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This study proposes an artificial neural networks-based method for predicting the unaltered (precursor)
chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting pre-
cursor’s major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on
ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr,
which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were
trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic
rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass
balance calculations. Various statistics were calculated to validate the predictions of precursors’ major
components, which indicate that, overall, the predictions are precise and accurate. For example, rank-
based correlation coefficients were calculated to compare predicted and analysed values from a least-
altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for
all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant.
Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The
proposed method provides an easy and rapid solution to the often difficult task of determining appro-
priate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for
large volcanic rock databases and is most useful, for example, to mineral exploration performed in
complex or poorly known volcanic settings. The method is implemented as a simple Cþþ console
program.

Crown Copyright & 2016 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Grassroots, or regional mineral exploration, necessitates the
use of powerful and simple methods to interpret large amounts of
chemical data. The interpretation and quantification of hydro-
thermal alterations in volcanic terrains, for instance, is particularly
important as many economic substances are accumulated by the
circulation of hydrothermal fluids in areas with magmatic activity,
and because altered rocks are one of the main vectors used to
explore for such mineralisations.

Geochemical studies of hydrothermally altered rocks aim at
determining the amount of elements gained and lost during al-
teration of an initially fresh rock (i.e. the precursor), by performing
mass balance calculations while assuming that one or more ele-
ments is immobile during alteration (see Gresens (1967)). Gresens'
(1967) approach has been extensively and successfully used
evier Ltd. All rights reserved.

eault).
(MacLean and Kranidiotis, 1987; Shriver and MacLean, 1993; Ca-
dieux et al., 2006; to name a few).

A major question that arises when using such mass balance
equations concerns the choice of an appropriate precursor for the
studied altered sample. Precursor’s compositions are usually ob-
tained by analysing “fresh” samples (i.e. samples that lack altera-
tion minerals) that have been geologically related to the altered
sample using detailed knowledge of the local geology (e.g. Grant,
1986, 2005). Such approaches are possible only for detailed de-
posit-scale studies, if fresh rocks exist and if our level of knowl-
edge of the area render their identification possible. Even so,
usually nothing proves that the fresh sample is an exact match for
the precursor to the altered sample, and these difficulties can
make mass balance calculations un-reliable.

At a more regional scale, on the other hand, these difficulties
can be in-surmountable. Thus, orebody targeting using chemical
datasets more often rely on alteration indexes (ratio of major
elements), which values are sensitive to the precursor’s composi-
tions and could provide miss-leading indications on the intensity
of alteration (see discussion in Trépanier et al. (2015)).
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Mass balance calculations would be more reliable if a suitable
precursor composition to an altered rock could be determined
directly from the chemical characteristics of the altered sample,
thus providing a precursor adapted to this sample.

This paper proposes a method for estimating the composition
in SiO2, CaO, MgO, FeOT, K2O, and Na2O of fresh precursors to al-
tered volcanic rocks, using ratios of commonly analysed least
mobile elements (i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr) and a re-
gression method (i.e. artificial neural network). The method is
provided as supplemental material, as a simple Cþþ program that
calculates precursor compositions (this study) prior performing
mass balance calculations (using published methods).
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Fig. 1. Modified Hughes’ diagram (Hughes, 1972) on which the Georoc dataset is
represented. This diagram has been used to remove K–Na altered samples from the
initial dataset. Black triangles highlight kept samples and grey crosses correspond
to discarded samples.
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Fig. 2. Pie plots displaying several characteristics of the samples of the least-al-
tered dataset (n¼5810). The displayed characteristics are: (a) the proportions of
rock types (see IUGS geochemical classification of volcanic rocks; Le Maitre et al.
(1989)); and (b) the tectonic settings, as identified in the Georoc database.
2. Methodology

2.1. Description of the method

In this contribution, a method to predict fresh precursors from
the chemical composition (i.e. immobile elements content) of al-
tered volcanic rocks is presented. Predictions are performed for
magmatic rocks only because relatively simple relationships,
which are controlled by magmatic processes, exist between the
trace and major elements content of such rocks. For example, Zr
and Si are both incompatible elements that tend to increase during
fractional crystallisation, making Zr a proxy for Si (see Winchester
and Floyd (1977)).

Also, precursor predictions are performed using ratio of ele-
ments considered immobile in regard of hydrothermal processes.
Ratios are used because the value of immobile elements ratios is
not modified by mass or volume changes and because ratios are
unlikely to be strongly fractionated by hydrothermal processes.
Instead, such ratios mostly vary between volcanic rocks of differ-
ent types and affinities, which originate from various sources and
different conditions of partial melting, fractional crystallisation
and other processes. Because ratios of immobile elements are in-
sensitive to alteration and can reflect geodynamic settings and
differentiation, they have been extensively used by discrimination
diagrams (e.g. Winchester and Floyd, 1977; Barrett and MacLean,
1994), and their use is here extended to predict major elements
compositions of the fresh precursors to altered volcanic rocks.

In order to relate immobile element ratios to the major ele-
ments of volcanic rocks, the typical composition of least-altered
volcanic rocks is documented using a large dataset of samples of
various volcanic rock types from different tectonic settings and
ages (see Section 3.1; Figs. 1 and 2) and on which predictions are
performed using a method able to solve regression problems.
Since this prediction implies a large variety of rocks, non-linear
solutions can be expected. Tests were initially performed with
various methods, e.g. multiple regressions, but non produced re-
sults as good as these obtained with neural networks. For this
reason, a multi-layer perceptron neural network was trained on a
large dataset of least-altered volcanic rocks and used to predict
precursor compositions.

2.2. Immobile elements ratios

Hydrothermal fluids modify the mineral assemblages (altera-
tion) and chemical composition (metasomatism) of rocks, with
various minerals and elements being more or less susceptible to be
modified or displaced. Here, the immobile elements used by the
proposed method are immobile in most mineralised contexts and
are commonly analysed, so that the method can be applied to
datasets typically used by exploration geologists.

Elements relatively immobile during hydrothermal alteration,
weathering and low-grade metamorphic processes are characterized
by ions that are of intermediate ionic potential (0.03–0.1 ppm�1;
Pearce, 1996). From the elements considered immobile by various
authors (Cann, 1970; Pearce and Norry, 1979; Hill et al., 2000; Kurtz
et al., 2000; Hastie et al., 2007), seven elements were selected as
inputs to the neural networks (i.e. Zr, Al, Ti, Nb, Cr, Y, and Th) because,
according to Pearce (1996), these elements are sufficient to properly
characterize most basalts and, presumably, most volcanic rocks.
These elements have indeed been used to characterize various
magmatic processes, such as: (1) the degree of differentiation
(Winchester and Floyd, 1977; Pearce and Norry, 1979); (2) the alka-
linity of rocks (Pearce and Cann, 1973); (3) the geodynamic context
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(Pearce and Cann, 1973; Wood, 1980; Meschede, 1986; Schandl and
Gorton, 2002; Hastie et al., 2007; Ross and Bédard, 2009); (4) the
depth of partial melting and/or the composition of the source
(Drummond and Defantt, 1990; Petford and Atherton, 1996; Pearce,
2008); etc.

The selected immobile elements are considered relatively im-
mobile in many, but not all, hydrothermal processes, as various
parameters may increase the mobility of these elements (Hynes,
1980; McCulloch and Gamble, 1991; Pearce, 1996; Hill et al., 2000).
For example, the mobility of Zr, Y, Ti, and Nb has been documented
from oceanic crust samples (Cann, 1970), in rocks altered by fluorine-
enriched fluids (Salvi et al., 2000; Jiang et al., 2005) and in various
mineralised areas (Finlow-Bates and Stumpfl, 1981; Van Dongen
et al., 2010). However, Zr, Al, Ti, Nb, Cr, Y, and Th are considered to be
sufficiently immobile in most cases; as such, the method developed
here should be applicable to most mineralised contexts.

Even so, it is recommended to test for the immobility of Zr, Al,
Ti, Nb, Cr, Y, and Th prior performing the precursors’ prediction
described below, by using, for example, binary plots (see Cann
(1970)) or Pearce Element Ratio diagrams (Pearce, 1968; Stanley
and Russell, 1989) adapted to the study of hydrothermal processes
(Stanley and Madeisky, 1994). Also, in certain well constrained
contexts, it might be possible to sample a fresh precursor and the
immobility of elements could be verified using the isocon diagram
of Grant (1986, 2005). Study of element’s variabilities could also be
performed (Schiano et al., 1993).

2.3. Artificial neural networks definition

Artificial neural networks are numerical models made of sim-
ple processing elements named neurons (Zurada, 1992). Neurons
are interconnected by links, to which values (i.e. weights) are at-
tributed. Weights describe the strength of the connections be-
tween neurons. Neural networks are adaptive; i.e. “knowledge” is
gained through a process of training and learning from examples.
After training, the “knowledge” is stored by the weight values.
Also, the learning process can be supervised, if the input examples
already contain the desired outputs.

Many neural network topologies exist. Here, multilayer per-
ceptrons (MLP) are supervised networks that were selected be-
cause of their capacity to approximate nearly any function (Hornik
et al., 1989). The first layer, called the input layer, distributes the
input data (i.e. chemical analyses of volcanic rocks in our case) to
the network. The MLP’s input layer is made of several neurons, i.e.
one for each input variable. Processing (i.e. additions, multi-
plications and other non-linear transformations; Fig. 3) is per-
formed by one or more hidden layers of neurons. The final, pre-
dicted results, is calculated by the output layer, which contains an
amount of neurons that is dependent on the number of target
values to be modelled by the network.
Fig. 3. Sketch showing calculations performed at an individual neuron within a
multilayer perceptron (MLP) network. The neuron’s input is calculated by multi-
plying the input signal (xi) by the weight of the links (wi). Inputs are summed and
then transformed by a non-linear function, in this case the hyperbolic tangent
function. The result corresponds to neuron’s output.
An MLP is trained using successive cycles. During each cycle,
training examples are fed to the network, which gradually modi-
fies the weights in order to diminish the sum of the squared error
between desired (actual) and output (modelled) values. The net-
work’s predictions thus improve at each cycle but excessive
learning can lead to overfitting, which should be avoided as an
overfitted network has started to learn the noise, or random
component, of the input dataset and cannot be generalised. To
avoid overfitting and to evaluate the performance of a network,
examples are often randomly separated into three subsets: (1) the
training set; (2) the cross-validation set; and (3) the test set.

The training set is used to train the network. The cross-valida-
tion set is used to monitor the sum of squared errors between the
desired and modelled outputs and to avoid overfitting (see early
stopping procedure; Wang et al. (1994)). The test set, on the other
hand, is used to evaluate the generalisation performance of the
network once the training is completed. In addition, networks are
usually trained several times using random initial network
weights to avoid local minima in the approximated function.
3. Data processing

3.1. Least-altered volcanic rocks dataset

Relationships between major and immobile elements are eval-
uated here with neural networks using a large chemical dataset of
modern volcanic rocks from around the World. Post-Archean to
modern rocks are used because they are well constrained samples for
which names, geodynamic settings and freshness can be confidently
established; i.e. characteristics that would be harder to determine for
more ancient samples. Besides, there might be large differences be-
tween ancient (Archean) and modern geodynamics and bulk chem-
istry of magmas (e.g. Bédard, 2006), but this does not necessarily
mean that the relationships between major and immobile elements,
in magmas, changed between the Archean and more recent times;
i.e. if it is considered that partial melting, fractional crystallisation
and other processes operate in similar ways at all times. Also, vol-
canic rocks are used because a large dataset is needed, and because
the highest quality and largest dataset of magmatic rocks available,
i.e. the Georoc web database (Sarbas, 2008; GEOROC, 2011), docu-
ments mostly volcanic rocks.

The Georoc dataset was thus used and processed as follows.
First, all volcanic samples from the “Precompiled Files –4 Rocks”
page were downloaded; i.e. a total of 110,724 samples of volcanic
rocks. Then, the following criteria were used to filter the dataset.

1. Only samples with major elements, LOI, Zr, Cr, Nb, Y, and Th
analysed were retained.

2. Only samples with NbZ8 ppm, or with Nbo8 ppm but precise
to the tenth decimal place, were kept.

3. Samples described as altered in the Georoc dataset were re-
jected (see codes M, E, T; GEOROC, 2011).

4. Samples (picrites, komatiites, meimechites, and boninites ex-
cepted) with LOI42.5% (i.e. approximately H2Oþ42% and
CO240.5% that characterises most altered volcanic rocks ac-
cording to the IUGS volcanic rock classification; Le Maitre et al.,
1989) were rejected.

5. Samples (picrites, picrobasalts, komatiites, meimechites, and
boninites excepted) plotting outside the “fresh field” of a
modified Hughes (1972) diagram (i.e. diagram with a “fresh
field” expanded toward the right to include fresh ultra-K rocks)
were rejected (Fig. 1).

6. Samples with a Chemical Index of Alteration (CIA; Nesbitt,
2003) over 52.5 (i.e. 52.5 was used instead of 50 to retain
slightly peraluminous igneous rocks) were discarded.
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7. To ensure that a single oversampled volcanic unit is not over-
represented in the dataset, a maximum of 25 samples per
publications has been conserved, using random subsampling.

8. The Georoc dataset is also strongly skewed toward basalts, ba-
saltic andesites, and to a lesser extent, andesites. For neural
networks processing, more balanced inputs are preferable. The
dataset was thus subsampled to ensure that no single rock type
(as defined by IUGS; Le Maitre et al., 1989) represents over 10%
of the final dataset. Note that these rock types, or groups, are no
longer used hereafter, as the methodology is applied across a
continuum of compositions.

The final dataset, considered to represent fresh rocks, contains
5810 samples (Fig. 2a) from various tectonic settings (Fig. 2b).

3.2. Artificial neural networks processing

The Georoc database’s samples have then been used to train
multi-layers supervised networks (i.e. MPL, see Section 2.3). Prior
performing the training, the dataset was randomly split into three
subsets: (1) the training set, to which 2905 samples (50%) were
allocated; (2) the cross-validation set received 1453 samples (25%);
and (3) the test set received the remaining 1452 samples (25%).
Also, tests were performed using transformed data (centred log-
ratios) and un-transformed, compositional, data. As both tests
produced similar results (see Section 5.1), only un-transformed
data were retained.

The inputs fed to the MLP are ratios of immobile elements and
outputs (i.e. the components to be predicted) are major mobile
elements. Before processing, the chemical analyses were re-
calculated on a LOI-free basis and input chemical elements were
normalised. Once normalised, the values of each variable is com-
prised between 0 and 1 and, as such, the units of input data (wt%
or ppm) is unimportant.

Then, the neural networks were trained using the Levensberg–
Marquardt supervised algorithm (NeuroSolutions 6.11 for excel
software; NeuroDimension, 2012). The MLP networks used here
contain an input layer made of 21 neurons (i.e. number of possible
ratios between the immobile elements), one hidden layer and uses
an hyperbolic tangent transfer function. To determine the optimal
number of hidden neurons for the hidden layer of each network,
five models that contain 2, 4, 6, 8, and 10 hidden neurons, re-
spectively, were tested. Each test consisted in 3 runs, or trainings,
of the networks and the most performant network (i.e. network
with minimum sum of squared errors on the cross-validation set
of all variations and runs) was kept (see Table 1).

Also, for each of the output components that are to be pre-
dicted (i.e. SiO2, CaO, FeOT, MgO, K2O, Na2O, Zr, and TiO2), separate
networks were trained. Note that the predicted Zr and TiO2 values
are used later, to perform mass balance calculations. Once trained
with the training and cross-validation sets, and validated using the
test set (see Section 5), the networks were used to predict
Table 1
Optimal number of hidden neurons contained in the hidden layer of neural
networks.

Component Optimal number of neurons

SiO2 6
FeOT 6
MgO 4
CaO 4
Na2O 4
K2O 4
TiO2 2
Zr 6
precursor’s compositions for new samples, and these precursors
were used to perform mass balance calculations (see Section 4).

Eventually and to evaluate new samples (see Sections 6 and 7),
an additional constrain was added to the model. It should be noted
that trained neural networks provide valid predictions of pre-
cursor’s compositions if and only if all the ratios of immobile
elements of a sample to be evaluated are within the ranges of the
training set’s ratios. On the other hand, if the ratios of a sample fall
outside the range of values of the training set, the prediction would
be invalid and it should not be attempted. Similarly, the predicted
values are expected to fall within the range of the training set’s
values, otherwise the prediction should be regarded as invalid.
Valid ranges for immobile elements ratios and for predicted values
were recorded from the networks and embedded in the software
(see Section 4), in order to filter unsuitable samples and invalid
outputs.
4. Description of the software

4.1. Software

This study aims at modelling the chemical composition of fresh
precursors to altered rocks, in order to facilitate mass balance
calculations. The outputs of the neural networks (i.e. the results of
the training process) can however be difficult to use as such, as the
software used to train the neural networks (NeuroDimension,
2012) provides outputs files with a “.NSW” extension, which are
simple ASCII text files that record the network’s structure, para-
meters and weights.

To facilitate access to these results, they were embedded in a
Cþþ program that is able to receive chemical analyses from new
samples (input), that predicts the precursors’ compositions and
that performs mass balance calculation (see Section 4.2). This
program provides users with the results of these calculations; i.e.
precursors’ compositions as well as mass changes values, which
are provided in percent (relative mass change) and grams (abso-
lute mass change).

4.2. Mass balance calculations

Once precursor values are predicted, mass balances can be
calculated using the equation of Grant (1986, 2005), which is a
rewritten form of Gresens’ (1967) equation. Grant’s (1986) equa-
tion defines a line called the “isocon” that passes through the
origin of a multi-components graphic. The slope of the isocon
yields the overall mass change between the fresh and altered
sample, and this slope is constrained using elements immobile
during the alteration process. Here, the slope value is obtained
from the average of the slopes (Leitch and Lentz, 1994) calculated
from TiO2 and Zr (see Eq. (1)). Absolute mass changes, in grams,
are then calculated for 100 g of precursor (see Eq. (2)) and relative
mass changes are calculated in percent (see Eq. (3)).

( )= + ( )M M C C C C/ / / /2 1
P A

TiO
A

TiO
P

Zr
A

Zr
P

2 2

where CTiO2 is the concentration of TiO2; CZr is the concentration of
Zr; “A” refers to the altered rock and “P” to the precursor rock as
calculated by the neural networks. MP and MA are the equivalent
masses before and after alteration.MP/MA is the slope of the isocon
used in subsequent mass balance calculations.

Δ = * − ( )C C M M C/ 2i i
A A P

i
P
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( )( )Δ = * − ( )C C M M C C/ 100 / / 1 3i i
P A P

i
A

i
P

where Ci is the concentration of element “i”; MA/MP is the inverse
of the slope of the isocon calculated using Eq. (3); ΔCi is the
change in concentration of element “i” in grams per 100 g of
precursor.
5. Neural network validations

Prior to using the method to predict new sample’s precursors,
the neural networks’ outputs were validated. The consequences
that Zr, Y, Nb, Cr, Th, Al, and Ti mobility might have on the pre-
diction’s accuracy are also tested. Overall, the proposed approach
appears accurate, precise, and may tolerate a limited mobility of
the immobile elements used by the model.

5.1. Evaluation of prediction’s accuracy and precision

Once the training was completed, the accuracy and precision of
the predictions were evaluated by feeding the test set to the
trained networks and by comparing the predicted and actual va-
lues, using median errors (for accuracy) as well as, for precision,
rank-based correlation coefficients, standard deviation of errors
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and normalised mean square error values (NMSE; Neurodimen-
sion, 2012) (see Eqs. (4) and (5).

∑= ( − ) ( )MSE Actual value Predicted value 4
N 2

= ( )NMSE MSE/Variance of the actual values 5

where N is the number of samples in the training set, MSE is the
mean square error, and NMSE is the normalised mean square error.

First, the training set was fed to the networks and the outputs
were compared to the analysed values using scatter plots (Fig. 4).
Overall, the points on the scatterplots tend to lie equally on either
side of the 1:1 lines for the entire ranges of values, indicating that
the prediction method is accurate and precise, in particular for
TiO2 and Zr, but less so for K2O and Na2O. Also, the model appears
generally less precise for high values than for average or low va-
lues, especially for the predictions of Na2O, Zr, TiO2, and MgO
(Fig. 4).

Then, median errors between predicted and analysed values
were examined and found to be near 0 for all components and for
both subalkaline and alkaline rocks (i.e. models are accurate)
(Table 2). Standard deviation of error values are also low (Table 2),
indicating that the method is precise (Table 2).
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Table 2
Median errors (ME), rank-based correlation coefficients (r), standard deviation of errors (SD) and normalised mean square errors (NMSE) for values predicted from the test
set.

Global Alkaline rocks Subalkaline rocks

Component ME r NMSE SD ME r NMSE SD ME r NMSE SD

SiO2 0.095 0.935 0.139 3.091 0.793 0.918 0.163 2.817 �0.415 0.931 0.158 3.092
FeOT 0.056 0.935 0.150 1.224 �0.173 0.913 0.149 1.157 0.224 0.937 0.167 1.258
MgO 0.015 0.946 0.103 1.472 �0.025 0.945 0.128 1.207 0.036 0.925 0.096 1.644
CaO �0.021 0.878 0.231 1.474 �0.147 0.803 0.248 1.544 0.041 0.891 0.234 1.413
Na2O 0.007 0.767 0.378 0.674 �0.064 0.726 0.415 0.725 0.057 0.798 0.375 0.598
K2O 0.109 0.891 0.269 0.838 �0.044 0.838 0.337 0.996 0.213 0.921 0.220 0.651
TiO2 0.000 0.992 0.018 0.129 �0.027 0.992 0.021 0.148 0.013 0.986 0.030 0.109
Zr 2.271 0.989 0.022 30.22 �0.460 0.989 0.026 35.09 3.438 0.984 0.022 24.92

Median errors and correlations are calculated for the whole test set (n¼1452), as well as for the following subsets: (1) subalkaline rocks (n¼833); and (2) alkaline rocks
(n¼619). Alkalinity is determined using the TAS diagram (Le Bas et al., 1986).
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Then, global rank-based correlation coefficients between pre-
dicted and analysed values were calculated (Table 2). Global cor-
relations are over 0.93 for most components (i.e. the predictions
are precise), except for Na2O (0.77) and CaO (0.88), and are espe-
cially elevated for TiO2 and Zr (0.99). Isocon evaluations, which are
based on TiO2 and Zr values, are thus likely to be precise (see
Section 4.2). Also, note that correlations are generally slightly
higher for subalkaline rocks than for alkaline rocks, with the
maximum correlations’ difference being 0.09 (for K2O; Table 2).

Eventually, NMSE were calculated, which are found to be the
lowest for TiO2 and Zr, and the highest for Na2O and K2O (Table 2).
NMSE values are also generally higher for alkaline rocks, except for
FeOT and TiO2. Overall, the values of NMSE are generally low, va-
lidating the precision and accuracy of the models.

As mentioned in Section 3.2, the procedure described above
uses un-transformed data but has also been performed using log-
transformed data divided by the immobile element Al2O3. The
rank-based correlation coefficients for both tests are similar except
for SiO2 (Table 3) and only the results of the test performed with
un-transformed data were implemented by the Cþþ program
provided as additional material to this contribution.

5.2. Effects of the mobility of an immobile element on major oxide
predictions

Precursor compositions are predicted using ratios of elements
considered immobile, but that might be mobile under certain
conditions (see Section 2.2). In this section, the effect that such
mobility might have on the precision and accuracy of predictions
is modelled.

For each immobile element, one sample from the test set, for
which the immobile element considered has approximately
median value, was selected. The value of the considered immobile
element of the selected samples was then increased and decreased
by 33%, while the values of the other immobile elements were left
untouched (Table 4); i.e. the ratios of immobile elements were
Table 3
Rank-based correlation coefficients (r) for values predicted from the whole test set,
for tests using un-transformed data (see Table 2) and log-transformed data.

Un-transformed Centred log-transformed

Component r Component r

SiO2 0.935 Ln(SiO2/Al2O3) 0.791
FeOT 0.935 Ln(FeOT/Al2O3) 0.941
MgO 0.946 Ln(MgO/Al2O3) 0.951
CaO 0.878 Ln(CaO/Al2O3) 0.914
Na2O 0.767 Ln(Na2O/Al2O3) 0.756
K2O 0.891 Ln(K2O/Al2O3) 0.880
modified. The resulting data were fed to the neural networks,
which provided predictions reported in Table 4.

This simple model of element’s mobility indicates that mod-
erate enrichments or depletions of Y, Cr, and Nb do not sig-
nificantly modify the predicted values. Changes in Zr and TiO2

moderately affect the predictions for FeOT, MgO, and CaO (Table 4).
On the other hand, changes in Zr and TiO2 strongly affect Zr and
TiO2 predictions, respectively. As these elements are used to
evaluate the isocon (see Section 4.2), it is recommended to eval-
uate the extent of their mobility prior using the method presented
here (see Section 2.2).
6. Method validation using case studies

In this section, several fresh volcanic rocks, which were not
included in the Georoc database used to train the neural network,
are used to validate the approach (see case studies 1–3). Then,
altered rocks from several mineralised areas (i.e. volcanogenic
massive sulphide, or VMS, and porphyry deposits) are compiled,
their precursors compositions are predicted and mass balance
calculations are performed (see case studies 4–6).

6.1. Validation using fresh volcanic rocks

Case study 1 – Unaltered dacite samples from the 2004–2006
and 1986 eruptions of Mount Saint-Helens, Washington, USA,
were compiled from Pallister et al. (2008). The major elements
composition of these samples was then predicted using the neural
networks, which accurately predicts most components (Fig. 5),
except for K2O values, which are moderately overestimated by
0.6–0.8% (Fig. 5f), and SiO2 values, which are underestimated by
�2% (Fig. 5a).

Case study 2 – Ten samples of unaltered mafic volcanic rocks
(alkaline basalts and hawaiites) from the Heimaey volcanic centre,
Iceland, were compiled from Mattsson and Oskarsson (2005).
Their analysed and predicted values are shown in Fig. 6. The
predictions are generally good but systematic errors are observed
for some elements, such as CaO (errors up to 1.5%). Also, over-
estimations of 2%, 0.1% to 0.4% and 1.5% are observed for SiO2, K2O,
and MgO. Conversely, underestimations of 0.05–0.15% and 0.2–1%
are observed for TiO2 and Na2O values. Overall, these errors on the
predictions are minor and the method reproduces satisfactorily
the compositions in major elements of the input rocks.

Case study 3 – Nineteen samples of mildly to strongly alkaline
volcanic rocks from the Middle Latin Valley volcanic field, Italy,
were compiled from Boari et al. (2009). These samples are de-
scribed as devoid of alteration minerals and are named melilite-
bearing kamafugitic rocks, plagioclase leucitites and leucitites,



Table 4
Effects that 733% gains and losses of various immobile elements has on the predicted values calculated for selected samples.

Original values (wt% for Al2O3 and TiO2 and ppm for others) Predicted values (wt% or ppm)

Sample Al2O3 TiO2 Zr Cr Y Nb Th SiO2 FeOT MgO CaO Na2O K2O TiO2 Zr Note

14.37 0.61 364 2 43 18 17 69.8 4.20 0.64 2.25 4.18 4.37 0.67 370 Initial value
S MB01-60A 14.37 0.61 364 2 43 12 17 68.6 4.10 0.68 2.26 4.42 4.24 0.67 373 �33% Nb

14.37 0.61 364 2 43 24 17 69.7 4.31 0.61 2.24 4.16 4.64 0.67 374 þ33% Nb

16.47 0.91 192 5 13 17 8.1 58.9 4.87 1.70 5.04 4.51 3.18 1.02 208 Initial value
s TS/90/01 16.47 0.91 126 5 13 17 8.1 56.0 5.72 2.32 6.22 4.09 2.99 1.05 142 �33% Zr

16.47 0.91 255 5 13 17 8.1 59.9 4.35 1.47 4.75 4.47 3.54 0.99 260 þ33% Zr

12.58 2.77 220 404 24 34 3.8 47.3 11.81 10.1 9.59 2.96 1.18 2.88 231 Initial value
s SA60 12.58 2.77 220 404 16 34 3.8 47.9 11.34 10.5 9.04 3.57 1.94 2.78 231 �33% Y

12.58 2.77 220 404 32 34 3.8 46.8 12.03 9.64 10.28 2.68 0.98 2.89 231 þ33% Y

16.54 0.68 163 76 13 14 10 62.4 4.55 2.63 4.47 4.05 2.61 0.72 169 Initial value
s S10 16.54 0.68 163 50 13 14 10 62.4 4.52 2.38 4.47 4.13 2.68 0.72 171 �33% Cr

16.54 0.68 163 101 13 14 10 62.4 4.58 2.85 4.47 3.99 2.55 0.71 167 þ33% Cr

15.72 1.07 244 154 23.4 13.3 11 58.5 6.66 4.69 6.70 3.56 2.81 1.08 249 Initial value
s OC93 15.72 0.71 244 154 23.4 13.3 11 63.0 5.17 3.60 5.40 3.72 3.17 0.72 244 �33% TiO2

15.72 1.42 244 154 23.4 13.3 11 56.1 7.85 5.29 7.50 3.41 2.51 1.39 249 þ33% TiO2

Modelled changes of elements' original values are in bold italics. Important prediction changes (410%) are in bold.
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Fig. 5. Binary scatterplots of predicted vs analysed values, for samples from Mount Saint-Helens, USA (data from Pallister et al. (2008)). The 1:1 line is shown as dotted lines.
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shoshonites, and calc-alkaline rocks (Boari et al., 2009). Predicted
values for these samples show that neural networks perform very
poorly for nearly all components (except for Zr) (see Fig. 7), in-
dicating that the method cannot be applied to ultra-K rocks. This
is, however, a minor limitation as alkaline rocks in general, and
ultra-K rocks in particular, represent small volumes of the crust.

6.2. Case study 4: Rhyodacite from the Phelps dodge VMS deposit

Twenty-two samples of altered rhyodacites from the Phelps
Dodge VMS deposit, located in the Matagami Camp within the
Archean Abitibi Greenstone Belt, in Québec, were compiled from
MacLean and Kranidiotis (1987). These samples were selected
because of their well-documented mass changes in Si, Mg, Fe, and
other elements calculated by comparing each sample to the least
altered, likely chloritised, sample #18 (see MacLean and Krani-
diotis (1987)).

Major element contents of the 22 samples were predicted using
the neural network solution. Also, mass balance calculations using
the Grant’s method (Grant, 1986), sample #18 as a fresh precursor
and Al–Ti as immobile elements, were performed, following ear-
lier similar calculations (see MacLean and Kranidiotis (1987) and
Barrett and MacLean (1994)). Results of these calculations are
displayed using a +Fe O MgO2 3

T vs SiO2 diagram similar to this used
by Barrett and MacLean (1994) (Fig. 8). On this diagram, the least-
altered sample #18 is identified and the evolution of the alteration
in three stages, as interpreted by MacLean and Kranidiotis (1987),
is identified: (1) chloritisation (with Fe4Mg) and silicification;
(2) silica leaching; and (3) destruction of Fe-chlorite (with residual
Mg-chlorite) (Fig. 8).

Using the +Fe O MgO2 3
T vs SiO2 diagram, we observe that mass

changes calculated with a unique precursor (i.e. sample #18;
Fig. 8a) are well reproduced by these calculated using precursors
predicted by neural networks (Fig. 8b). Furthermore, neural net-
work predictions confirm that sample #18 is altered (chloritized).

6.3. Case study 5: Neves Corvo VMS deposit

Twenty samples of altered felsic to intermediate volcanic rocks
from the Neves Corvo VMS deposit, located in the Iberian pyrite
belt, in Spain, were compiled from Relvas et al. (2006). The hy-
drothermal alteration is zoned, with a chlorite-enriched core en-
veloped by K-sericite and Na-sericite halos (Relvas et al., 2006).
The method presented here was applied to samples from these
three alteration zones and results are shown by Fig. 9.

The calculations confirm that the chlorite-enriched samples
have gained Fe–Mg and lost alkali (see chloritisation). Also, the
sericite-enriched samples have not gained Fe–Mg and have lost less
alkali than the chloritized rocks; i.e. these rocks have mostly endure
an acidic alteration, which is consistent with the acidic character of
Neves Corvo deposit’s hydrothermal fluids (see Relvas et al. (2006)).
Thus, mass balance calculations enable a clear distinction between
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sericitised and chloritised samples (see Fig. 9), pointing toward
agreement between the calculation performed here and the pet-
rology of the samples, as described by Relvas et al. (2006).

6.4. Case study 6: Porphyry deposits

A large amount (n¼565) of samples of altered felsic to inter-
mediate volcanic and intrusive rocks, collected in the vicinity of
porphyry deposits, have been published by Dilles (2012) (see also
Cohen (2011) and Cohen et al. (2011)). The petrology of alteration
minerals contained in these samples has been studied in details,
leading to their classification into the following groups: (1) albite;
(2) albite, K-feldspar, sericite; (3) plagioclase; (4) plagioclase,
K-feldspar; (5) sericite–albite; and (6) sericite (see Dilles (2012)
and references included). Most of these alterations correspond to
alkali gains (i.e. albitisation and K-feldspar alterations), locally
accompanied by acidic alteration (i.e. sericitisation).

Neural networks calculations were performed on extrusive and
intrusive rocks because, while the neural networks were trained
using volcanic rocks only, there is no reason for the relationships
between trace and major elements to be different in these two
types of rocks. Predictions were thus obtained for all the compiled
samples, prior calculating mass changes, and results are shown by
Fig. 10. Calculations performed here indicate that albite- or plagio-
clase-enriched samples have gained Na (albitisation), that ser-
icitised samples have gained K and lost Na, and that the other
samples have gained variable amounts of Na and K (Fig. 10). Overall,
a correlation is observed between the Na and K mass changes cal-
culated here and petrographic observations of Dilles (2012).
7. Discussion and conclusions

This study proposes a method for predicting the composition in
major elements of precursors to hydrothermally altered volcanic
rocks, using artificial neural networks. To facilitate its utilisation by
the reader, the method is embedded in a Cþþ console program
that also performs mass balance calculations, allowing for the
evaluation of alteration, in terms of type and magnitude, from
large datasets of volcanic rocks.

Neural networks used here “learned” to predict the composition
in major elements of volcanic rocks using ratios of immobile ele-
ments from a large dataset of fresh volcanic rocks compiled from
the Georoc database. These predictions were checked for their ac-
curacy and precision, which appear to be generally very good, ex-
cept for uncommon volcanic rocks, i.e. ultra-K rocks (see Section
6.3), for which the method presented here should not be applied.

Also, evaluation of the precision of the method assumes that the
dataset used to train the neural networks contains samples com-
pletely devoid of alteration. However, as alteration may initiate as
early as during the cooling of a lava flow, it is reasonable to assume
that the used dataset still contains slightly altered samples. As
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alteration affects the most mobile elements, i.e. Na2O, CaO, and K2O,
it may explain a part of the imprecision of the neural networks
predictions. The rest of the imprecisions is likely inherited from the
neural network inability to perfectly predict the proper precursor to
every volcanic rock.

When the method is used on samples from mineralised areas,
another source of inaccuracy of the predictions might arise, which
is related to the mobility of the immobile elements used to con-
strain the model. To evaluate this problem, a “stress test” was
performed (see Section 5.2), which shows that the predictions are
robust and tolerate minor to moderate mobility of the immobile
elements. However, if Zr and TiO2 are mobile, the precursor pre-
diction will be little affected, but the isocon will be erroneous,
leading to inaccurate mass balance calculations. Note that, how-
ever, these elements are particularly immobile in most hydro-
thermal systems (e.g. Finlow-Bates and Stumpfl, 1981), except in
particular settings (Jiang et al., 2005). As such, the method pre-
sented here should be operational in most contexts, but should be
used with care in unusual areas, where there is reasons to doubt
the immobility of Al, Cr, Y, Th, or Nb, and especially of Ti and Zr.

Also, the method was calibrated on a volcanic rocks dataset and
should thus be applied to volcanic rocks only. However, chemical
differences between extrusive and intrusive rocks are generally
limited. In addition, there is no reason for the relationship be-
tween mobile and immobile elements to be different in both types
of rocks. As such, the method should be applicable to magmatic
rocks in general (see Section 6.4), as long as they are neither ultra-
K rocks, nor rocks that do not have extrusive equivalents (i.e. cu-
mulate and pegmatite). Note that the applicability of the method
likely extends to metamorphic rocks with magmatic protoliths, as
metamorphism does not modify the chemistry of rocks, except for
volatiles. Thus, only sedimentary rocks and paragneisses should
not be evaluated with this method.

In conclusion, the method presented here appears sufficiently
precise and accurate to be used in most contexts to quantify al-
terations from altered magmatic rocks. It should be used on large
datasets that document a large variety of volcanic units, when the
volcanic stratigraphy is poorly constrained, etc. As such, the
method is most helpful in grassroots or regional mineral ex-
ploration contexts, but could also be used to evaluate alterations
quantified using other methods, and is thus viewed as com-
plementary of existing methods.
Computer code

The method presented in this contribution is provided as a
computer code (Cþþ language).
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