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Cross-spectral analysis is commonly used in climate research to identify joint variability between two
variables and to assess the phase (lead/lag) between them. Here we present a Fortran 90 program
(REDFIT-X) that is specially developed to perform cross-spectral analysis of unevenly spaced paleocli-
mate time series. The data properties of climate time series that are necessary to take into account are for
example data spacing (unequal time scales and/or uneven spacing between time points) and the per-
sistence in the data. Lomb–Scargle Fourier transform is used for the cross-spectral analyses between two
time series with unequal and/or uneven time scale and the persistence in the data is taken into account
when estimating the uncertainty associated with cross-spectral estimates. We use a Monte Carlo ap-
proach to estimate the uncertainty associated with coherency and phase. False-alarm level is estimated
from empirical distribution of coherency estimates and confidence intervals for the phase angle are
formed from the empirical distribution of the phase estimates. The method is validated by comparing the
Monte Carlo uncertainty estimates with the traditionally used measures. Examples are given where the
method is applied to paleoceanographic time series.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cross-spectral analysis is often used to estimate the relation-
ship between two time series as a function of frequency. Of par-
ticular importance are the coherency and phase spectrum. Co-
herency is a dimensionless measure on how well two time series
co-vary at different frequencies while the phase spectrum shows if
the variations happen synchronously at each frequency or if there
is a phase difference between them. Cross-spectral analysis is used
in climate research to identify joint variability between two vari-
ables and to assess the phase (lead/lag) between them.

Paleoclimate proxy time series come from various archives
such as marine sediments, ice caps, lake sediments, speleothems,
tree rings or corals. Usually the sampling is carried out at constant
length intervals and then transferred into the time domain, either
by direct dating, or by aligning with other dated time series. Most
cross-spectral analysis methods require that the two time series
are sampled at identical times and have constant spacing between
time points (evenly spaced). This is rarely the case with paleocli-
mate time series as the archives do normally not accumulate at
eckenbeck, 37581 Bad Gan-

om (K. Björg Ólafsdóttir).
constant rate, which makes in many cases some kind of inter-
polation necessary prior to the analysis. Unfortunately, interpola-
tion can bias the spectral results substantially as the spectral
power may be shifted from higher to lower frequencies, that is, the
spectrum becomes redder (Schulz and Stattegger, 1997). The in-
terpolation can be avoided by estimating the spectrum directly
from unevenly spaced time series with the Lomb–Scargle Fourier
transform (Lomb, 1976; Scargle, 1982) as done for example in the
computer programs by Schulz and Stattegger (1997), Schulz and
Mudelsee (2002) and Pardo-Igúzquiza and Rodríguez-Tovar
(2012).

Generally, climate time series include persistence (serial cor-
relation) or memory as there is natural inertia in the climate
system. Due to the persistence, the spectra of climate time series
are characterized by greater amplitude values at lower frequencies
(red noise). To distinguish the signals (spectral peaks) in the
spectrum of climate time series from background variability they
need to be tested against red noise. First-order autoregressive or
AR(1) process can be used to model the climate noise (Hassel-
mann, 1976). The model is normally fitted to the observed time
series and the estimated AR(1) parameter is used to form the red
noise spectrum (Allen and Smith, 1996). In REDFIT (Schulz and
Mudelsee, 2002), the AR(1) parameter is estimated directly from
the unevenly spaced time series, so there is no need to interpolate
the time series, which can bias the estimated value. The estimated
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AR(1) parameter is used to form a theoretical AR(1) spectrum and
false-alarm level for testing the significance of spectral peaks via
the χ2 distribution. In addition Monte Carlo simulations can be
used, where a large number of red noise processes are generated
with the same estimated AR(1) parameter, to form false-alarm
level as percentiles of the Monte Carlo ensemble (Schulz and
Mudelsee, 2002).

The REDFIT program can only be used for univariate spectral
analysis or the autospectrum. Given the need for cross-spectral
analysis for unevenly spaced data where the significance is eval-
uated with Monte Carlo simulations, we present a computer pro-
gram REDFIT-X, in which cross-spectral analysis has been im-
plemented. Until now the computer program SPECTRUM (Schulz
and Stattegger, 1997) has been available for cross-spectral analysis
for unevenly spaced climate time series. However the significance
measurements in SPECTRUM do not allow for the persistence in-
cluded in paleoclimate time series. Therefore it is necessary to
combine the two approaches, to perform both auto- and cross-
spectral analysis with reliable uncertainty estimates.
2. Method

2.1. Cross-spectral analysis – background

2.1.1. Coherency and phase spectrum
The most important features of the cross-spectrum are coher-

ency spectrum and phase between the two signals. Coherency is
defined as:
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where Gxx(f) and Gyy(f) are the autospectra of the signals x(t) and y
(t) (with t being time), respectively and Gxy(f) is the cross-spec-
trum between them (e.g., Bendat and Piersol, 2010). It is a di-
mensionless measure that informs about the degree of linear re-
lationship between two time series, as a function of frequency (f).
Coherency is in the range from 0 (no relationship) to 1 (perfect
relationship) and can be thought of as a squared correlation
coefficient depending on frequency (von Storch and Zwiers, 2003).

Coherency is estimated as:
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where ^ ( )G fxx k and ^ ( )G fyy k are the estimated autospectra and ^ ( )G fxy k
is the estimated cross-spectrum of two weakly stationary time
series { ( ) ( )} =t i x i,x i

n
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x and { ( ) ( )} =t i y i,y i
n

1
y (nx and ny are numbers of

data points in each series) (e.g., Bendat and Piersol, 2010). The
frequency fk is in the range from the fundamental frequency
¯ = ( ¯)f nd1/ to the average Nyquist frequency = ( ¯)f d1/ 2Nyq , where n

is the number of data points and ¯ = [ ( ) − ( )] ( − )d t n t n1 / 1 is the
average spacing of the time series (Mudelsee, 2010). Apparently
when two time series do not have the same sampling points, the
average spacing ( ¯ ¯d d,x y) and the fundamental frequency (¯ ¯ )f f,x y for
each time series can differ. To ensure that the time series with the
lower resolution determines these variables, we use
¯ = ( ¯ ¯ )d d dmax ,xy x y , ¯ = (¯ ¯ )f f fmax ,xy x y and the average Nyquist fre-

quency is determined as = ( ¯ )f d1/ 2 xyNyq (Schulz and Stattegger,
1997).

The auto- and cross-spectra are estimated with the Lomb–
Scargle Fourier transform (Lomb, 1976; Scargle, 1982) in combi-
nation with the “Welch's Overlapped Segment Averaging” (WOSA)
procedure (Welch, 1967) as done in Schulz and Stattegger (1997).
The WOSA segmenting is used to smooth the estimated raw
spectrum and make it consistent (the raw spectrum is an incon-
sistent estimator as the variance does not decrease with increasing
data size). The time series of length nx and ny are split into a
number n50 of overlapping segments of length n x

seg and n y
seg (with

50% overlap)
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where = …i n1, , 50. A linear trend is subtracted from each seg-
ment to avoid possible artifacts at low frequencies (i.e., resulting
from periods, which exceed the segment length). Of course, in-
terpretation of the low-frequency part of a spectrum requires
sufficiently long segments. The segments are multiplied by a taper

( ) = …w j j n, 1, , seg (see different types of spectral windows in
Harris, 1978) to reduce spectral leakage and then Fourier trans-
formed
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where LS denotes the Lomb–Scargle Fourier transform (Lomb,
1976; Scargle, 1982). Finally the n50 segments are averaged to form
consistent auto- and cross-spectrum
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where n denotes the complex conjugate (Schulz and Stattegger,
1997).

The coherency estimate is biased, where the coherency be-
tween two uncoupled time series are expected to be greater than
zero (Benignus, 1969). We use the bias approximation from Bendat
and Piersol (2010) to form a bias-corrected coherency estimate
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where neff is the effective number of segments (defined in Section
2.1.2).

The phase spectrum is estimated as
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where ^ ( )Q fxy k and ^ ( )C fxy k are the real and imaginary parts of the

estimated cross-spectrum ^ ( )G fxy k , respectively (e.g., Bendat and
Piersol, 2010). We use the four-quadrant inverse tangent function
in Fortran (atan2), which returns the result in appropriate quad-
rant. Therefore the estimated phase angle falls in the range from
[�180°, 180°], where zero value means that the two time series
are in phase while non zero value means out of phase.
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2.1.2. Theoretical uncertainty measurements
A false-alarm level for estimated coherency has been derived

from the statistical distribution of coherency estimate, when true
coherency equals zero

α= − ( )( − )z 1 , 10xy
n2 1/ 1eff

where α is the significant level and neff is the effective number of
segments (cf. Carter, 1977; Koopmans, 1995). The statistical dis-
tribution of coherency estimate (Goodman, 1957) was derived
under the assumptions that the two signals are stationary Gaus-
sian random processes and the data segments are independent
(non-overlapping) (Carter, 1977). The overlapping segments are
known to reduce the bias and variance of the coherency estimate
(Carter et al., 1973), but it also introduces correlation between
segments and changes the statistical distribution of the coherency
estimate. Therefore it is necessary to use effective number of
segments ( )neff instead of the real number of segments (n50) to
calculate the false-alarm level for coherency. The effective number
of segments for 50% overlap is calculated according to Welch
(1967) as = ( + − )n n c c n/ 1 2 2 /eff 50 50

2
50
2

50 , where c50 is a constant
depending on the applied spectral window (Harris, 1978). The
estimated phase is approximately normally distributed and the
standard deviation of the phase estimate is used to form con-
fidence interval for the phase angle. The standard deviation (in
radians) is approximated as:
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(Bendat and Piersol, 2010). Uncertainties for phase values,

ϕ α σ ϕ^ ( ) ± ( )· [ ^ ( )]f z fxy k xy k , are derived from percentage points of the
normal distribution α( )z . Due to the dependency of the standard
deviation on coherency, the uncertainty for a phase angle can be
very large if coherency is close to zero. Accordingly the phase
should only be analysed at frequencies with significant coherency.
2.2. Monte Carlo procedure

2.2.1. Monte Carlo false-alarm level for coherency
We use a Monte Carlo simulation technique to approximate the

additional false-alarm level to detect whether there is significant
coherency between the two time series at a given frequency. The
Monte Carlo false-alarm level is formed from an empirical sam-
pling distribution of the coherency estimator. The sampling dis-
tribution is obtained by estimating coherency between many pairs
of uncoupled time series formed by Monte Carlo simulations,
which mimic key properties of the observed signals, such as au-
tocorrelation and time spacing. The detailed steps of the simula-
tions are as follows:

1. The persistence times τx and τy are estimated from the two
observed time series. They are estimated with the least-squares
algorithm TAUEST (Mudelsee, 2002), which fits a first-order
autoregressive or AR(1) persistence model to unevenly spaced
time series.

2. Monte Carlo simulation loop, repeated nsim times (where nsim is
the number of simulations, usually around 1000).
� Two uncoupled AR(1) processes rx and ry are generated as
{ }
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see Mudelsee (2010). We include the estimated τx and τy from
Step 1, sampling times ( ( ))t ix and ( ( ))t iy (unevenly or evenly
spaced) from each of the observed time series and unrelated set
of x and y for each process, which are purely random
processes drawn from normal distribution μ σ( )N , 2 , with zero
mean μ and unit variance s2. The variance of the innovation term

is set to, for example σ τ= − ( − [ ( ) − ( − )] )t i t i1 exp 2 1 /y y y
2 ,

to have the AR(1) process stationary with unit variance.
� The coherency ^ ( )c fr r k

2
x y between the two generated AR

(1) processes is estimated using Eq. (2).
3. The false-alarm level for ^′ ( )c fxy k

2
is determined as the α( − )n 1sim

th point of the empirical sampling distribution of the ^ ( )c fr r k
2
x y

estimates. This is done at all frequencies fk. Coherency values
above this false-alarm level can be taken as significantly dif-
ferent from zero at given significance level α.

2.2.2. Monte Carlo phase confidence interval
Monte Carlo confidence intervals for the phase are estimated at

frequencies fk where the coherency exceeds the false-alarm level.
The confidence interval is formed from the empirical distribution
of the phase estimates formed by Monte Carlo simulations. The
uncertainty in the phase angle depends on the coherency value
and effective number of segments neff , which means that we need
to generate two time series with prescribed coherency. The
method described in Carter et al. (1973) is used to generate two
white noise processes with prescribed coherency independent of
frequency (similar approaches are also found in Foster and Guinzy,
1967; Miles, 2011)

( ) = ( ) + ( ) = … ( )⁎ i i G i i n, 1, , , 14x x y

( ) = ( ) + ( ) = … ( )⁎ i i G i i n, 1, , , 15y y x

where x and y are unrelated random processes with normal
distribution, zero mean and unit variance and n is the number of
data points. G can be selected from ( ) = ( + )c f G G4 / 1xy k

2 2 2 2 for de-
sired value of c2xy (Carter et al., 1973). This contains a fourth-order
polynomial equation for the calculation of G, leading to

+ + − =c G c G c G2 4 0xy xy xy
2 4 2 2 2 2 , which has four solutions for G. Here

we use = − ( − ) + −G c c c2 1 / 2/ 1xy xy xy
2 2 2 to generate the coupled

time series. This method works only if the two time series have
identical time steps. Therefore to include both time scales, the
Monte Carlo simulation loop is performed twice. In the first round
the sample times { ( )} =t i i

n
1 are set equal to the times from the first

time series { ( )} =t ix i
n

1
x and the persistence time τ equal to τx. In the

second round the times are set equal to the times from second
time series { ( )} =t iy i

n
1

y and the persistence time equal to τy. Con-
fidence intervals are formed from the empirical distributions of
phase estimates for both cases and the mean value is taken for
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Fig. 1. Empirical distribution of coherency estimate at single frequency for four
different prescribed coherency values. White noise processes, =n 8.24eff , n¼300,

=n 10, 000sim . Black lines show the theoretical distributions (Eq. (18)).
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final result. The detailed steps of the simulations are the following:

1. For each frequency ( )fk with significant coherency a Monte Carlo
simulation loop is repeated nsim times with =n 1000sim :
� Two coupled AR(1) processes ⁎rx and ⁎ry are generated as

τ
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The white noise terms ⁎
x and

⁎
y are coupled with the method

explained above Eqs. (14) and (15), where the bias corrected

coherency estimate ^′ ( )c fxy k
2

is used to select appropriate G
value.

� The phase ϕ̂ ( )⁎ ⁎ fr r kx y
is estimated according to (Eq. (9)).

2. The estimated phase ϕ̂ ( )⁎ ⁎ fr r kx y
is centered around zero by sub-

tracting the average phase (average of ϕ̂ ( )⁎ ⁎ fr r kx y
over the nsim

simulations) from each phase value.
3. Confidence intervals for the phase are determined as

ϕ α^ ( ) + ( )⁎ ⁎ f 100r r kx y
th and ϕ α^ ( ) + ( − )⁎ ⁎ f 100 1 thr r kx y

percentage
point of the empirical distribution of the estimated phase values
ϕ̂ ( )⁎ ⁎ fr r kx y

.

The Monte Carlo simulation loop is performed twice for each
frequency with significant coherency, first with the time scale tx
and persistence time τx and second with the times ty and persis-
tence time τy. The phase confidence interval at given frequency
consists of the mean value from the two Monte Carlo simulation
loops.
3. Comparison of theoretical and Monte Carlo results

3.1. Coherency

We compare the empirical sample distribution of coherency
formed by the Monte Carlo simulations with the theoretical dis-
tribution of coherency estimate from Carter et al. (1973), as the
false-alarm levels for coherency are formed from these
distributions.

The Monte Carlo simulation loop in the program is used to form
the empirical distribution of coherency (see Section 2.2.1). In the
first example 10,000 pairs ( =n 10000sim ) of white noise processes
were generated, where { } =rx i

n
1

x and { } =ry i
n

1
y in Eqs. (12) and (13) are

set as Gaussian random processes x and y, with mean μ = 0 and
variance σ = 12 . The number of data points in the generated time
series is n¼300 and the two series have identical and evenly
spaced time points. Several experiments were done for different
predefined coherency value between the two processes, in-
dependent of frequency. The white noise processes were coupled
as in Eqs. (14) and (15), with four different prescribed coherency
values ∈ { }c 0.0, 0.3, 0.6, 0.9xy

2 . Welch window was used in the
spectral analysis, number of segments n50 was set to 10 which
gives =n 8.24eff . Histogram of the coherency estimates, from the
Monte Carlo simulations, for single frequency is compared with
the probability density function of the coherency estimate from
Carter et al. (1973),
( )
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Matlab code from Pearson (2009) was used to compute the hy-

pergeometric function ( − − ^ )F n n c c2 1 , 1 ; 1; xy xy1 eff eff
2 2

. It is clear
from Fig. 1 that we are able to reproduce the theoretical dis-
tribution of coherency estimate with the Monte Carlo simulations,
in the case of two evenly spaced white noise processes.

The false-alarm level (Eq. (10)) is used to test if the estimated
coherency values are different from zero, that is different from
estimated coherency between two independent processes. The
false-alarm level is derived from the probability function of the
coherency estimator when =c 0xy

2 , which can be written as

( )^ = = ( − ) − ^
( )

−⎛
⎝⎜

⎞
⎠⎟p c n c n c, 0 1 1

19xy xy xy

n2
eff

2
eff

2 2eff

(Carter, 1977). The estimated coherency between two completely
unrelated time series is expected to be greater than zero with the

expected value of [^ ∣ = ] =E c n c n, 0 1/xy xy
2

eff
2

eff (which is also the bias)
(Miles, 2006). This is correspondingly observed in the empirical
distribution from the simulations above. We can determine the
empirical bias for the estimated coherency by averaging

(^ ( ) − )c f cr r k xy
2 2
x y over the =n 10, 000sim simulations. The empirical



Fig. 2. As Fig. 1 but for red noise processes τ τ( = = )3.0, 5.0x y with uneven spacing.
=n 8.24eff , n¼300, =n 10, 000sim . Black lines show the theoretical distributions

(Eq. (18)).

Fig. 3. 95% false-alarm level for coherency plotted against effective number of
segments ( )neff . Grey line with triangle shows the theoretical false-alarm level, grey
dashed line shows Monte Carlo false-alarm level generated with white noise pro-
cesses, black line with diamonds shows Monte Carlo false-alarm level generated
with red noise processes ( τ = 3.0x , τ = 5.0y ). Number of simulations were 1000.
(a) Monte Carlo false-alarm level formed with evenly spaced time series, n¼300.
(b) Monte Carlo false-alarm level formed with unevenly spaced time series, n¼300.
(c) Monte Carlo false-alarm level formed with unevenly spaced time series with
unequal time-scale, =n 305x , =n 293y .

K. Björg Ólafsdóttir et al. / Computers & Geosciences 91 (2016) 11–18 15
bias for estimated coherency when =c 0xy
2 and =n 8.24eff equals

0.12 which agrees with the theoretical bias. The theoretical false-
alarm level is derived from the theoretical distribution of coher-
ency estimator when the true coherency is zero. There is no bias
correction done beforehand. According to that we do not correct
for bias in the coherency estimates formed in the Monte Carlo
loop, as it causes mismatch between the theoretical and Monte
Carlo false-alarm level (the false-alarm level estimated with the
Monte Carlo simulations would be lower than the false-alarm level
from Eq. (10)).

In the second example the same settings were used in the
spectral analysis but the generated processes were more complex.
Now we generated 10,000 pairs of unevenly spaced Gaussian AR
(1) processes. Several experiments were done with different pre-
defined coherency values. Two coupled AR(1) processes ⁎rx and ⁎ry

were generated as in Eqs. (16) and (17), where the τ values were
set as 3.0 for the first time series ⁎rx and as 5.0 for the second time
series ⁎ry. The number of data points in the time series is n¼300.
The two time series have the same sampling times but the time
scale is unevenly spaced. The uneven time spacing was drawn
from Gamma distribution and the average time spacing set to 1.0.
Fig. 2 shows the distribution of the coherency estimates at single
frequency with four different prescribed coherency values

∈ { }c 0.0, 0.3, 0.6, 0.9xy
2 . The figure shows that the empirical dis-
tribution explicitly agrees with the theoretical distribution (Eq.
(18)). Neither the persistence in the data nor the uneven spacing
seems to influence the distributional shape of the coherency



Fig. 5. Comparison between Monte Carlo phase confidence intervals and theore-
tical phase confidence intervals. (a) Coherency spectrum for two generated time
series with 95% Monte Carlo false-alarm level (the mean value over all frequencies).
(b) Phase spectrum with 95% confidence intervals estimated at frequencies with
significant coherency. Monte Carlo phase confidence intervals (black narrow error
bars) estimated with =n 1000sim , theoretical confidence intervals (grey thick error
bars).
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estimates.
To analyse this further and to see if the Monte Carlo false-alarm

level follows the theoretical false-alarm level for any number of
segments, we plot the Monte Carlo false-alarm level against ef-
fective number of segments. As the Monte Carlo false-alarm level
is more or less constant over all frequencies, we use the mean
value over all frequencies. This was done both for Monte Carlo
false-alarm levels formed with white noise and red noise pro-
cesses (τ τ= =3.0, 5.0x y ) and compared with the theoretical false-
alarm level for different numbers of segments (Fig. 3). The gen-
erated processes are either evenly spaced (Fig. 3a), unevenly
spaced on equal timescales (Fig. 3b) or unevenly spaced on un-
equal timescale (Fig. 3c). The results show again that there is
practically no difference between the Monte Carlo false-alarm le-
vels formed with white noise processes or red noise processes.
There is a small difference between false-alarm level formed with
the Monte Carlo simulations (generated with both white and red
noise processes) and the theoretical false-alarm level when the
number of segments is less than 7 ( =n 5.82eff ). The uneven spa-
cing does not have any influence but there seems to be a little bit
more mismatch between the theoretical and Monte Carlo false-
alarm level in case of unequal timescale. In this experiment we
used =n 1000sim . The results were identical if the number of si-
mulations were increased up to 10,000, which shows that there is
no reason to use more than 1000 simulations to form the Monte
Carlo false-alarm level.

3.2. Phase

The Monte Carlo phase confidence intervals are compared with
the theoretical phase confidence intervals. For the comparison we
generated two time series with identical periodicities and known
phase difference. The first time series consists of two sine waves
(frequencies =f 0.031 and =f 0.22 ; amplitudes: =A 1.01 and

=A 1.42 ; phase values ϕ = °01 and ϕ = °602 ). Additionally Gaussian
noise was added to the signal (variance σ = 1.02 ). The time scale is
unevenly spaced (drawn from Gamma distribution) with average
time spacing ¯ =d 1.0 year and number of data points n¼300. The
second time series consists of the same periodicities (frequencies

=f 0.031 and =f 0.022 ; amplitudes: =A 1.41 and =A 1.02 ; phase
values ϕ = °901 and ϕ = °02 ) plus Gaussian noise (variance
σ = 1.02 ). The time scale is evenly spaced with time spacing =d 1.0
year and number of data points n¼300. Coherency and phase
Fig. 4. Empirical distributions of phase estimates at single frequency with sig-
nificant coherency for two cases, white noise and red noise. The lines show normal
curves with estimated mean and standard deviation from the data (black dashed
line for white noise and grey line for red noise).
spectrum were estimated along with Monte Carlo and theoretical
phase confidence intervals. Welch window was used in the spec-
tral analysis and number of segments =n 750 ( = )n 5.82eff .

Histogram of the phase estimates, from the Monte Carlo si-
mulation loop (with =n 10, 000sim ), for single frequency with a
significant coherency is used to infer if the phase estimates follow
a normal distribution. In the first case white noise processes (τx
and τ = 0y ) were generated to form the empirical distribution of
the phase estimates, while in the second case red noise processes
(τ = 5.0x and τ = 3.0y ) were generated (Fig. 4). χ2-test was used to
test the null hypothesis at 5% significance level that the phase
estimates come from a normal distribution. The χ2-test statistics in
both cases are above the critical value, which means that the
sample distribution of the phase estimates are significantly dif-
ferent from a normal distribution. The color of the noise does not
influence the distributional shape of the phase estimates (Fig. 4).
The phase values are in general shifted along the x-axis when
persistence is included but that is corrected for in the REDFIT-X
program as the phase values are centered around zero by sub-
tracting the average phase value from the Monte Carlo ensemble
from each phase value.

Fig. 5 shows a comparison of the Monte Carlo phase confidence
intervals estimated with =n 1000sim and the theoretical phase
confidence intervals. It shows that the Monte Carlo phase con-
fidence intervals are slightly wider than the theoretical ones.
4. Application

As an example we applied the method to the same time series
used in the SPECTRUM paper (Schulz and Stattegger, 1997). The
first time series is the SPECMAP stack (oxygen isotope data, δ18O)
(Imbrie et al., 1984) and the second time series is a proxy record of
North-Atlantic sea-surface temperature (SST) (Ruddiman et al.,
1989). The example investigates the relation between global cli-
mate and regional SST changes at the Milankovitch periods of
Earth orbital variations. The intention is not to answer the un-
derlying climatological questions. But to allow comparison



Fig. 6. (a) SPECMAP oxygen isotope data (δ18O). (b) North Atlantic sea-surface
temperatures (SST).

Fig. 7. Estimated coherency and phase spectrum on the SPECMAP and SST time
series from Fig. 4. (a) Coherency spectrum, the grey line indicates 95% false-alarm
level (the mean value over all frequencies) formed with 1000 Monte Carlo simu-
lations. (b) Phase spectrum, 95% Monte Carlo confidence intervals were estimated
at frequencies where the coherency exceeds the false-alarm level.
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between the outcomes from the new program with the previous
SPECTRUM results. Therefore we used the identical age model as
in the previous paper, although this has now been revised (Lisiecki
and Raymo, 2005). The oxygen isotope time series is evenly
spaced, with time spacing¼2 ka and number of data points
n¼325 (Fig. 6a). The SST time series is unevenly spaced with
number of data points n¼322 and average spacing ¯ =d 2 ka
(Fig. 6b). The settings used in the cross-spectral analysis were the
same as used in the example in Schulz and Stattegger (1997), as
follows, number of segments =n 450 , Welch window, OFAC¼5 and
HIFAC¼1.0. The parameters OFAC and HIFAC are used to set the
frequency grid in the spectra. OFAC is the oversampling factor that
determines how many frequencies are investigated in the Lomb–
Scargle Fourier transform and HIFAC determines the highest fre-
quency to analyse in the Fourier transform or HIFAC n fNyq (Schulz
and Stattegger, 1997). The minimum values in the δ18O record are
expected to correlate with maxima in the SST record. Therefore the
sign of the δ18O record was changed prior to the analysis to pre-
vent an artificial offset in the phase by 180°. The coherency
spectrum indicated significant coherencies at frequencies 1/100
and −1/23 ka 1 (Fig. 7a). The Monte Carlo false-alarm level (α¼0.05)
was estimated with 1000 simulations. The phase spectrum
showed that the ice-volume minima lead SST maxima by

°[ − ° °]17 23.5 ; 57.1 ( = −f 1/99.26 kak
1) and °[ ° °]95 58.0 ; 131.1

( = −f 1/23.04 kak
1) (Fig. 7b). The confidence interval for the phase

was estimated with Monte Carlo simulations ( =n 1000sim ). The
results for the coherency spectrumwere in harmony with previous
results from Schulz and Stattegger (1997). The Monte Carlo false-
alarm level was slightly lower than the theoretical one, but there is
a small difference between them when the number of segments is
less than 7, as mentioned in the previous section. The confidence
interval for the phase angles was wider than in the previous paper
as the Monte Carlo phase confidence interval is in general wider
than the theoretical one. The seesaw shape of the phase spectrum
is due to the fact that the mean sampling time in the two time
series differs. This was discussed in Schulz and Stattegger (1997)
and in the SPECTRUM program there is an option to estimate
aligned phase spectrum to make it easier to measure the phase
angles from the phase spectrum plot. In the case of alignment, the
phase angles need to be corrected back, before interpreting the
results. For simplification, this alignment option is not included in
the new version of the program.
5. Discussion

Simulation approaches have been previously applied to estimate
false-alarm level for coherency. Pardo-Igúzquiza and Rodríguez-
Tovar (2012) use Monte Carlo simulations to form statistical sig-
nificance for coherency spectrum estimated via Lomb–Scargle
cross-periodogram. They use a permutation test which preserves
the distribution of the underlying data but they do not take into
account the persistence of the observed time series as they generate
white noise processes. Faes et al. (2004) define threshold value for
zero coherence with three different surrogate analysis type, where
the surrogates preserve either the distributional shape or the
spectral properties of the observed data. Huybers and Denton
(2008) analyse the significance of the coherency with Monte Carlo
simulation technique as well as confidence intervals for the phase,
but they do not consider unevenly spaced data.

We show that the Monte Carlo false-alarm level fits the theoretical
false-alarm, when using more than 6 segments. This is in agreement
with results from Gallet and Julien (2011), who modified the false-
alarm level equation (Eq. (10)) for 50% overlapping to take into account
the effect of overlapping segmenting. This is similar to what is done
here with the effective number of segments. The persistence of the
generated data in the Monte Carlo simulations does not influence ei-
ther the distributional shape of the coherency estimate or, conse-
quently, the false-alarm level for coherency. The color of the noise has
also little impact on significance level for wavelet coherence formed
with Monte Carlo simulations by Grinsted et al. (2004). Although there
is a little difference between the Monte Carlo false-alarm level and the
theoretical false-alarm level, we highly recommend the usage of the
Monte Carlo false-alarm level to add more confidence to the result. It
can be especially convenient when the method is applied on for ex-
ample noisy or strange data.

The Monte Carlo phase confidence intervals are slightly wider than
the theoretical confidence intervals used in SPECTRUM. The sample
distribution of the Monte Carlo phase estimates does not follow a
normal distribution. The phase estimates are known to be approxi-
mately normally distributed (Bloomfield, 2000). When the approx-
imation is good, variance is small, coherency is not small the
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theoretical confidence interval from SPECTRUM can be suitable. Han-
nan (1970) uses for example percentage point of the t distribution to
form confidence intervals for the phase angle as it is thought to give a
better approximation of the distribution of the phase estimates than
the normal distribution.
6. Conclusion

Here we present a computer program REDFIT-X that performs
cross-spectral analysis of unevenly spaced paleoclimate time ser-
ies. We use a Monte Carlo approach to estimate the uncertainty
associated with coherency and phase. The program is an updated
version of the existing programs REDFIT (Schulz and Mudelsee,
2002) and SPECTRUM (Schulz and Stattegger, 1997). Now both
auto- and cross-spectral analysis can be performed under the
same program where the significance measurements are esti-
mated with Monte Carlo simulation technique.

A comparison between the empirical sample distribution of co-
herency formed by the Monte Carlo simulations and the theoretical
distribution of coherency shows that we are able to reproduce the
theoretical distribution with the Monte Carlo simulations. The color of
the noise does not have large influence on the distribution or the false-
alarm level for coherency. The worked example demonstrates the
applicability of the method to real paleoclimate time series and allows
for exact comparison between the outcomes from the new program
with the previous SPECTRUM results. The Monte Carlo phase con-
fidence intervals are slightly wider than the theoretical confidence
intervals for phase used in SPECTRUM. The program is suitable for
unevenly spaced climate time series where the persistence of the data
is taken into account when estimating the uncertainty associated with
the coherency and phase estimates.
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