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A B S T R A C T

This paper describes a quasi-equal area subdivision algorithm based on equal area spherical subdivision to
obtain approximated solutions to the problem of uniform distribution of points on a 2-dimensional sphere,
better known as Smale's seventh problem. The algorithm provides quasi-equal area triangles, starting by
splitting the Platonic solids into subsequent spherical triangles of identical areas. The main feature of the
proposed algorithm is that the final adjacent triangles share common vertices that can be merged. It applies
reshaping to the final triangles in order to remove obtuse triangles. The proposed algorithm is fast and efficient
to generate a large number of points. Consequently, they are suitable for various applications requiring a large
number of distributed points. The proposed algorithm is then applied to two geographical data distributions
that are modeled by quasi-uniform distribution of weighted points.

1. Introduction

The problem of distributing N points uniformly over the surface of a
sphere has been investigated for many decades (Robinson, 1961;
Berman and Hanes, 1977; Mortari et al., 2011). This problem is one
of the most challenging mathematical problems of the century and it is
known as Smale's 7th problem (Smale, 1998). However, because of its
implications in many areas of mathematics and its immediate practical
applications in engineering, it has not only inspired mathematical
researchers but also attracted the attention in various fields such as
electrostatics, molecular structure, and crystallography (Saff and
Kuijlaars, 1997). The capability of uniformly distributing points on a
sphere has important theoretical consequences in old problems dating
back to Thomson (1904) and Tammes problem (Tammes, 1930) and
important applications such as survey sampling, optimization, dynamic
modeling and information storage, and display in engineering, allowing
the development of optimal algorithms (White, 2000; Mortari et al.,
2011).

Various algorithms have been developed for a small number of
points (Robinson, 1961; Berman and Hanes, 1977; Dragnev et al.,
2002). However, most of them use optimization techniques that are not
efficient for a large number of points. Other more modern algorithms,
such as Chan's Quadrilateralized Spherical Cube Map (QSCM) projec-
tion (1975 Navy report, now out-of-print), extensively analyzed in the
reference (O'Neill and Laubscher, 1976) and applied by Naval and

NASA programs, and the algorithm by Snyder (1992), which is based
on Platonic solids, are efficient and available. These methods all
generate a total number of points (N) proportional to the number of
faces of a Platonic solid; for instance, proportional to 6 (Cube or
Hexahedron) for the QSCM. Teanby (2006) suggested an icosahedron-
based method by subsequent quadrisection for evenly spaced binning
data. Massey (2012) presented a method of constructing equal area
triangles by repeatedly applying quadrisection to icosahedron and
iterative equalization.

In Lee and Mortari (2013b) the authors introduced the main
concepts developed in detail in this article. However, while Lee and
Mortari (2013b) verified the proposed algorithms with Monte Carlo
approach and the Smale's validation in the view of uniformity of
distributing points, in the current manuscript the verification is not
confined to the uniformity of distributing points, but to the subdivision
method.

In view of this, the subdivision approach is considered to develop
an algorithm to distribute a large number of points on the sphere. This
paper is organized as follows. The first section of this paper provides
the equations for the subdivision approach. Then, at the end of the
original equal area subdivision algorithm the subsequent quasi-equal
area final subdivision is provided. Finally, applications to geographical
data are presented.
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2. Subdivision approach

2.1. Splitting a spherical triangle in two equal area spherical
triangles

Consider the generic spherical triangle that is formed on the surface
of the unit sphere by three great circular arcs intersecting pairwise in
three vertices as shown in Fig. 1.

The area of a spherical triangle v v v[ , , ]A B C is obtained by

S A B C π= + + − (1)

where angles A, B, and C are the dihedral angles of the spherical
triangle (Bronshtein et al., 2007).

Let a be the largest side angle, v v a· = cosC B . The problem to solve
here is to find the point on the side a such that the two spherical
triangles identified by the unit-vectors, v v v[ , , ]A B D and v v v[ , , ]A C D , have
identical areas. Since the splitting point, vD, is co-planar to vC and vB, it
can be linearly expressed by the unit-vectors vC and vB as follows.

v v v
a

z a z= 1
sin

[ sin + sin( − )]D C B (2)

where z (see Fig. 1) is the side of the spherical triangle v v v[ , , ]A B D .
Now make use of x and y to denote the angles at the vertices of the

spherical triangle v v v[ , , ]A B D . The area of the spherical triangle
v v v[ , , ]A B D is

S x y B π S A B C π= + + − =
2

= + + −
21 (3)

then

x y D A C π B y D x+ = = + + −
2

and = −
(4)

where D is not a new variable but a known quantity. Applying the law
of cosines to the spherical triangle v v v[ , , ]A B D gives

y x B c x Bcos = sin sin cos − cos cos (5)

Then, using the angle difference identity and Eq. (4), we obtain

y D x D x x B c x Bcos = cos cos + sin sin = sin sin cos − cos cos (6)

and

x D B
B c D

x πtan = cos + cos
sin cos − sin

where 0 < <
2 (7)

Finally, using the law of sines, z y c xsin sin = sin sin , with the spherical
triangle v v v[ , , ]A B D

z x c
D x

sin = sin sin
sin( − ) (8)

is obtained and the vD can be computed using Eq. (2). The process can
then be repeated by always splitting the longest side of the spherical
triangles.

The idea of using spherical triangle splitting to generate points on a
sphere finds the most natural starting point from the perfect spherical
symmetry provided by Platonic solids. The parameters defining the five
Platonic solids are summarized in Table 1 (Zwillinger, 2002). Since
splitting a face into the number of edges with a center of face and
vertices generates identical smaller triangles, initial division depends
on shape of the face. Note that dual solids have same number of initial
faces. Platonic solids with most initial faces are the dodecahedron and
the icosahedron. For these solids the quasi-uniform distribution of
points can be created by initially splitting the i=60 faces into 5 and 3
equal area triangles, respectively.

The sides of a Platonic solid can be projected onto a sphere where
they form arcs. This “Platonic sphere” is the central projection of the
sides of the Platonic solid onto the surface of a unit-radius sphere. The
projection is on the Platonic solids’ circum-sphere, which acts like a
curved projection screen (Popko, 2012). All edges in Platonic solids
have been transformed into geodesic arcs in corresponding platonic
spheres. In platonic spheres all arcs have same length as well as all
edges in Platonic solids. The vertices are corners in the case of spheres
while the vertices are corner in the case of solids.

Let's show the procedure of equal-spherical area subdivision
starting from an icosahedron. The vertices of an icosahedron can be
defined using the Golden ratio

φ = 1 + 5
2 (9)

The 12 vertices can then be obtained as all even permutations of the
following set of coordinate triads

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭φ

φ
φ

0, ± 1
1 +

, ±
1 +2 2

(10)

2.2. Equal-spherical area subdivision

For equal area subdivisions the algorithm must satisfy the following
requirements:

(1) every subdivision generates triangles for recursive subdivi-
sion, and

(2) the greatest spherical dihedral angle cannot be greater than
90°. This does not allow triangles to degenerate.

It is possible to use various types of equal area subdivision which
preserve area between faces in a planar triangle. However, a few

Fig. 1. Splitting a spherical triangle v v v[ , , ]A B C in two equal area spherical triangles,

v v v[ , , ]A B D and v v v[ , , ]A C D . The angles at the vertices of the spherical triangle v v v[ , , ]A B C

are denoted by the upper case letters A, B, and C while the sides are denoted by lower-
case letters a,b, and c. After subdivision x, y, and B are the dihedral angles andw, z, and c
are the sides of the spherical triangles v v v[ , , ]A B D .

Table 1
Platonic solids parameters. v indicates the total number of vertices, e the total number of
edges, f the total number of faces, p the number of edges in each face (3 for equilateral
triangles, 4 for the squares, and 5 for regular pentagons), q the number of edges meeting
at each vertex. The parameter s indicates the type of initial sub-division (3 for triSection 4
for quadrisection and 5 for pentasection) to create identical triangles and i=p f is the
number of initial faces.

Platonic solids v e f p q s i

Tetrahedron 4 6 4 3 3 3 12
Hexahedron 8 12 6 4 3 4 24
Octahedron 6 12 8 3 4 3 24
Dodecahedron 20 30 12 5 3 5 60
Icosahedron 12 30 20 3 5 3 60
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subdivision methods can be applied to a spherical triangle. Fig. 2c
shows the bisection subdivision of spherical triangles. In particular,
both planar and spherical faces are shown. In order to keep the sub-
triangles as close as possible to the equilateral one, the longest side is
selected to split. This avoids the generation of elongated triangles.

Three equal area subdivision (trisection) of spherical triangles can
also be performed. For a generic spherical triangle, there is a unique
point (direction) where the trisection can be done. However, the
computation of this point/direction requires some effort and, more
important, the subsequent trisection subdivisions do not avoid the
creation of degenerated (elongated) triangles, which is in contradiction
with requirement (2). Fig. 2d shows the spherical faces of an initial
trisection subdivision.

Four equal area subdivision (quadrisection) can be obtained by
adding a new vertex at the midpoint of each edge of an equilateral
triangle and dividing each edge in two. The quadrisection subdivision
creates four new triangles in flat faces with equivalent areas (if the
original triangle is equilateral). This four equal area subdivision is the
method used by Teanby (2006) and Massey (2012). However, project-
ing these new triangles on the sphere does not provide equivalent
spherical areas. Fig. 2e shows the result of projection on the first level
of subdivision. In this figure the dark triangle is quadrisected in four
triangles. The internal spherical triangle has a larger area than other
adjacent three triangles. This difference then increases with subsequent
quadrisections. In addition there is no freedom in choosing the
midpoints along the edges for equivalent areas. Since it only works
for planar triangles and not spherical triangles, Massey (2012) uses an
iterative modification of the mesh to equalize the areas. Using this
iterative method will equalize the areas at the expense of computing
time and moving the points away from great circle diameters. For the
above reasons quadrisection is excluded in potential subdivision
candidates.

For all the above reasons, one method only can be used to

recursively subdivide a spherical triangle satisfying requirements (1)
and (2): subdivision of spherical triangles in two equal-area spherical
triangles by splitting the longest side.

3. Original equal-area subdivision algorithm

Starting with a Platonic solid (e.g., icosahedron) and subsequently
performing a set of equal area triangle divisions (as previously
described), a final set of small triangles, all with the same areas, are
obtained. The original algorithm by Mortari et al. (2011) considers the
directions to centers of these triangles as the set of quasi-uniform
directions in space. The number of directions that can be obtained is
dependent on the Platonic solid initially considered. For instance,
starting from an icosahedron, a total number of n = 20·2s directions can
be obtained, where s is the number of subsequent divisions.

This original equal area subdivision algorithm creates quasi-uni-
form distributed points in space. The four initial subdivisions by this
procedure are shown in Fig. 3. The number of times the equal area
subdivision is performed (s) is subsequently referred to as the ‘level’.
Level 0 corresponds to the initial spherical icosahedron, level 1 refers
to spherical triangles after the first subdivision, and so on. The final
subdivision, unfortunately, creates adjacent spherical triangles that do
not share vertices and obtuse adjacent triangles. To avoid this problem,
after the final subdivision, every two adjacent elongated triangles are
replaced by two more equilateral triangles. This single step reshaping
procedure produces a final set of triangles with slightly different areas
but greatly increases the uniformity of space distribution of the final set
of triangles’ centers. This improvement is described in the next section.

4. Quasi-equal area subdivision algorithm

The quasi-equal area subdivision algorithm scheme consists of two
steps:

Fig. 2. Icosahedron and subdivision surfaces. (a) An icosahedron has 20 faces, 12 vertices, and 30 edges. (b) An icosahedral sphere also has same number of faces, vertices, and edges.
However, faces are regular spherical triangles and edges are arc-edges. (c) Bisection can be used for recursive subdivision if the longest side is selected to split. (d) Trisection can be used
as an initial subdivision. (e) Quadrisection is excluded in potential subdivision candidates since it cannot provide equivalent areas.
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1. dividing spherical triangles into equal area spherical triangles
subsequently (perform a single equal area trisection, then perform
s equal area subdivisions, as previously described), and

2. reshaping the final obtuse triangles after the final even number of
divisions.

Note that reshaping (step 2) is applied one time only after all
subsequent divisions, because reshaping does not preserve the area
of triangles.

4.1. Step 1: Spherical triangles subdivision in equal-area spherical
triangles

This subsequent subdivision consists of one trisection and several
bisections. An icosahedron is first subdivided by the equal area
trisection. There are now three triangles for each original triangle as

shown in Fig. 4a. Note that this trisection makes adjacent triangles
share common vertices after subdivision. Then, the trisection is
followed by s sequential equal area bisections which are identical to
subdivisions of the original equal area subdivision algorithm.

The number of vertices and faces of generated triangles in each level
is given in Table 2.

4.2. Step 2: Final reshaping of obtuse triangles to acute triangles

As shown in Fig. 5a and c, obtuse triangles (dark regions) appear
after even bisections. The number of obtuse triangles is half the
number of total triangles as seen in the Figs. Since a pair of obtuse
triangles exist, they can be reshaped to two acute triangles.

Fig. 6 illustrates the histogram of the sides' lengths of the final
smallest triangles obtained by splitting the icosahedron by s=9
subdivisions (level 9). This figure clearly shows that: (1) the final

Fig. 3. The four initial equal-area subdivisions of an icosahedron using the original equal-area subdivision algorithm. The algorithm provides subsequent spherical triangles of identical
areas using recursive bisections. The level is defined as the number of times bisection is performed.
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resulting triangle sides are bounded, meaning no degenerated triangles
are obtained by recursive application of the splitting algorithm and (2)
a smaller bound is obtained by final reshaping (because obtuse
triangles disappear after reshaping).

Since the final reshaping step changes the area of each reshaped
triangle, evaluation for the area preservation is performed with the
method by Massey (2012). As shown in the left histogram of Fig. 7, all
areas of the spherical triangles are within ± 5% of the average area. The
right histogram clearly shows that the spherical triangle vertex angles
are bounded in a small range. Assuming that the area within ± 2.5% of
the mean area is preserved area, there are 75% of preserved area of
spherical triangles in level 5 as illustrated in Fig. 8. At higher levels
more spherical triangles can be area preserved.

Compared to the triangles by method of Teanby (2006), this
algorithm has the advantage of having triangles of the quasi-equal
area. In addition, it doesn't require the equalization process as in

method of Massey (2012), which is quite computationally expensive.
Equalization process is quite computationally expensive and time
consuming.

4.3. Construction of quasi-uniform points

Mortari et al. (2011) suggested taking centers of the triangles as the
quasi-uniform points since some of generated triangles are obtuse
triangles. Since the quasi-equal area subdivision algorithm with even
number of bisections provides all acute triangles, vertices of triangles
can be considered to construct quasi-uniform points.

Visual results of the original algorithm (Mortari et al., 2011),
Fig. 9a, and the proposed improvements, Figs. 9b and c, are provided.

Fig. 4. Quasi-equal area subdivision algorithm - step 1. In this step, a icosahedron is first subdivided by the equal area trisection. Then, the trisection is followed by sequential equal area
bisections. The relationship between the generated triangles and level is shown.
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Table 2
Number of vertices and faces of generated triangles in each level, along with the
corresponding normalized time. Before the normalization, the time consumed level 1 grid
is in the order of milliseconds on an Intel core i7 based machine.

Level # of vertices # of faces subdivision time

0 12 20 n/a
1 32 60 1.0
2 62 120 1.5
3 122 240 2.2
4 242 480 3.1
5 482 960 5.5
6 962 1920 9.1
7 1922 3840 20
8 3842 7680 32
9 7682 15,360 87
10 15,362 30,720 125
11 30,722 61,440 508
12 61,442 122,880 961
13 122,882 245,760 8637

Fig. 5. Quasi-equal area subdivision algorithm - step 2. In this step, reshaping the final obtuse triangles after the final even number of bisections provides acute triangles. Since
reshaping does not preserve the area of triangles, reshaping is applied one time only after all recursive divisions.

Fig. 6. Triangles sides length histograms (level 9) with and without reshaping. The
upper shows triangle sides length histogram before reshaping, whereas the lower shows
triangle sides length histogram after reshaping.
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4.4. Smale's validation

The problem of uniform distribution of points on the sphere
emerged from complexity theory in a paper by Shub and Smale
(1994). Smale himself provided a mathematical tool to quantify the
uniform distribution of points on a sphere. For any given distribution
of points (unit-vectors), x x,…, ∈N1 , it is possible to evaluate the
function V

∑ ∑
x x

V = log 1
∥ − ∥i

n

j i

n

i j=1

−1

= +1 (11)

Let Vmin be the minimum possible value of V. The problem asks for an
algorithm that, for an assigned value of N, finds a sequence of points
x x,…, N1 on the unit sphere such that

V V c N0 < − ≤ logmin (12)

where c is a positive constant that depends only on the algorithm
provided (Smale, 1998). Rakhmanov et al. (1994)) provide numerical
evidence that their generalized spiral points algorithm supports Eq.
(12) for N ≤ 12, 000, with c=114.

Smale provided (Smale, 1998) the following approximated (trun-
cated) formula to evaluate Vmin

⎛
⎝⎜

⎞
⎠⎟V

e
N N N O N= − 1

4
log 4 − 1

4
log( ) + ( )∼

min
2

(13)

where e is Euler's number. Eqs. (11)–(13) will be used to compare and
quantify the uniformity of points distributions as generated by different
algorithms.

Mortari et al. (2011) have introduced the following conjecture
about the uniform distribution of points on a 2-dimensional surface.
This conjecture is based on the recursive equal area subdivision of
triangles just described.

Conjecture: Using s recursive splits of an original spherical
triangle a set of 2s non-degenerating spherical triangles with
identical areas is obtained. As s → ∞ the centers of the final small
spherical triangles identify a distribution of points satisfying Eqs. (11)
and (12) for the original spherical triangle.

Fig. 7. Histogram of the ratio of spherical triangle area to mean spherical triangle area and vertex angles in a level 5 after subdividing from a level 0. The left figure indicates the area
ratio, whereas the right figure indicates vertex angles of spherical triangle.

Fig. 8. Percent of preserved area spherical triangles (within 2.5% of the average area) in
each level.

Fig. 9. Visual results of various algorithms (level 5). (a) Original equal area subdivision algorithm with centers of the triangles. (b) Quasi-equal area subdivision algorithm with centers
of the triangles. (c) Quasi-equal area subdivision algorithm with vertices.
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If this conjecture is correct, then the creation of N asymptotically
uniformly distributed points on a sphere depends on how the sphere is
split in a spherical triangle.

The approach to measure uniformity of a set directions generated
by an algorithm is to evaluate the difference between the value of V for
the points obtained, as provided by Eq. (11), and the optimal value of
V∼min , as evaluated by Eq. (13). This approach is suggested by Smale
(1998). The comparison results are shown in Fig. 10. Note that the
algorithm using vertices with even number of bisections provides best
performance since even number of bisections make generated triangles
almost equal area triangles as illustrated in Fig. 5.

5. Applications to geographical data

Various kinds of geographical grid data sets are used in many fields
such as sciences, economics, politics. For example, Gross National
Product (GNP) and a worldwide population distribution map are used
to estimate market demand for satellite (Chan et al., 2004). In the case
of a global mission, the cost function for a constellation design is
computed in globally distributed points (Park et al., 2005) and (Davis
et al., 2013). Most gridded data sets are provided with a fixed step in
latitude and longitude. Therefore, conventionally computed points
(Teanby, 2006) are distributed with a fixed step in latitude and
longitude as shown in Fig. 11a. Since this is certainly not a uniform
distribution of points on the Earth, mainly due to the increase of point
density at high latitude regions as illustrated in Fig. 11b, the need to
convert these data into an “equivalent” distribution of points (with

different weights) is needed. This will decrease to a small amount of
data sets with appropriate values. To provide an equivalent resolution
of the data, it is required to match the surface area of the bins for data
to the area of a grid box in the gridded data. Consequently, computa-
tional burden is then reduced using “equivalent” uniformly distributed
points.

In the following subsections we discuss the method to check
whether a specific point is included. Teanby (2006) suggested over-
lapped pentagonal and hexagonal bins. In this research, triangular and
aperture cones methods have been used since these algorithms provide
quasi-equivalent areas.

5.1. Binning check for geographical data

5.1.1. Triangular method
One method to convert this geographical data set into an equivalent

quasi-uniform data set is using triangles. Many quasi-equal area
triangles are provided by quasi-equal area spherical subdivision algo-
rithms. Therefore, checking if the original grid data points are inside or
outside a triangle can determine if points are included or not. Fig. 12
shows the geometry of inclusion and non-inclusion cases. In the case of
inclusion (left), the sum of the areas of the three sub-triangles is equal
to the area of the original triangle while the non-inclusion case (right)
is experienced if the total area is greater than the area of the original
triangle.

In order to perform the binning check, all uniformly distributed
points are transformed to a topocentric-horizon coordinate system with
the mid-point of the triangle as origin, and then projected to the
surface as all points of the quadrilateral are transformed. The equation
to check whether the point Pv is included is given by Lee and Mortari
(2013a).

PV V PV V PV V V V VA A A A( ) + ( ) + ( ) = ( )1 2 2 3 3 1 1 2 3 (14)

5.1.2. Aperture cones method
The triangular method can be applied only to algorithms using the

center of triangles as illustrated in Fig. 13a. Therefore, a different
method is required in order to use the algorithm with vertices which

Fig. 10. Smale's validation results. Smale's validation measures uniformity by evaluat-
ing the difference between the value of V for the points obtained, as provided by Eq. (11),
and the optimal value of V∼min , as evaluated by Eq. (13).

Fig. 11. Conventional scheme for distributing points (10° resolution).

Fig. 12. Geometry of point inclusion and non-inclusion cases.
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provide best performance. This is the aperture cones method which
requires only distributed points as shown in Fig. 13b. Considering N
directions to distributed points from the origin with an angular
aperture, N aperture cones are assigned. Checking if original grid
points lie inside or outside the aperture can be accomplished by finding
the angle between two direction vectors. The cosine of the angle
between the direction of distributed point and the direction of original
grid point is found by dividing the scalar product of the vectors by the
product of their magnitudes. The following two subsections with two
examples for geographical data application demonstrate binning
methods together.

5.2. Example 1: Building uniform sampled data with regional grid
data

The first example is a case with regional grid data. The Nitrogen
Fertilizer Application data set of the Global Fertilizer and Manure,
Version 1 Data Collection represents the amount of nitrogen fertilizer
nutrients applied to croplands. The data were compiled by Potter et al.
(2010) and are distributed by the Columbia University Center for
International Earth Science Information Network (CIESIN). Data are
provided at 1° resolution in fixed latitude by longitude coordinates.

In this example the quasi-area subdivision algorithm with centers
of triangles has been applied, and the triangular method has been used
for binning data. The surface area of triangle is matched to the area of
the grid box at the lowest latitude in the original data. Compare to
Fig. 14a, the final data set is maintaining spatial resolution over the
globe as shown in Fig. 14b.

5.3. Example 2: Building uniform sampled data with global grid data

The second example is a case with global grid data. Gridded
Population of the World, Version 3 (GPWv3), Future Estimates
consists of projections of human population for the year 2015 by 1°
grid cells. A proportional allocation gridding algorithm, utilizing more
than 300,000 national and sub-national administrative units, is used to
assign population values to grid cells. The population density grids are
derived by dividing the population count grids by the land area grid
and represent persons per square kilometer (Center for International
Earth Science Information Network (CIESIN)/Columbia University or
International Earth Science Information Network (CIESIN)/Columbia
University, and Centro Internacional de Agricultura Tropical (CIAT),
2005).

The quasi-area subdivision algorithm with vertices has been used in
this example. Therefore the aperture cones method has been used for
binning data. The aperture area is approximately equal to the area of
the grid box at the equator in the original data. Finally latitude
distorted geographical points in Fig. 15a are converted to uniform
points across the sphere as illustrated in Fig. 15b.

6. Conclusions

This paper provides a quasi-equal area subdivision algorithm based
on equal area spherical subdivisions to obtain uniform distribution of
points on a sphere. The algorithm adopts the theory of the original
equal area subdivision algorithm, which performs subsequent bisec-
tions of spherical triangles. The whole sphere which is made of N equal
area spherical triangles can be obtained by subsequent subdivisions. As
the number of divisions increases, the center of these spherical N
triangles provides a good approximation to the uniform distribution of
N points on a 2-dimensional surface. The main feature of the proposed

Fig. 13. Bins with quasi-uniform points. (a) Bins are equal area triangles in the
triangular method (b) Bins are aperture of which centers are quasi-uniform points in
the aperture cones method.

Fig. 14. Building uniform sampled data with regional grid data for nitrogen fertilizer application. (a) The nitrogen fertilizer application data set has 1 degree of resolution (1358 points).
Effects of latitude distortion increase spatial resolution. (b) Quasi-equal area subdivision algorithm (level 11) with centers of triangles provides a constant spatial resolution data set (983
points).
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algorithm is to share common vertices between adjacent triangles. This
is accomplished by the initial trisection since it symmetrically deploys
generated triangles. Therefore, reshaping can be applied to triangles,
and vertices can be used for uniform points. It has been found that the
proposed quasi-equal area subdivision algorithm provides good per-
formance with validation.

After generating uniformly distributed points, two methods for
binning data have been proposed. These binning check methods have
been used successfully in two examples which demonstrate geographi-
cal data applications. These examples also demonstrate that suggested
algorithms maintain a constant spatial resolution over the globe, which
is required in most applications where gridding bias is to be avoided.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.cageo.2017.03.012.
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