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A B S T R A C T

Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The
MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspira-
tion mapping, soil moisture estimation and forest fire detection. However, cloud contamination affects thermal
band observations and will lead to inconsistent LST results. In this study, we present a new Remotely Sensed
DAily land Surface Temperature reconstruction (RSDAST) model that recovers clear sky LST for pixels covered
by cloud using only clear-sky neighboring pixels from nearby dates. The reconstructed LST was validated using
the original LST pixels. Model shows high accuracy for reconstructing one masked pixel with R2 of 0.995, bias of
−0.02 K and RMSE of 0.51 K. Extended spatial reconstruction results show a better accuracy for flat areas with
R2 of 0.72‒0.89, bias of −0.02–0.21 K, and RMSE of 0.92–1.16 K, and for mountain areas with R2 of 0.81–0.89,
bias of −0.35–−1.52 K, and RMSE of 1.42‒2.24 K. The reconstructed areas show spatial and temporal patterns
that are consistent with the clear neighbor areas. In the reconstructed LST and NDVI triangle feature space
which is controlled by soil moisture, LST values distributed reasonably and correspond well to the real soil
moisture conditions. Our approach shows great potential for reconstructing clear sky LST under cloudy
conditions and provides consistent daily LST which are critical for daily drought monitoring.

1. Introduction

Land surface temperature (LST), generally defined as the skin
temperature of the Earth's surface, is an important factor in the study
of environment, agriculture, hydrology and meteorology. LST reflects
the processes of evapotranspiration (ET) (Anderson et al., 2012; Sun
et al., 2013), surface energy balance (Bastiaanssen et al., 1998; Su,
2002), soil moisture change (Carlson et al., 1995) and climate change
(Jin et al., 2005; Maimaitiyiming et al., 2014).

Land surface temperature can be retrieved using remotely sensed
thermal infrared (TIR) data. Two widely used TIR instruments include
the Advanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectrometer (MODIS). Both are cap-
able of observing the earth surface at least once per day at 1 km spatial
resolution.

The MODIS instrument is a highly sensitive radiometer operating

in 36 spectral bands ranging from 0.4 µm to 14.4 µm. MODIS is
operating onboard Terra and Aqua. Terra was launched in December
1999 and Aqua in May 2002. A ± 55° scanning pattern at 705 km
altitude achieves a 2330 km swath that provides global coverage every
one to two days. Aqua has a 1:30 am/pm equator crossing time while
Terra has a 10:30 am/pm equator crossing time. Thus, daytime MODIS
thermal band imagery are available locally once in the morning from
TERRA and once in the afternoon from AQUA. The MODIS team has
developed and published more than 20 atmospheric, oceanic and land
surface data products. The MODIS LST product is retrieved using the
generalized split-window algorithm (Wan and Dozier, 1996) and the
day/night algorithm (Wan, 1997). The reported error in LST is less
than 1k, as validated over homogenous land surface patches (Wan
et al., 2002). As a high quality data product, MODIS LST has been
widely applied in many fields, especially drought monitoring. Many
remote sensing drought monitoring indices are developed based on
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LST, such as Temperature Condition Index (TCI) (Kogan, 1995),
Vegetation Health Index (VHI) (Kogan, 1997), Temperature
Vegetation Dryness Index (TVDI) (Sandholt et al., 2002; Sun et al.,
2012), and the Evaporative Stress Index (ESI) (Anderson et al., 2011,
2013, 2016).

Time-series of land surface parameters are required for continuous
modeling and monitoring of environmental phenomena. However, the
optical band signal from the land surface cannot penetrate clouds.
When a pixel is contaminated by cloud, land surface information may
be mixed with or totally blocked by the cloud. In reality, cloudy-sky
conditions represent more than half of the actual day-to-day weather
around the globe (Jin, 2000), which means we would lose half the
information regarding land surface conditions if cloudy areas are
excluded during analysis.

For the purpose of time-series LST monitoring, a robust daily LST
gap filling algorithm is required for prolonged periods with overcast
skies, when satellite-derived LST measurements are not available
(Westermann et al., 2011). However gap-filling for LST is more difficult
than for reflectance because LST is affected by various environment
factors such as solar radiation, air temperature, land cover, soil
moisture. Few research studies have focused on reconstructing LST
under cloud cover conditions. Those that have been conducted can be
divided into two groups. The primary intentions of the first group are to
reconstruct LST under cloud cover, which means the cloud conditions
should be considered in the model (Jin, 2000). developed a ‘neighbor-
ing-pixel approach’ on the basis of surface energy balance principle,
assuming the temperature difference between a cloudy pixel and its
neighboring clear pixel is due to the differences in energy fluxes, i.e.,
net solar radiation, net longwave radiation, and sensible and latent
heat flux between the cloudy and its neighboring pixels (Lu et al.,
2011). revised the ‘neighboring-pixel approach’ by exploiting the
temporal domain offered by geo-stationary satellite observations to
acquire adequate samplings to capture the diurnal cycle of LST (Zhang
et al., 2015). proposed a method for estimating cloudy LST based on a
one-dimensional heat transfer equation and the evolution of daily
surface temperatures and net shortwave solar radiation (Kou et al.,
2016). combined MODIS and AMSR-E data with Bayesian Maximum
Entropy method to reconstruct high-quality LST. Recovering real LST
under cloud needs additional information under cloud, such as solar
radiation or cloudy LST. A complicated physical relationship between
clear and cloudy LST is required. The primary intentions of the second
group are to reconstruct the clear sky LST, which is not the real LST
under cloudy conditions (Neteler, 2010; Metz et al., 2014) used
elevation, solar angle, precipitation and temperature as additional
variables in the spline interpolation method to reconstruct LST values.
These methods rely on climate factors that are difficult to obtain
precisely as a spatially distributed map. Errors in the climate variable
specifications can lead to large errors in the reconstructed LST,
particularly for large area applications (Xu and Shen, 2013). used the
Harmonic ANalysis of Time Series (HANTS) algorithm to remove
cloud-affected observations and reconstruct the MODIS LST data.
However extreme events may not be well characterized.

The reconstructed clear sky LST would be very useful for evaluating
drought monitoring indices such as TVDI which is estimated based on
the triangle feature space formed by the scatter plots between NDVI
and LST images. The triangle space method assumes that a full range of
fractional vegetation cover and soil moisture contents is represented in
the data and that climate forcings are spatially uniform (Sun et al.,
2012). Therefore if there are few valid pixels available in the study area,
it is difficult to form a triangle space. In addition, in the triangle space,
soil moisture is assumed to be only affected by the LST and NDVI,
which means cloud, an extra factor affecting LST, should not be
considered in the drought monitoring.

In this study, we developed a new Remotely Sensed DAily land
Surface Temperature reconstruction (RSDAST) model to reconstruct
gap pixels in the MODIS daily LST product, based on an assumption

that the LST difference between nearby pixels is small during a short
time period. The RSDAST model is used to recover LST for clear sky
condition. The objective of this study is to develop, test and validate the
RSDAST model in Northwestern China. The results were evaluated
using: (1) masked pixels every 10 days from one year; (2) original
clear-sky high quality MODIS LST; and (3) triangle feature space
formed by scatterplots between LST and NDVI used for drought index
TVDI.

2. Methodology

2.1. Theoretical basis of LST reconstruction model

For two clear-sky neighboring pixels, the LST recorded at the
satellite overpass time on day t0 can be expressed as,

LST x y t LST x y t ε( , , ) = ( , , )+0 0 0 1 1 0 0 (1)

where (x0, y0),(x1, y1) are the locations of two nearby pixels, t0 is
observation date, ɛ0 is the LST difference between two pixels on day t0.
Because the locations of two pixels (x0, y0), (x1, y1) are very close, they
are most likely under the same weather conditions (such as solar
radiation, air temperature and rainfall). For example, if air temperature
decreases resulting from rainfall, then the LST(x0,y0,t0) and
LST(x1,y1,t0) should decrease synchronously within the area. On the
next day, t1, we can write a similar equation:

LST x y t LST x y t ε( , , ) = ( , , )+0 0 1 1 1 1 1 (2)

where ɛ1 is the LST difference on day t1. If the land surface is
homogenous, both ɛ0 and ɛ1 should be close to zero. Although, truly
homogenous surfaces are rare, which means ɛ0 (ɛ1) would typically be
non-zero, generally LST(x0,y0) and LST(x1,y1) increase or decrease
synchronously, so we can assume that ɛ0 is usually close to ɛ1 if t0 and
t1 are close in time.

With this assumption, Eqs. (1) and (2) can be used to derive the
following expression:

LST x y t LST x y t LST x y t LST x y t( , , )− ( , , ) = ( , , )− ( , , )0 0 0 1 1 0 0 0 1 1 1 1 (3)

Eq. (3) means the LST difference between two nearby pixels is the
same for two closely separated days. It can also be expressed as:

LST x y t LST x y t LST x y t LST x y t( , , )− ( , , ) = ( , , )− ( , , )0 0 0 0 0 1 1 1 0 1 1 1 (4)

Eq. (4) means the LST difference between two days at one location
is the same as that at a nearby location.

Then if LST at location (x0,y0) is absent at day t0, it can be
calculated as

LST x y t LST x y t LST x y t LST x y t( , , ) = ( , , )− ( , , )+ ( , , )0 0 0 0 0 1 1 1 1 1 1 0 (5)

2.2. Reconstruction of missing LST

By introducing additional information from neighboring valid
pixels, we compute the LST for a missing central pixel (x0,y0) on day
t0 with a weighting function

∑ ∑LST x y t W LST x y t LST x y t

LST x y t

( , , ) = ∙[ ( , , )− ( , , )

+ ( , , )]

p t

t

i

N
i p i i p

i i

0 0 0 = −4

+4

=1 0 0

0

0

0

(6)

W = 1/(D ∙S )
∑ [1/(D ∙S )]i

Ni
i i

=1 i i

where Wi is a weighting function computed from a distance factor (Di)
and a similarity factor (Si), p is the day of the comparison image, i is the
position of a valid neighboring pixel, and N represents the total number
of valid pixels selected from 9×9 pixels window for each date p. We not
only use valid pixels from the nearest day, but also from the 8 days
surrounding the target reconstruction date to increase sample size. In
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Eq. (6), LST(x0,y0,tp) is a valid central pixel on day p and LST(xi,yi,tp) is
a valid surrounding pixel on day p. Then [LST(x0,y0,tp) - LST(xi,yi,tp)] is
defined as the LST Difference of Pixel Pair (LDPP). Each LDPP in 9×9
pixels window from the nearest 8 days is assigned a weight used in
estimating the gap LST.

2.2.1. Distance factor
According to the first law of geography, everything is related to

everything else, but near things are more related than distant things
(Tobler, 1970). In another words, the closer two pixels’ are, the more
similar their LST values should be. So the closer pixel gets to the central
position, with spatial distance Di calculated as:

Di = (x − x ) + (y − y )i i0
2

0
2

(7)

the larger the weight assigned to that pixel pair.

2.2.2. Similarity factor
Similarity factor is proposed to identify the neighboring pixel with

the most similar surface conditions to the central pixel which needs to
be gap-filled. The difference of LST is considered to describe the surface
conditions similarity. The smallest LST difference represents the most
similar conditions. Since the central pixel on date t0 [LST(x0,y0,t0)] is
invalid/gap, based on Eq. (3) that LST difference between two nearby
pixels is the same for two closely separated days, the LDPP on date tp is
used to identify the pixel with the most similar conditions. Thus the
smallest LDPP reflects the closest conditions of two nearby pixels,
which is assigned as the largest weight. The similarity factor Si is
calculated as

LST x y t LST x y tS = ( , , )− ( , , ) +1p i i pi 0 0 (8)

In the reversed weighting function Eq. (6), a smaller Si means
similar land surface conditions, and thus a higher weight will be
assigned in the LST prediction model. Si value starts from “1” to avoid
“0” similarity factor when two temperature values are identical.

2.3. LST reconstruction steps

The main processing steps of the LST reconstruction algorithm are
illustrated in Fig. 1. When the program finds a missing LST pixel on
day t0, it extracts all the valid LST(x0,y0,tp) within a 9×9 pixel window
from the nearest 8 days, and then calculates the total weight Wi for
each pixel pair. The missing LST value is computed using Eq. (6),
which is then restored to the grid as a valid value for the processing of
the next pixel.

2.4. Validation strategies

Since the intent of this paper is to reconstruct the clear-sky LST in
cloudy regions (rather than the actual cloud effected LST), it is not
appropriate to compare the reconstructed LST with that from ground-
based measurements which are cloud effected. Accordingly, two
validation strategies are proposed as follows: (1) In order to test the
model reconstruction performance on one fixed pixel, two pixels are
masked every 10 days in 2002. One is covered by crop and another is
covered by forest (location shown in Fig. 2). The reconstructed LST
value is then compared with the original MODIS LST. In total, there are
seven days of valid crop pixels and 13 days of valid forest pixels; (2) In
order to test the model performance in terms of spatial reconstruction
capabilities, two large regions were artificially masked in the original
MODIS images, as shown in Fig. 2. One area is located in the plain with
little heterogeneity including 18913 km2, and the other is located in a
mountainous region with complex terrain and strong heterogeneity in
LST, including 13009 km2. Three dates in different season from 2000
to 2002 were selected for each target area to capture locally clear-sky
conditions.

3. Study area and data

3.1. Study area

The study area is located in Northwest China as shown in Fig. 2,
covering the coordinate range between 91.7°E −112.2°E, 30.7°N
−43.1°N, including Gansu, Ningxia, Shaanxi provinces and part of
Inner Mongolia, Qinghai and Sichuan provinces. Precipitation and
temperature are strongly variable over this area, resulting in a range in
climate types, from arid and semiarid to humid subtropical. The terrain
of this area is complicated, and includes plain, desert, highland and
mountain regions, with an elevation range from 50 to 5000 m. The
western part of the study area is part of the Tibetan Plateau, which is
considered as the third pole of the earth, with elevations from 3000 to
5000 m. The elevation of the east area is relatively low, and the lowest
area is located in the middle eastern part of the study area called the
‘Guanzhong Plain’. The terrain is relatively flat in this plain and
includes cultivated crops.

3.2. MODIS data

In this study, we downloaded Collection 5 MODIS TERRA LST
products (MOD11A1) at 1 km resolution for the years 2000–2002 and
2014. The MODIS LST from 2000 to 2002 were used to develop
method and validate results. The 2014 MODIS LST data were used to
investigate the impacts of precipitation and irrigation (precipitation
and irrigation records at the forest and crop site were only available for
2014). Only daytime LST (about 10:30 am) was chosen as the testing
target in this study. Four MODIS tiles (h25v04, h25v05, h26v05 and
h27v05) were selected to cover all the study area. We used the MRT
(MODIS Reprojection Tool) to mosaic and resample all the MODIS
product data to 1 km grid. A sub-image of 1678×1345 pixels was then
extracted from all data products.

Cloud contaminated pixels have been excluded from the MODIS
LST product (Ackerman et al., 1998). However, effects of cloud edges
on LST may remain in the product. The LST quality around the cloud
edges is relatively lower as indicated by the MODIS LST Quality
Control (QC) flags. Therefore, in this paper, we only use good quality
LST pixels recognized by QC flags to reconstruct because low quality
pixels would introduce extra errors in the model.Fig. 1. Flowchart describing the LST reconstruction model.
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4. Results

4.1. Model assumption verification

The model assumes that the LST difference between nearby pixels is
similar over short time periods. To verify this assumption, we used the
MODIS daily LST product collected over the study area for 2001 to
calculate the temperature difference (TD) between the center pixel and
the averaged value from 8 surrounding pixels. The TD image was
generated for each day. Then the standard deviation and the mean
absolute value of the TD annual time series for each pixel were
computed, as shown in Fig. 3a and c. The results show that the
standard deviation and the mean absolute value of TD have a strong
correlation with the distribution of the slope of terrain. The north and
east area is relatively flat, therefore the TD standard deviation of these
areas is below 1 K, and the mean absolute value is below 0.5 K,

indicating that there is little seasonal TD variation for these areas.
Even though the west is mountainous, with varying topography, the
standard deviation of the 2001 TD time series for most of this area is
still under 2 K and the mean absolute value is under 1.5 K. Large
standard deviations up to 4 K and large mean absolute value up to
2.5 K are observed only in a small area located in the southwest with
extremely variable topography. This confirms our assumption that the
difference of LST between a pixel and the surrounding pixels are
similar during the time series even for the entire year. In comparison,
the LST timeseries show strong variability over the same time period
(Fig. 3b), due to seasonal variations in solar radiation and climate.
Most pixels vary from 5 to 21 K much greater than that of TD. The
standard deviation in LST is more correlated with latitude than with
topography, with the northern area showing larger LST seasonal
variation. The TD and LST behavior of point A and B (the location is
shown in Fig. 2) is exemplified in the timeseries in Fig. 4. There is little

Fig. 2. Map of the study area. Right panel shows a digital elevation model (DEM, m). The two stars indicate crop and forest sites used for validation. The two X's (A and B) are used for
LST time series extraction. Point A is located in the plain and point B is on a mountain slope. Two areas (mountain area and Guanzhong Plain) enclosed by lines are also used for model
validation.

Fig. 3. Spatial distribution of standard deviation of the TD time series (a) and the LST time series (b), and the mean absolute value of TD for each pixel (c) of 2001 over the study area.
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seasonal variation for the TD time series which is relatively stable and
close to zero for the whole year, but there is strong variation for LST.

4.2. Validation using MODIS original LST

First, the reconstructed LST was validated using the first strategy
described in Section 2.4. Fig. 5a shows the scatter plots between
reconstructed and original MODIS LST. The reconstructed LST shows
very high accuracy with R2 of 0.995, bias of −0.02 K and RMSE of

0.51 K. The forest site is located in an extremely arid region, with
precipitation of less than 50 mm per year and potential evaporation of
approximately 3755 mm per year (Li et al., 2013), resulting in higher
LST compared with the crop. Fig. 5b and c show the difference between
the reconstructed and original LST on each valid date over two sites.
The difference on most days is between −0.5 and 0.5 K. Even though
the largest error is around ± 1 K, it is still a reasonable error. We
checked the images with relatively large errors such as DOY 230 for the
forest site and DOY 240 for the crop site, and found that there is cloud

Fig. 4. LST (right axis) and TD (left axis) from 2001 time series at point A and B (shown in Fig. 2). Point A is located in plain area and point B is located in mountain area.

Fig. 5. Scatter plots between original MODIS LST and reconstructed LST over two sites (a); LST difference between reconstructed and original LST (reconstructed LST- original LST) at
the crop site (b); and the forest site (c).
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effect around the sites on these two days. Although we have excluded
the low quality pixels as Section 3.2 described, it is difficult to ensure
that all the pixels are 100% clear. Fig. 6 shows the LST pixels extracted
only from good quality data on DOY 230. The forest site is located right
next to the cloud mask edge, where the temperature is obviously
affected by cloud. For the crop site on DOY 90, we found that there was
an irrigation event on that day, which may result in heterogeneous land

surface conditions responsible for the relatively large LST reconstruc-
tion errors.

In order to test the model performance in terms of spatial
reconstruction capabilities, two regions were artificially masked in
the clear-sky MODIS images, as shown in Fig. 2, so the algorithm in
this case uses only data from proximate days to fill in gaps (referred as
masked area). The gap-filled results were used to compare with the
original LST from the masked area. One area is located in the plain
with little heterogeneity, and the other is located in a mountainous
region with complex terrain and strong heterogeneity in LST. Three
images in different seasons from 2000 to 2002 were selected for each
target area to capture the local clear-sky conditions (Table 1). Fig. 7
shows scatter plots comparing original and reconstructed LST for each
area and date, demonstrating distributions close to the 1:1 line. The
performance over the plain (Fig. 7a-c) is better than over the mountain
area (Fig. 7d-f). As shown in Table 1, the bias and RMSE for all three
days found for the plain area were small, with bias ranging from
−0.02–0.21 K and RMSE from 0.92–1.16 K. R2 values are lowest for
DOY 86 of 2000, due in part to a lower range of variability in LST on

Fig. 6. LST image filtered by good quality flag on DOY 230 of 2014. Red star shows the location of the forest site. White area represents the cloud mask.

Table 1
Error statistics between original and reconstructed LST for plain and mountain areaS.

region Year DOY Correlation coefficient (R) Bias (K) RMSE (K)

plain 2000 086 0.72 0.21 1.00
18913 pixels 2001 196 0.87 0.10 0.92

2002 151 0.89 −0.02 1.16

mountain 2001 105 0.89 −0.35 1.42
12997 pixels 2001 318 0.83 −0.43 1.61

2002 274 0.81 −1.52 2.24

Fig. 7. Scatter plots between original LST and reconstructed LST for different days. The color bar shows the point density. The first row corresponds to plain area, and the second row
corresponds to the mountain area.
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that day (Fig. 7a). Fig. 8 shows maps of the original and reconstructed
LST values, demonstrating capabilities of RSDAST to reconstruct
spatial temperature features in the landscape. A river system flowing
from west to east is clearly shown on the reconstructed image (Fig. 8b,
d, f), with lower LST values (305 K) in comparison with the surround-
ing area (about 310 K on average).

While the bias and RMSE for the mountain area exceed those for
the plain, the correlations are strong (R2 greater than 0.8 for all the
three days) due to the larger range in LST over this more complex
landscape. RMSE ranges from 1.42 to 2.24 K. Although the accuracy
over the mountain area is not as good as that of the plain area, it is still
comparable to other LST reconstruction methods. For example Jin
(2000) reported the RMSE of 1.5–3.2 K (Jin, 2000) and Lu et al.
(2011) reported about 5 K (Lu et al., 2011). The relatively lower
accuracy over this area reflects the fact that the TD variation over a
heterogeneous surface is larger than that for a homogenous surface (see
Figs. 3 and 4). Fig. 9 shows the original and reconstructed LST
distributions over the mountain area for three dates. The reconstruc-
tion model not only captures the main LST distribution, but also

recovers spatial details, such as the ridge and the valley, which are
clearly displayed in the reconstructed image (Fig. 9b, d and f).

4.3. Spatial distribution of reconstructed LST

We reconstructed the MODIS LST based on the good quality, using
data from 2014 over the study area. Images from two days were
selected to demonstrate the capabilities of RSDAST as it would be
applied in practice (Figs. 10 and 11). The reconstructed LST greatly
increased the available pixels. Especially for DOY 190, there are too few
valid pixels left in the original LST image (Fig. 11a) to be applied in any
monitoring applications. The reconstructed LST (Fig. 11b) gap filled
most of the area and has a similar spatial pattern with NDVI (Fig. 11c).
The mainly terrain features were also correctly reconstructed by the
model. The mountain area in the southwest, Guanzhong Plain in the
east, and the Qinghai Lake could all be recognized clearly.

It is difficult to validate the reconstructed LST in the gap area, since
the reconstructed LST value is not the real LST which can be measured.
Given the fact that a triangle feature space would be formed by the

Fig. 8. Original (a, c, e) and reconstructed MODIS LST (b, d, f) for the plain area on DOY 86 of 2000, DOY 196 of 2001 and DOY 151 of 2002.

L. Sun et al. Computers & Geosciences 105 (2017) 10–20

16



scatter plots between LST and NDVI images over an area under clear
sky (Sandholt et al., 2002; Sun et al., 2012), the reasonableness of the
reconstructed LST spatial pattern could be checked by the pattern of
the triangle feature space. To avoid the effect of terrain on LST, the area
confined by the white box in Figs. 10 and 11 was selected to develop
scatter plots shown in panels (d) and (e). For DOY 172 as Fig. 10
shown, the scatter plots from the reconstructed LST forms a much
better triangle space than the scatter plots from the original LST.
Furthermore, in the triangle space, the points from the reconstructed
pixels correspond very well with the original points. This indicates that
the LST is mainly controlled by soil moisture, and that the recon-
structed LST is under the same clear sky conditions as the original LST.
For DOY 190 as Fig. 11 shown, there is no pixels in the confined area
from original LST, whereas the scatter plots from the reconstructed

LST formed a clearly triangle space. The points with low LST and high
NDVI on the right side of the triangle space correspond to the Ningxia
Plain, which is dominated by irrigated crops in the middlewest of the
confined box, indicating a reasonable spatial distribution of recon-
structed LST. However, a small fraction of unfilled pixels remain in
each of the two reconstructed images (Figs. 10b and 11b) due to a lack
of valid central pixels from the nearest 8 days.

5. Discussion

Comparing to other gap-filling methods (Metz et al., 2014; Neteler,
2010; Xu and Shen, 2013), RSDAST is more flexible in using ancillary
LST images from nearby days. No other climate variable inputs are
required, such as solar radiation and temperature, the spatial distribu-

Fig. 9. Original (a, c, e) and reconstructed LST (b, d, f) for mountain area on DOY 105 of 2001, DOY 318 of 2001 and DOY 274 of 2002.
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Fig. 10. MODIS original LST (a), reconstructed LST (b), NDVI (c), scatterplots between NDVI and original LST (d), and scatterplots between NDVI and reconstructed LST (e) on DOY
172 of 2014.

Fig. 11. MODIS original LST (a), reconstructed LST (b), NDVI (c), and scatterplots between NDVI and reconstructed LST (d) on DOY 190 of 2014.
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tion of which are difficult to ascertain. The principle of RSDAST is
conceptually simple and a major strength is the use of both spatial and
temporal information from valid clear pixels close to the gaps.
Meanwhile, the LST Difference of Pixel Pair is used to find the most
appropriate and relevant pixels, which promotes spatial and temporal
continuity within the filled results. There is a great potential to use
RSDAST to generate spatially and temporally continuous soil moisture
conditions and then evapotranspiration mapping (Sun et al., 2012,
2013). In this study, RSDAST showed good performance when applied
to MODIS LST products. The approach may be also extended to other
sensors, such as NOAA-AVHRR and VIIRS, because the model only
requires LST as inputs. However, several factors need to be considered
when applying the approach to other areas or sensors.

5.1. Cloud effects

The MODIS cloud mask algorithm uses a series of visible and
infrared threshold tests to determine the confidence in which the
satellite's view of the Earth's surface is unobstructed by clouds. If
clouds are present, then LST data will not be available for the location
(http://modis-atmos.gsfc.nasa.gov/). However, effects of cloud edges
such as cloud shadows have a very substantial impact on satellite land
products. They degrade the quality of clear-sky composite products and
may introduce systematic biases in long-term data records
(Khlopenkov and Trishchenko, 2007). Although only pixels flagged
by good quality were chosen to reconstruct, sometimes it also fails to
detect some serious cloud shadows (Luo et al., 2008). In our study, as
Fig. 6 shown, cloud effect could also be found on the edge of the cloud
mask. Apparently, this effect would bring errors in the model.

5.2. View time and view angle

Terra/MODIS overpass times vary and the exact image acquisition
time could be a little different every day. For example, the overpass
time of Terra at the crop site in this study varied from 10:00 to 12:00
(different swaths) even during an 8-day period. This may introduce

errors when the samples selected from the nearest 8 days are actually
observed at different times of day, even over only a hours. Another
possible source of error is differences in view angle. View angles in the
MODIS LST product over an 8-day period can vary within ± 55°. Wan
et al. (2002) has pointed out that 1-km MODIS LST is underestimated
by −1.6 to −3.1 K at different viewing angles under different atmo-
spheric conditions. In addition to angular effects, the size of pixel's
footprint varies from nadir to off-nadir view. The footprint of 1-km
resolution pixel may not same within the reconstruction period, which
will introduce some uncertainties in the reconstructed LST.

5.3. Reconstruction distance

If only the original valid pixels are used as samples to reconstruct
LST, this can limit the number of pixels that are reconstructed
successfully. In order to reconstruct as many LST pixels as possible,
the reconstructed pixels are also used as valid samples in the search
window for nearby pixels. For an area with large gap, the quality of
samples based on the reconstructed pixels may not be as good as the
original retrievals, and the reconstructed image quality may reduce as
the filled distance from original valid pixels getting further. Fig. 12
shows the percentage map of the reconstructed pixels that were re-used
in the gap-filling for DOY 172 of 2014. The area corresponded to the
confined area in Fig. 10. The percentage map (bottom) shows that only
the edge of the gap area (about 10 pixels wide) from the original LST
map (top) was gap-filled by the original LST pixels, and the remaining
areas were gap-filled by the reconstructed pixels..

5.4. Potential improvements

A few potential modifications could be investigated to further
improve RSDAST performance. Over some scenes and conditions, if
may be acceptable to use a larger spatial window (9×9 was used here)
or a longer temporal window (8 days used here) to increase the sample
size of valid pixels used in the reconstruction, thereby increasing the
number of gap pixels that can be filled. For example, the TD time series

Fig. 12. The original LST (top) and the percentage of the reconstructed pixels used in the gap-filling at each pixel (bottom) on DOY 172 of 2014 (Corresponding to the confined area in
Fig. 10). The white in top figure represents missing/gap pixels. The white in bottom figure shows valid pixels that do not need to gap-fill.
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in Fig. 4 shows that TD has an almost constant value close to zero, so
may be reasonable to extend the temporal window and use a smaller
spatial window to search for valid pixel pairs. In Fig. 3, the TD variance
is larger in the mountain area than in the plain, and the TD variance
distribution is related with slope of the terrain. This means that the
error of prediction is larger in mountain area, as demonstrated by the
results from Section 4.2, so in this case it may be optimal to add more
information, for example related to the slope parameter.

6. Conclusions

Remotely sensed thermal infrared imagery is affected by cloud and
cloud shadows resulting in many invalid or missing LST values. In this
study, a new clear sky LST reconstruction method, RSDAST, was
developed based on the assumption that differences in LST between
nearby pixels are relatively stable during a short time period. Using
MODIS LST product, the method was applied in the northwest region
of China, including Shaanxi, Ningxia, Gansu, Qinghai province, where
the terrain is complicated. The reconstructed LST was evaluated using
clear conditions images by masking and then reconstructing valid LST
pixels. The reconstructed LST showed accuracy in flat areas with R2 of
0.72–0.89, bias of -−0.02–0.21 K, and RMSE of 0.92–1.16 K, and for
mountain areas with R2 of 0.81–0.89, bias of −0.35–−1.52 K, and
RMSE of 1.42–2.24 K.

Reconstructed LST over a plain landscape shows a better accuracy
than in mountainous area, which can be explained by the theoretical
assumption in the model. The algorithm yields no visible disconti-
nuities between the clear and gap-filled regions of the reconstructed
LST images. Spatial details such as the valley and ridge of the west
mountain area, the Guanzhong Plain, and the river system within the
plain, are preserved in the reconstructed images. In the reconstructed
LST and NDVI triangle space, points distributed reasonably and
correspond well to the soil moisture conditions. The model provides
an effective method for filling gaps in MODIS LST images for potential
spatiotemporally continuous mapping of drought.
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