor ranging from
6 to 660. In a special case, using ULEM model the algorithm per-
forms 117 times faster than DS for =R 16% and n¼13. DS takes
7384 s in this test, while our algorithm requires only 63 s.
7. Conclusion

An optimization-based image reconstruction method is pro-
posed in this paper. The heart of the proposed method consists of
an analytical model for image patches. The basic assumption of the
model is that the image patches can be modeled using either a
linear edge or a combination of two linear edges. Finding a match
for a given image patch in the model space is formulated using
efficient gradient-descent optimization. This leads to a significant
speed-up compared to training-image based approaches which
work based on exhaustive search.

The proposed method has some advantages and drawbacks.
The method presents promising results for randomly distributed
data representing more than 1% of the image. As the main ad-
vantage, the method does not require any training image. For high
sampling rates where the conditional data reflects the geological
pattern, the results are comparable to the results of TI-based
methods (e.g. DS and SIMPAT) when using adequate TIs and far
better than them when using wrong TIs. As expected, in the ab-
sence of a TI or any other geostatistical model, the proposed
method cannot provide acceptable results for low sampling rates
(lower than 1%) where the conditional data does not reflect the
geological pattern. Furthermore the method is incapable of re-
constructing images with samples concentrated in a limited region
leaving the remainder of the image empty.
ferent sampling rates and different models ULEM, UCM, and CCM.



Fig. 16. Comparison of CPU-time of the proposed method with DS for different patch sizes, different sampling rates and different models ULEM, UCM, and CCM. = ( )
( )

G t DS
t OA

.
The DS parameters are fixed to = = =n r f50, 20, 1DS in all tests.
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