
Computers & Geosciences 86 (2016) 83–91
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m
journal homepage: www.elsevier.com/locate/cageo
Case study
Rasterizing geological models for parallel finite difference simulation
using seismic simulation as an example

Björn Zehner a,n, Olaf Hellwig b, Maik Linke b, Ines Görz b, Stefan Buske b

a Federal Institute for Geosciences and Natural Resources (BGR), Wilhelmstraße 25-30, 13593 Berlin, Germany
b Institute of Geophysics and Geoscience Informatics, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 12, 09599 Freiberg, Germany
a r t i c l e i n f o

Article history:
Received 29 July 2015
Received in revised form
13 October 2015
Accepted 14 October 2015
Available online 22 October 2015

Keywords:
3D
Rasterization
Voxelization
Scan conversion
Seismic
Finite difference simulation
Parallel computation
x.doi.org/10.1016/j.cageo.2015.10.008
04/& 2015 Elsevier Ltd. All rights reserved.

esponding author. Fax: þ49 3036993100.
ail address: bjoern.zehner@bgr.de (B. Zehner)
a b s t r a c t

3D geological underground models are often presented by vector data, such as triangulated networks
representing boundaries of geological bodies and geological structures. Since models are to be used for
numerical simulations based on the finite difference method, they have to be converted into a re-
presentation discretizing the full volume of the model into hexahedral cells. Often the simulations re-
quire a high grid resolution and are done using parallel computing. The storage of such a high-resolution
raster model would require a large amount of storage space and it is difficult to create such a model using
the standard geomodelling packages. Since the raster representation is only required for the calculation,
but not for the geometry description, we present an algorithm and concept for rasterizing geological
models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As
a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software
that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the
simulation with realistic and complicated surface-based geological models that are created using 3D
geomodelling software, instead of using a simplified representation of the geological subsurface using
mathematical functions or geometric primitives. We tested this set-up using an example model that we
provide along with the implemented library.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Simulations are increasingly an integral part of geoscientific
investigations. They are, for example, used for predicting fluid flow
in hydrogeology (Cheng et al., 2014; Nakajima, 2013) and reservoir
planning or for stress-field simulations. In geophysics, numerical
simulations reveal information about physical fields at places that
cannot easily be accessed for measurement and thus provide a
better understanding of the behaviour of the fields and the
structure of the subsurface. They have been performed, for ex-
ample, for electromagnetic modelling (e.g. Wang and Hohmann,
1993; Commer and Newman, 2004) and for developing under-
ground monitoring designs with electromagnetic measurement
methods (Börner et al., 2015). Seismic simulations (e.g. Bohlen,
2002; Virieux, 1984, 1986) help to describe and analyse the effects
of wave propagation in very complex geological settings and allow
virtual seismic sources and receivers to be placed practically ev-
erywhere within the model. This is, among other things, a simple
and inexpensive way to plan optimized acquisition geometries for
.

real seismic measurements that focus, for example, on the illu-
mination of certain geological structures.

If the simulation is to yield detailed and meaningful results, the
modelling domain has to contain all available information about
the volume of interest to the best knowledge of geoscientists. This
includes petrophysical parameters and a detailed description of
the natural and irregular geometry of geological bodies. The
geology is usually described by boundary surfaces between these
bodies which are represented by irregular triangulated networks
(see top left of Fig. 1 for an example). If a set of boundary surfaces
confines the volume of a body, this is called a boundary re-
presentation, and is described as watertight when boundary sur-
faces are composed of a conformable triangle mesh without holes
and overlaps. In this way we can describe complex geometries
with a low amount of memory, since the volume of the body has
not been discretized (see top right of Fig. 1).

If numerical simulations are to be performed, systems of partial
differential equations have to be solved. This is usually done by
way of an approximation for points or cells in the modelling do-
main. A common method is the finite difference method, which
replaces the partial derivatives in these equations with finite dif-
ference expressions and most of the work cited above has been
done using this method. Finite differences can be easily
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Fig. 1. Four different representations of our example model, a salt dome. Top left: a triangulated representation as is often generated by geologists using standard software.
Top right: exploded view of the same model converted to a watertight boundary representation as is needed as input for our rasterizer. Bottom left: rasterized representation
using hexahedral cells, as is used by finite difference codes. Bottom right: same as bottom left but for parallelized codes – boxes with grey edges indicate the subdomains for
the different processors.
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implemented for grids of constant step width with a regular
simple topology which can be described by the origin's co-
ordinates, the number of cells and the step width in each di-
mension. The resulting rectangular hexahedral meshes are used to
discretize the domain into cells to which the physical parameters
and rock properties are assigned (bottom left of Fig. 1). These types
of grid are also advantageous for the use with geostatistics (e.g.
Deutsch and Journel, 1998; Yarus and Chambers, 1994; Schaeben,
2014). These grid-based volumetric representations have to be
generated from the 3D subsurface models that are represented by
triangle meshes.

Many of the common software packages for 3D geological
modelling already provide the necessary workflows for generating
hexahedral grids. Within Paradigm's software Skua-Gocad (Mallet,
2002, 2008, 2014) and Schlumberger's Petrel software, hexahedral
grids could be adapted to the geological peculiarities by distorting
the cells geometrically while preserving the topology. Further
Skua-Gocad permits the resampling of data onto a regular rec-
tangular grid, a so-called Voxet. Marschallinger et al. (2015) in-
troduced a visual LISP program that makes use of AutoCAD func-
tions to voxelize AutoCAD solid models. Watson et al. (2015) in-
troduced a plugin for the Software GSI3D to generate 3D grids
from triangular irregular networks.

If the simulation requires a high spatial resolution, for example,
to ensure a certain spatial sampling of the physical fields in order
to avoid grid dispersion effects, or because the simulation result is
required for this resolution, the grids can become very large. A
seismic simulation, for example, that requires a grid with
4000�4000�2000 cells using 1 Byte per cell as identifier for the
stratigraphic unit, would already need approximately 30 GByte of
memory or disc space. When physical properties with floating
point precision (4 Byte) are involved, 120 GByte of memory are
required for each property. Storing seismic P and S wave velocities
and the mass density would therefore already require 360 GByte.
Apart from these memory requirements, the generation of grids
with this size also becomes difficult, if not impossible, using the
common commercial software packages for 3D geological
modelling.

Simulations that require such a large number of cells are
usually implemented as parallelized codes which can utilize sev-
eral hundred processors per run. This is, for example, the case for
the software FD3D which is used for simulating seismic wave
propagation and has been developed by the seismic working
group at TU Bergakademie Freiberg. So far, due to the paralleli-
zation, this software could only be used to run simulations on
simple synthetic subsurface models which could be described as
simple functions of the x-, y- and z-coordinates. Examples were
layer cake models where the layer boundaries could be described
as simple planes in space by using trigonometric functions. In
order to be able to simulate the seismic wave field for more
complex geological 3D models, it would be desirable to use more
complex polygonal models that have been generated using stan-
dard 3D geomodelling software.

The parallelization of the software FD3D is done by domain
decomposition, which breaks down the volume that is to be si-
mulated into several sub-volumes. Each sub-volume is simulated
on its own processor (see bottom right of Fig. 1). The exchange of
information between the sub-volumes is realized using the Mes-
sage Passing Interface (MPI). The parallelization solves the pro-
blem of calculation on large grids, but not of generating and
storing these grids. Therefore, we describe the geology by using a
watertight boundary representation where each geological body is



Fig. 3. Search strategy for finding the triangles which potentially contain a point,
using two interval trees which store the x- and y-intervals of the triangle's
bounding box. If we search for the triangle that contains the point P, we do a
stabbing query with the x-coordinate for finding the corresponding x-intervals
(vertical black line). In this step the triangles 4–7 are marked. In the second step we
do a stabbing query with the y-coordinate of the point (horizontal black line). This
would deliver the triangles 2, 3, 5, 7 and 9 but only the triangles 5 and 7 have been
marked before. So only the triangles 5 and 7 are potential candidates and must be
processed further.

B. Zehner et al. / Computers & Geosciences 86 (2016) 83–91 85
represented by a closed surface made of triangles. Neighbouring
bodies have an identical triangulation at their interfaces, so that
there are no overlaps or gaps in between. If the geological model
consists of different formations with homogeneous elastic prop-
erties for each formation, the boundary representation requires
much less memory than a highly resolved 3D grid that fulfills the
requirements of the simulation. Instead of creating a 3D grid of the
whole simulation domain beforehand and reading it on startup,
the boundary representation is read by each process and the vo-
lumetric model in the form of a hexahedral grid is created and
parameterized on the fly for its respective subdomain of the si-
mulation only, using a rasterizer library that we have implemented
in Cþþ and integrated into our seismic simulation software. As an
important target, we have implemented the rasterizer library in a
general way, so that it could deal with complicated models, such
as salt domes, overturned folds and faults. However, as a trade-off
it makes high demands regarding the input model.

In this paper we first explain how this Cþþ library works, how
it is implemented, and how it can be used from Cþþ and ANSI-C
programs. Then we explain how the necessary input models can
be generated. As an example, we have generated the 3D model of a
salt dome shown in Fig. 1 for testing our code and we provide this
model along with this paper and the source code for test purposes.
Finally the seismic simulation for this model is explained in more
detail and some simulation results are given.
2. Rasterizing

Our rasterizer library uses an adapted version of the Ray
Shooting Algorithm as it has been, for example, described by
Laszlo (1996). A point is classified as being inside a closed polygon
if the number of intersections of a ray emanating from this point
with the segments of the polygon is an uneven number (see Fig. 2).
This approach can be easily extended to the 3D case by evaluating
if the ray intersects an even or uneven number of triangles. This
requires the triangulation to represent a watertight boundary re-
presentation of a volume, where each geological object is de-
scribed by a polyhedron, such that common boundaries are du-
plicated. In our sample implementation we shoot the ray in the
positive z-direction, as this is ideal for accelerating the algorithm if
the geological strata are mainly oriented horizontally. This shoot-
ing direction is also assumed in the following discussions.

It is clear that checking if the ray intersects a particular triangle
or not cannot be done for each triangle if the algorithm is sup-
posed to run sufficiently fast. Instead we restrict this test to the
few triangles for which a hit is likely to occur. We do this with the
help of interval trees, which are described in De Berg et al. (1997).
Fig. 2. Illustration of the Ray Shooting Method in the 2D case (left) and the 3D counterpa
bounding polygon is counted. If this number is zero or even, the point is outside the p
references to color in this figure caption, the reader is referred to the web version of th
For each triangle, we store the x- and y-intervals of the axis-
aligned bounding box in two interval trees (one for each axis),
together with a pointer to the triangle. Interval trees constitute an
efficient data structure for executing a so-called stabbing query:
finding the intervals within a set of intervals that contain a certain
value. As a first step, all triangles are marked for which the x-in-
terval of the bounding box contains the x-value of the point. In the
second step all triangles are identified where the y-interval of the
bounding box contains the y-value of the point and, if these are
already marked, they are reported (see Fig. 3). Only for these tri-
angles is the intersection test with the ray performed by calcu-
lating the barycentric coordinates of the point in the triangle
projected onto the xy-plane. All three barycentric coordinates
should be in the range of 0–1 and their sum should be equal to 1,
otherwise the point lies outside the triangle. If it is inside, we
linearly interpolate the z-value of the triangle at the xy-position of
the point. If this z-value is larger than the z-value of the point, we
have an intersection with the ray shot from the point in the po-
sitive z-direction.

The performance for a stabbing query in an interval tree is
n n klog( ) +⁎ where k is the number of reported intervals (De Berg
et al., 1997). In our case the number of k can be quite high for the
rt. A ray is shot in the positive z-direction and the number of intersections with the
olygon (red points), otherwise it is inside (green points). (For interpretation of the
is paper.)
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stabbing query made in the first step. For this reason we im-
plemented a partitioning of the domain into several subdomains
for which the interval trees are generated individually.
3. Implementation

The library consists of the three Cþþ classes Model3DRasterer,
Model3DRastererBRMesh and TwoDIntervallTree which are im-
plemented as templates, the class Model3DRastererDouble, which
binds them to double precision as type, and an ANSI-C wrapper
that allows for linking the library to ANSI-C programs (see Fig. 4).
The main functionality, deciding if a given point lies within a vo-
lume, is implemented in Model3DRastererBRMesh. An object of
this class is created for each boundary representation of a geolo-
gical unit. Methods are provided to read the mesh from a file and
insert the triangles into search structures. Further a subdomain,
projected onto the xy-plane, may be defined, so that not all tri-
angles need to be used. If a query is executed to verify if a given
point lies within the volume that is defined by the boundary re-
presentation, the following steps are executed (it is assumed that
the ray is shot in the positive z-direction):

1. Is the point above or beside the bounding box of the unit? If yes,
return FALSE.

2. Use the interval trees and find all triangles which, due to their
bounding box, are potential candidates for intersection.

3. For each triangle:
(a) Check if the largest z-coordinate of the triangle is smaller

than the z-coordinate of the point. If it is, dismiss the triangle.
(b) Determine the barycentric coordinates of the point within the

triangles system projected onto the xy-plane. If any one of
them is smaller than zero or their sum is not equal to 1,
dismiss the triangle, as the point lies outside of the triangle.

(c) Determine the z-value of the triangle at the point's position,
using the barycentric coordinates. If this z-value is higher
than the point's z-value, the triangle is intersected and
counted.

4. If the number of intersected triangles is even, return FALSE,
otherwise return TRUE.

The class Model3DRasterer is a container class that contains
several objects of type Model3DRastererBRMesh and manages
Fig. 4. Class diagram of the rasterizer library showing the main classes. Some further c
namespaces.
them. It provides the interface for the user of the library and
executes the query within which volume a certain point lies with
help of the objects it manages. If a point is queried, it is initially
assumed that the points that are tested sequentially are close to
each other and so belong potentially to the same stratigraphic
unit. For this reason the Model3DRasterer keeps track of within
which unit the last point was lying and tests this unit first. If this
test is not successful, it tests the unit with the next larger ID, then
the one with the next lower ID and so on. So, for performance
reasons, the IDs should be assigned sequentially to the layers for a
flat lying layer cake model and sampling on a grid should be done
in xy-layers.

The Cþþ library is written as a template which, in our case,
uses double precision as type. Many algorithms in computational
geometry are not fully stable with this data type, as numerical
errors can occur and the tests of whether, for example, two points
are the same or if a point lies on a line or in a triangle, can be
unreliable. However, the likelihood that a given point is classified
incorrectly is very low – we ran a test with 62.5 million cells and it
did not occur. Furthermore it would be possible to lower this
likelihood substantially by shooting the ray in several directions,
for example, additionally in the positive x-direction and the po-
sitive y-direction. Moreover it is possible to perform some addi-
tional checks on the generated grid, such as comparing each cell
with its neighbours.

One solution for the numerical problem just described would
be to use fractions instead of double precision because compar-
isons would only involve integer numbers in this case, which is
numerically stable. The implementation as a Cþþ template allows
the change to this data type to be made. However, optimally this
would involve further adaptations of the code. Furthermore the
input model would need to be adapted, so that the points only
contain coordinates that could be represented by integer numbers
or fractions.

For debugging purposes, the library also implements the out-
put of the boundary representation in the file format of the Vi-
sualization Toolkit (Schroeder et al., 1996). Furthermore the ex-
ample code shows how the results could be written to a file in the
same format as points. For the visualization of the model and the
rasterizing results, the open source software Paraview (www.
paraview.org) can be used. For an example see Fig. 5.

The library for rasterizing is integrated into the seismic simu-
lation code with an ANSI-C wrapper. On start up, each process
lasses, for example defining points and triangles, are defined within these classes'

http://www.paraview.org
http://www.paraview.org


Fig. 5. Rasterized model of the synthetic salt dome. The points represent the centre
of the cells.
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reads the surface representation of the model and a table with the
rock properties for each geological unit. It then determines for
which part of the simulation domain it is responsible and allocates
the grid for this subdomain. The process then determines for each
grid cell to which geological unit the cell belongs and sets the
physical attributes to appropriate values.
4. Input model generation and example models

In order to guarantee that even complex and complicated un-
derground models can be discretized in a reliable manner, the li-
brary requires as input a boundary representation model of the
subsurface where each subdomain or geological body is defined by
a watertight triangle mesh as is shown in the top right of Fig. 1.
This model must be created from the type of representation in
which geological models are often produced by geologists (shown
Fig. 6. The workflows for generating the input model for the rasterizer are extension
workflows were aimed at generating tetrahedral input grids for finite element simulation
(For interpretation of the references to color in this figure caption, the reader is referre
in the top left of Fig. 1). Even if the rasterizer is less demanding
regarding the mesh quality of the boundary representation than is
the case for the generation of unstructured tetrahedral meshes for
finite element simulation, these input models require more effort
in terms of construction. Principally, different workflows describ-
ing how geological models produced in Skua-Gocad could be
prepared for the rasterizer have already been published in Zehner
(2011) and Zehner et al. (2015), but they need to be extended
slightly. Fig. 6 shows the extension-points in the Skua-Gocad
based workflows from Zehner et al. (2015) from where the input
models can be generated. See this paper for a more detailed dis-
cussion of the original workflows.

The first extension point is the use of the so-called Model3D,
which provides a triangulation of the full boundary representation
that is conformal at the contacts between different surfaces. The
triangulated surfaces that we need as input for the Cþþ library
can be gained from a Model3D using one of Skua-Gocad's standard
commands. The second and third extension points start with a
TSolid and can be applied, if a geological model has already been
provided by a volume discretized with a tetrahedral mesh (in
Skua-Gocad called a Solid). This already includes a watertight
boundary representation represented by facets of the tetrahedra.
The watertight boundary surfaces can be extracted from the
boundaries of the Solid's regions using one of Skua-Gocad's stan-
dard commands.

The model we use as an example and for test purposes is a
synthetic model of a salt dome and represents a salt diapir with its
deformed host rocks. Since the diapir has pierced the overlying
host rock, the model has a complicated topology with geological
bodies containing inner boundaries and it cannot be projected on
a plane. We have used the third extension point for its generation.
As a first step we have generated a Solid (tetrahedral mesh) and
then as a second step the boundary representation.

We have used the salt dome and loaded it into a simple pro-
gram that uses the rasterizer library in order to carry out a
s of the workflows that have been presented in Zehner et al. (2015). The initial
s. The red circles and arrows mark the three extension points referenced in the text.
d to the web version of this paper.)
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performance test. As its performance depends on the input model
(number of triangles and configuration of the triangles) we can
give only very rough estimates as an example. The synthetic salt
dome model consists of 7 units (bodies) whose boundary re-
presentations are defined by 110,000 triangles in total. On a
workstation with Intel Xeon E5 (3.1 GHz) processor the set-up of
the necessary data structures (e.g. the interval trees) needs 0.5 s.
Rasterizing this on a grid with 50�50�40 cells, which means
100,000 cells, as is shown in Fig. 5, requires 1 s. Rasterizing it with
120�120�80 cells (1,152,000 cells) requires 11 s.
5. Finite difference simulation of seismic wave propagation

The program FD3D uses a finite difference time domain ap-
proach to solve the seismic wave equation which, in our case, is
based on the velocity–stress formulation (Eqs. (1) and (2)). It is a
system of first order partial differential equations that connects
the stress tensor components sij and the components of the par-
ticle velocity ui̇ , where the first three equations of the system
represent the equation of motion and the following six equations
represent the constitutive equations for a linear, elastic and iso-
tropic medium. The wavefield components sij and ui̇ are functions
of space and time, whereas the material parameters vP (com-
pressional wave velocity), vS (shear wave velocity) and ρ (mass
density) are time-invariant. The second term on the right hand

side of Eq. (1) is a source termwith f f f fx y z
T

S
S S S→

= ( ) denoting a force

source, such as the force of a drop weight on the ground. pṠ in Eq.
(2) denotes a pressure rate as, for example, caused by an explosive
source or an airgun. The components of the particle velocity ui̇ are
the physical quantities that are measured by geophones. The
pressure p, which can be recorded by hydrophones in marine
seismics, can be obtained from the stress components according to
p /3xx yy zzσ σ σ= − ( + + ) . The solution of Eqs. (1) and (2) together
with appropriate initial and boundary conditions yields the full
elastic wavefield including body waves (compressional and shear
waves) as well as surface waves, for example, Rayleigh waves:
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The finite difference solution requires the discretization of the
partial differential equations. For this purpose we define the wa-
vefield components and material parameters on a 3D staggered
grid where xxσ , yyσ and szz are defined in the centre of the grid
cells, yzσ , xzσ and xyσ are defined on the edges and uẋ, uẏ as well as
uż are defined on the faces of the grid cells similar to the 2D
staggered grid presented by Virieux (1984, 1986). The staggered
grid scheme has the advantage that central finite difference op-
erators can be used to represent the derivatives with respect to
space and time without the need for wavefield interpolation. The
finite difference approximation of Eqs. (1) and (2) is then solved by
an explicit leapfrog time-stepping scheme using second order
accurate finite difference operators in space and time. This method
is conditionally stable (Courant et al., 1928). The time step width

tΔ is limited by the Courant–Friedrichs–Lewy criterion, which is
given by
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where xΔ , yΔ and zΔ are the grid spacings in x-, y- and z-direc-
tions. In order to avoid artificial dispersion of the seismic waves
propagating over the finite difference grid, it is furthermore ne-
cessary to ensure a sufficient sampling of the seismic wavelength.
Bohlen and Saenger (2006) propose resolving the shortest wave-
length of Rayleigh waves with at least 30 grid points. For an ac-
curate representation of body waves, about 15 grid cells are suf-
ficient. The shortest wavelength can be estimated as follows:
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assuming that the maximum frequency fmax of the seismic signal is
three times its centre frequency fC.

The seismic wave equation, as it is given by Eqs. (1) and (2), is
strictly speaking only valid for homogeneous media. It can be
applied to arbitrarily complex media, where the material proper-
ties vary from grid cell to grid cell, by appropriate averaging of the
material parameters that are needed for the update of the wave-
field components on the edges and faces of each grid cell (Moczo
et al., 2004). Together with the averaged material parameters, the
seismic wave equation fulfills the continuity conditions for the
stress and particle velocity components at the interfaces between
different media. Free surface boundary conditions are im-
plemented on the edges of the model grid, i.e. the components of
the normal stress vanish (e.g. 0xx xy xzσ σ σ= = = for a free surface
with its normal pointing into x-direction). In order to simulate
unbounded media, we apply Perfectly Matched Layers (PML) in
addition to the free surface boundary condition within a frame on
the edges of the model grid. The wave equation is modified within
the PML frame so that incident waves are attenuated and leave
practically no reflections at the model boundary (Drossaert and
Giannopoulos, 2007; Komatitsch and Martin, 2007).

In order to compute large 3D models in an acceptable amount
of time, our finite difference time domain scheme is parallelized
using a decomposition of the spatial finite difference grid into
subdomains of cuboidal shape. Each processing element solves the
finite difference equation for a single sub-grid. The wavefields
from the edges of the neighbouring sub-grids are stored in pad-
ding layers and exchanged between the processing elements at
every time step. The exchange between the neighbours is realized
by the Message Passing Interface (MPI) using persistent, non-
blocking MPI routines on an MPI Cartesian topology, i.e. only im-
mediate neighbours communicate with each other. The finite dif-
ference simulation yields synthetic seismograms at defined re-
ceiver positions and snapshots of the wavefield at certain points of
time. The memory required for the output is for most practical
cases by far less than the memory required for the material
parameters and the wavefield components during the simulation,
which is for this reason distributed on several CPUs. The snapshots
in particular often cover only a single slice or a limited part of the
simulation grid with a coarse sampling.

As a proof of concept and as a test for our system, we have used
it to simulate the wave propagation for 6 s in one of our example
models, the synthetic salt dome. The material parameters for this
model correspond to typical elastic parameters of rocks from a
simplified stratigraphic sequence in the North German Basin
(Schön, 1983) and are given in Table 1. The simulation was



Table 1
Elastic material properties.

Formation vP (m/s) vS (m/s) ρ (kg/m3)

Cretaceous 2600 1500 2400
Jurassic 2400 1390 2200
Keuper 2820 1630 2190
Muschelkalk 4560 2630 2600
Buntsandstein 4160 2400 2350
Zechstein salt 4500 2600 2090
Rotliegend 4800 2770 2650
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performed on a grid consisting of 1100�860�700 (662,200,000)
grid cells and splitting the domain into 5�5�5 subdomains, so
that we could use 125 processors for the simulation, each pro-
cessor being responsible for approximately 5.3 million cells. The
grid spacing for the simulation was x y z 10 mΔ = Δ = Δ = and the
width of the time step was t 1 msΔ = . The source excitation
function is a Ricker wavelet with a centre frequency of 5 Hz.
Running the simulation for a single shot on 125 CPUs (Westmere
EP X5670, 2.93 GHz, peak performance 20.25 TFlop/s) took ap-
proximately 48 min. A comparison with the numbers given at the
end of Section 5 shows that the time for rasterizing the model
(approx. 1 min) can be neglected. Fig. 7 illustrates the configura-
tion of the input model with the sources and receivers and the
simulation domain.

The simulated wavefield is recorded by 1001 geophones with a
spacing of 10 m along the yellow line in Fig. 7. The 100 sources are
distributed along the same line with a spacing of 100 m. The time
sampling of the seismogram traces is, at 2 ms, twice as long as the
time-stepping of the simulation. Fig. 8 shows a snapshot of the
simulated wavefield on a vertical section along the receiver line for
a single shot, approximately in the middle of this line, after 1.95 s
and the corresponding seismogram for the (virtual) geophones. A
movie, showing the development of the wavefield through time
and the corresponding seismogram, is provided with the electro-
nic version of this paper. The propagation of the wavefronts
through the medium can be observed by the help of the snapshots.
The waves are refracted and reflected at the layer interfaces.
Waves that arrive at the geophone positions appear as events in
the synthetic seismogram section. Thus the snapshots reveal in-
formation about the wavefield in the simulation where it is not, or
is hardly, accessible in real seismic field measurements, which
makes it easy to identify recorded events with complicated tra-
veltime curves in the seismogram section and understand their
Fig. 7. Configuration of the input for our simulation. (For interpretation of the referenc
paper.)
nature.
The synthetic seismic data from the simulation can be used to

test different acquisition geometries or different strategies for data
processing. They have the advantage that the result can always be
compared with the geological model that was used to simulate the
data. This provides an inexpensive means to evaluate and optimize
the acquisition or the data processing before the actual measure-
ment has taken place. In this context, a simple processing scheme
is applied to the traveltime-based seismogram sections from our
model in order to derive a seismic depth image, which can be
compared with the geological model. The processing of the syn-
thetic data before migration comprises only the application of a
time-dependent gain to correct the amplitude decay due to geo-
metrical spreading. Multiples, as for example the multiples be-
tween the surface and the top Muschelkalk reflector, have not
been removed from the data before Kirchhoff prestack depth mi-
gration. Only the energy of the direct wave and refracted waves
was muted. The resulting depth image can be loaded into our 3D
model. Fig. 9 shows a screenshot of the seismic structural model
and the seismic section. The main reflectors in the migrated sec-
tion, such as the top of the salt structure, the top Muschelkalk and
the base of the Zechstein salt, appear at their true position in the
model.
6. Discussion and conclusion

We have shown an algorithm and solution for how triangulated
surface-based geological models can be used for parallel finite
difference simulation on large grids using computer clusters,
without having to generate a memory-consuming volumetric re-
presentation for the whole domain beforehand. The drawback of
our method is that the approach makes heavy demands on the
input model: it requires a watertight boundary representation that
partitions the volume of interest by surfaces completely confining
all geological objects without holes and overlaps. However, we
also show how these models can be generated using Paradigm's
Skua-Gocad software. The advantage of the method presented
here is that it can be applied to complicated geological models,
such as faulted, folded and overturned units, duplicated units and
bodies with internal boundaries. The rasterizer itself can be ap-
plied for sampling onto any type of grid, such as tetrahedral grids,
distorted structured grids or on grids represented by cylindrical or
spherical coordinates. Our implementation of the rasterizer is
es to color in this figure caption, the reader is referred to the web version of this



Fig. 8. Top: simulated wavefield for a single shot after 1.95 s extracted along a
vertical plane situated along the yellow line in Fig. 7. Bottom: the corresponding
seismogram.

Fig. 9. Simulated and subsequently depth-migrated seismic section blended into the
Muschelkalk and the base of the Zechstein salt as main reflectors coincide with the cor
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relatively lightweight, consisting of only four classes and so it is
easy to integrate it into other software and other platforms. Fur-
ther it can be used from ANSI-C and from Cþþ .

Together with the work described in Zehner et al. (2015), the
rasterizer library allows for an integrated approach by using the same
3D geological boundary representation model for generating the in-
put for different simulation techniques. In this way the same model
can be used easily first for seismic simulation with finite differences
and subsequently for corresponding simulations with finite elements.
This will be supported by the flexibility of the rasterizer to adapt to
the requirements of different simulation software in terms of cell
geometry. For example, FD3D requires that the grids are structured
Cartesian grids in order to be able to generate the grids for each
subdomain on the fly on the corresponding processor. They cannot be
irregularly distorted, but an irregular spacing is possible as it is
common practice with finite difference simulations to make the grid
more densely spaced in regions of interest. Despite our library initially
being specifically tailored to use in FD3D, it is not limited to it and can
be generally applied. It could, for example, also be used for writing
code that generates input models for non-parallel finite difference
simulators, such as SHEMAT (Clauser, 2003), MT3D (Zheng, 1990) or
Modflow (Harbaugh, 2005). However, only in the case that the re-
quired grids are Cartesianwith regular grid spacing do faster solutions
exist which are related to scan-conversion of the geometries (see
Kaufman and Shimony, 1989 for an overview on algorithms) and can
even be further enhanced by using the depth buffer (Karabassi et al.,
1999) or modern graphics hardware (e.g. Dong et al., 2004).

Our algorithm is based on ray-tracing and the performance of
the rasterizer library could be enhanced by making use of modern
graphics hardware (e.g. Purcell et al., 2002). However, in our case
the performance of the rasterizer was not an issue and further-
more the individual node-boards of parallel compute systems with
hundreds of processors, including the one we use, often do not
have programmable graphics boards and so this was not an option
for us. Possibly, as also the simulation could be run on graphics
hardware (e.g. Rubio et al., 2014), it would then be favourable to
reimplement the whole system. Some options that could possibly
improve our solution in the future would be to use CGAL's AABB-
Tree package (CGAL, 2014) which provides the functionality im-
plemented in our Model3DRastererBRMesh class in a more general
and possibly more robust way, but then each time the whole CGAL
library would need to be present on the system. Further our so-
lution could be easily enhanced by using OpenMP or threads when
multi-core systems are used.

As a next step, we plan to apply the system to a real-world
underground model in order to simulate seismic wavefields in a
petrothermal reservoir in Schneeberg, Saxony (Germany). A high-
3D structural model. The image of the layer interfaces Jurassic-top salt, Jurassic–
responding layer interfaces in the geological model.
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resolution 3D seismic survey was carried out at this site in late
2012 with the aim of identifying and characterizing structures that
indicate the presence of a petrothermal reservoir (Hloušek et al.,
2015). The geological information is gathered in the complex
geometry of a 3D model and will be included in seismic simula-
tions. The comparison of the simulated wavefields with the ac-
quired real data will provide additional help with data inter-
pretation, in particular for revealing the nature of geological
structures in the target depth for petrothermal usage.
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