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ARTICLE INFO ABSTRACT

This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples
located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the
porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity
samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was
proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Gornitz
et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap
when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill
this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for
extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation
methods on synthetic data and provides a comparable result to the manual labored, time-consuming
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geostatistics approach on real data, proving its potential as a practical industrial tool.

1. Introduction

Porosity, the fraction of void space over the total rock volume, is a
key indicator for existence of a petroleum reservoir—void space can
store hydrocarbons (Schlumberger, 2015).

Porosity can be directly measured at wells once they are drilled but,
because of drilling costs, it is typically estimated from indirect sources
like seismic impedances obtained from reflections of sonic waves. Fig. 1
illustrates the porosity estimation problem, adapted from Castro et al.
(2005). The following three facts make accurate porosity estimation a
hard task:

1. Hidden structure governs the regression relationship:
porosity estimation typically relies on the inverse correlation be-
tween seismic impedance and porosity. However, the correlation
coefficients and offsets heavily depend on the sedimentary disconti-
nuities provided by distinct geological facies. It is known that
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porosity usually averages linearly and has low variability within
each facies (Deutsch, 2002). Therefore, once the facies structure is
known, porosities can be estimated from impedances by simple
linear regression methods. Nevertheless, facies estimation is an
intricate task, due to the many complex geometric shapes that can
co-exist in the reservoir.

. Seismic impedance alone is not informative for facies

estimation: one might hope that facies can be estimated from
the seismic impedance alone. The marginal distribution of the
impedance, however, does not give sufficient information for esti-
mating facies. This is illustrated in Fig. 1(d). Each point indicates the
impedance and the porosity at a location, and the color indicates the
facies (the lines connect neighboring locations). If we have no
information on the porosity, we have to estimate the facies only
from the impedance (x-axis), which is not very accurate due to the
overlapping marginal distribution of the impedance between two
facies.

*+ Corresponding author at: Berlin Institute of Technology, Machine Learning Group, 10587 Berlin, Germany.
E-mail addresses: lual@petrobras.com.br (L.A. Lima), nico.goernitz@tu-berlin.de (N. Gornitz), klaus-robert.mueller@tu-berlin.de (K.-R. Miiller).

1 Authors contributed equally.

http://dx.doi.org/10.1016/j.cageo.2017.05.004

Received 2 September 2016; Received in revised form 3 May 2017; Accepted 6 May 2017
Available online 27 May 2017

0098-3004/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.05.004
http://dx.doi.org/10.1016/j.cageo.2017.05.004
http://dx.doi.org/10.1016/j.cageo.2017.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.05.004&domain=pdf

L.A. Lima et al.

(b) Facies

(a) Impedance

(c) Porosity

Computers & Geosciences 106 (2017) 33—48

10 035
9 0.30 \
8
! 025 v .‘%‘“
> \'
6 = 020 ."'..
0 by,
o .
S .
o 015
4 o
0.10
3
2 0.05 N
1 0.0p. -
B 9.0 15 2.0 25 3.0 k5.8 4.0 4.5 5.0
0 Impedance

(d) Impedance vs. porosity

Fig. 1. Porosity estimation problem. The goal is to estimate (c) porosity (unknown at most of the locations) from (a) impedance (known) by using a linear relationship between them.
However, this relationship depends on the (b) facies (unknown), and accurate facies estimation requires porosity measurements because of the overlapped marginal distribution of the
impedance (d). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

3. Lack of labeled samples: the measurements of the porosity at
wells in the reservoir are used as labeled data, with which the
regression model is trained. If those labeled data are available
densely enough to capture the hidden facies structure, we can still
estimate porosity by using local regression models. However,
drilling a well is extremely costly and typically conducted only at
the locations where a petroleum reservoir is highly likely to exist.”
Thus, labeled samples are typically available only for a small number
of locations.

As a result, standard geostatistics approaches (Deutsch and Journel,
1998; Dubrule, 2003; Caers, 2005; Larsen et al., 2006) are manual
labor, time-consuming processes, demanding considerable expert
knowledge during design parameterization.

Fig. 1(d), on the other hand, also implies some hope to achieve
accurate porosity estimation. First, there is a clear separation between
the two facies in the joint space of impedance and porosity, i.e., the
joint distribution is not overlapping.® Second, the edges between
neighboring locations are sparse between the two facies, while dense
in each facies category, i.e., facies tend to be the same in neighboring
locations, as we can also observe in Fig. 1(b). These facts imply that we
could perform porosity estimation by optimally using the sparsely
available porosity information and propagating this information based
on the neighborhood spatial structure.

Motivated by this observation, recently a semi-supervised struc-
tural learning technique, called Transductive Conditional Random
Field Regression (TCRFR) (Gornitz et al., 2017), was proposed.
TCRFR is an extension of Conditional Random Field (CRF), a popular
graph-based machine learning techniques where known (or observed)
and unknown variables are expressed as nodes, and their probabilistic
dependencies are expressed as edges (a short introduction of CRF is
given in Appendix B). TCRFR can be used to estimate porosity from
impedance on seismic volumes conditioned on the porosity values
from the available wells in the reservoir. The method is able to infer
the hidden or latent states of geological facies by combining the local,
labeled and accurate porosity information in those wells with the
plentiful but imprecise impedance information available everywhere
in the reservoir volume. That accurate information is propagated in

2 This tendency of well locations can induce a bias (Deutsch, 2002)—the labeled data
are usually available only in high porosity regions, which results in biased statistics of
observed rock properties. However, the bias is not extreme if porosity samples are
available at regular intervals along the wells, which typically goes through low porosity
areas. Further improvement by adapting for this issue, called in statistics covariate shift
adaptation (Shimodaira, 2000; Sugiyama et al., 2007), is left as future work.

3 In real data, such clear separation is not always observed, but, in general, separation
is much easier in the joint space.
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the reservoir based on conditional random field probabilistic graphi-
cal models. The original TCRFR, applied to 2D time slices, presented
a good performance with 5% (impedance, porosity) pairs of labeled
data. Although accurate estimation from only 5% labeled data is a
notable achievement in machine learning, it is still a large number in a
real porosity estimation setting scenario, where only a few wells are
typically available in the reservoir. In this paper, we tackle the
problem of porosity estimation under realistic scenarios by refining
and specializing the original TCRFR method. More specifically, we
introduce two additional techniques, mainly inspired from the image
processing literature, to enhance the performance of TCRFR. The first
one is an extension of the original graph-based image segmentation
method proposed in Felzenszwalb and Huttenlocher (2004), using its
result to determine the neighboring graph structure. In other words,
we use the impedance spatial structure to determine how the label
information should propagate through the graph.

The second technique relies upon manual annotation of facies
categories. This procedure is based on a common assumption in image
segmentation, i.e., there are pixels that can be easily labeled by hand
for annotators (Boykov and Jolly, 2001). For example, annotating
pixels for the shale facies (blue colored in Fig. 1(b)) which are far from
the sand facies (yellow colored in Fig. 1(b)) is relatively easy for
geologists, and from this process we can establish a practical semi-
automatic porosity estimation. Additionally, we extend the original
TCRFR method to allow it to work with the 3D segmented data and
manually fixed facies.

Note that prediction of porosity and other reservoir variables has
also been addressed in several geophysics applications that, e.g.,
combine rock physics models with seismic inversion. Rock physics
fundamentals are described in Mukerji et al. (2001a, 2001b), Doyen
(2007), Mavko et al. (2009), Avseth et al. (2010). Petrophysical seismic
inversion formulations are depicted in Mukerji et al. (2001a, 2001b),
Gunning and Glinsky (2004), Eidsvik et al. (2004), Spikes et al. (2007),
Connolly and Hughes (2016). Gaussian mixture models for estimation
of reservoir variables from seismic inversion and rock physics is
presented in Grana and Rossa (2010). Lithology and fluid prediction
classification based on Markov chain models are described in Eidsvik
et al. (2002), Larsen et al. (2006). Also, joint inversion approaches for
lithology and elastic properties have been proposed by Sams et al.,
Doyen (2007), among others. In this paper, we focus on porosity
estimation from already inverted seismic impedance volumes and
sparse porosity samples located in a few exploratory wells, a typical
problem faced by geologists during the evaluation of a reservoir in the
exploration phase. Compared to the previous approaches, the proposed
method automates porosity prediction and facies classification, learn-
ing the model directly from the available data.
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We show good performance of our proposed method on synthetic
data and real data. In the synthetic data experiment, we compare the
proposed method with baseline automatic estimation methods includ-
ing the original TCRFR, and show preferable performance of our new
method. In the real data experiment, we adopt the geostatistics result
as a reference and show that our proposed method gives comparable
result to the geostatistics one, while the original TCRFR fails. This
result implies the possibility of our new method being a versatile (semi-
)Jautomatic alternative to the manual labored, time-consuming geosta-
tistics approach.

Starting from a brief description of TCRFR in Section 2, we
introduce our new approach in Section 3 and show experimental
results in Section 4. We conclude the paper in Section 5.

2. Preliminaries

In this section, we briefly describe the background of the TCRFR
model, which is the baseline of our novel proposed algorithm. Assume
that, in a volume, we are given impedance observations x € R at all
voxels (locations), and porosity observations y € R at some voxels. We
call the voxels with a porosity observation labeled samples, and the
voxels without porosity observation unlabeled samples. We index the
samples so that the labeled samples come first, namely, we are given a
labeled sample set S = {(x;, y) € R? x R}, and an unlabeled sample
set U = {x; € RPY*™ . Typically, n < m holds. Our goal is to infer
porosities y for all unlabeled samples U/ .

2.1. Ridge regression

A regression model can be trained on the labeled set and gives the
porosity prediction for the unlabeled set. Assume that the porosity can
be written as the sum of a parameterized function f (x; w) of impedance
and an additive Gaussian observation noise:

y = f@w +e e=y—f@w) ~NQ, o),

POk, W) exp(—%ly e w>|2),
20

where f (x; w) = (w, x) ((-,-) denotes the inner-product of vectors) is a
linear regression function with an unknown parameter w € RP that we
estimate by using solely the labeled sample set S. To avoid over fitting,
we assume the Gaussian prior for w: p(w) « exp(—% || w |[?). Then, the
maximum a posteriori (MAP) estimator is obtained by maximizing the
joint distribution of {y}i_, and w:

max p (i} (i, wip o) = [ pGitei wip o),

i=1

1

or, equivalently, minimizing the negative logarithm of the joint
distribution min,,cgpLo(w), where

2
Loy = 2w+ 3 Bt
i o (2)
The standard ridge regression, which is used in many inverse problems,
minimizes Eq. (2). Once the optimal parameter vector w* is obtained,
the porosities for the unlabeled set ¢ can be predicted by applying the
regression function y = f (x; w*) for x € U . In the context of regres-
sion, x is called the input, and y is called the output or regression
target.

While ridge regression has been proven useful in dozens of
applications, it still suffers from severe drawbacks that are likely to
deteriorate the prediction accuracy in our setting. Namely, (a) ridge
regression assumes that data is IID.* This allows us to compute the

% In the typical setting of regression, samples are assumed to be independently and
identically distributed (IID).
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joint distribution over all samples by just multiplying the density
functions at the samples, as in Eq. (1). Such samples are called IID.
hence no spatial connections between data points are considered; and
(b) the linear dependency assumption between input and output (e.g.
impedances and porosities) only holds within the same facies, hence
the resulting linear model by ridge regression will not be accurate in
the presence of multiple facies.

2.2. Transductive conditional random field regression

To overcome the restrictions of standard ridge regression, we need
to take spatial relations between variables into account (i.e., nearby
samples tend to belong to the same facies, and therefore the same
impedance-porosity relation is applied), while inferring the type of
facies s; at each location 1.

Conditional Random Fields (CRFs) (Lafferty et al., 2001) are
probabilistic graph-based models used for labeling and segmenting
structured data, such as sequences, trees, and lattices (Blei et al., 2004).
CRFs are used to infer latent states ;1 of given observations x with
known dependency structure, i.e., 7 = argmaxlogp (Zlx; v). Their ex-
cellent performance has been noted in many important applications,
e.g., object classification in an image (He et al., 2004), natural language
processing (Taskar et al.), and gene finding (Zeller et al., 2013). Here, v
is a model parameter that is learned by either maximum likelihood or
maximum a posteriori using multiple examples x with corresponding
known latent states s. Since we assume latent states (i.e. facies) to be
unknown in advance, direct application of CRFs to our problem setting
is prohibitive.

For further information on CRFs, including parameter estimation
and applications, we refer to a broad literature (see e.g. Blei et al.,
2004; Lafferty et al., 2001; Sutton and Mccallum, 2010).

Fortunately, recently proposed Transductive Conditional Random
Field Regression (TCRFR) combines the advantages of ridge regression
and CRFs without the need of knowing facies in advance. It can be
viewed as an ordinary ridge regression where the input-output
(impedance-porosity) relations are coupled through latent variables
(facies) s; for each location i. Fig 2 illustrates the TCRFR model. Note
that the gray-shaded nodes are observed, while the non-shaded and the
orange-colored nodes are unknown and need to be estimated.

Let the regression model parameter be # and the CRF model
parameter be v. Then the TCRFR model is derived as (starting from the
ridge regression model Eq. (1))

n+m

max p ({y}io H{x: 27", wp (w)

> max_ p({yliy, (=320 v 2", wp (w)
u,v,(zr,');’:*lm

= n+m
= max i=1

uy, {m)

11 pGim, xi, wp @p ("1 {x2 v)p ).
i=1

Choosing the Gaussian priors for # and v and taking the negative
logarithm, we arrive at the final optimization problem:

min L, v, {m}2"),
w, (z)

(3)

where £ (u, v, {z;}}7") is a convex combination of the objectives of the
regression model and the conditional random field, i.e.,

L, v, {mi5i") = 0L, (mliz) + (1 = 0) Lax (v, {m}i21"),

and
n l 2 1 c 2
Lo, {mh) = T Hulf+ 230 by = (@ @, )P,
i=1
1 L n+m 1n+m
Lo, (=Y = T2 5 = v, ¥ o A, (m)Em)
+ log Z ({x; Y2, v).

Here, A, 6, and I' are hyper-parameters, while Z is the partition
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Fig. 2. The transductive conditional random field regression model.

function. Our model consists basically of two parts: a latent variable
with spatial connections part and a regression part. Accordingly, we
define two joint feature maps (cf. Tsochantaridis et al., 2005), ¥ and .
The feature map ¥ resembles a CRF corresponding to an undirected
graph G = (V, E) with binary edges E (i.e., spatial connections) and
vertices V (i.e., impedance measurements), where each vertex repre-
sents a sample and the state space S:={l,...,K} depends on the
number of facies K:

¥ ({2, (mhi") =

p:

1[”@1 =81 A Ty = $2] B
(e1,e2)EE

G1.52)€S
[2 1z, = s]¢(xv>]
vev ses 4
The joint feature map @ for the regression part is
Dx, ) =¢x) Q An), (4)

where A(x) € {0, 1}X with entries (A (z)); = 1 if 7 = k and 0 otherwise.
K € Nt is the number of facies we expect to encounter and ¢ is the
feature function ¢: R” — X (i.e., impedances). Basically, the regression
map is a K times replicated feature vector where all parts that do not
correspond to the current active state s are set to zero. A simple
illustrative example explaining the notation above is given in Appendix
B. For further information and examples of joint feature maps, we refer

to Tsochantaridis et al. (2005).
Well data
1
1

Impedance

volume
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The training algorithm is given in Algorithm 1, which consists of 3
coordinate-wise optimization steps. After convergence, the regression
target y; (i.e., porosity) of each unlabeled sample is predicted by the
regression model conditioned on the inferred parameter ' and the
latent variable 7 (i.e., facies). Hence, for each location i, we can report
its corresponding porosity, as well as the type of facies s; it belongs to.

Algorithm 1. Transductive Conditional Random Field Regression
(TCRFR).

Put 7 = 0 and initialize #’ and v’ (e.g., randomly)
repeat
t:i=t+ 1
Minimize Eq. (3) by splitting into 3 parts:
(1) Update {7/ }'*{" using the intermediate solutions #'~! and v'~!
(2) Update u' with fixed {z/}"4"
(3) Update v' with fixed {z/}}]"
untilVi=1,...n+m: z/ =z~
Predict unlabeled examples x; =
inferred states {z/}}",

Y = (u', D (x;, 7))

n+ 1,...,n + m using the
and regression parameter u':

3. Proposed method

Although the original TCRFR method showed notable performance
under a small proportion of labeled samples, it still requires ~ 5% of
labeled samples (Gornitz et al., 2017), which is a much larger number
than we can expect in practical geosciences field applications. To fill
this gap, we propose an enhanced TCRFR variant equipped with two
techniques inspired from image processing literature. The first idea is
to apply a 3D graph-based segmentation, extended from Felzenszwalb
and Huttenlocher (2004), in the seismic input volume. Based on the
segmented volume, the neighborhood graph is constructed, through
which TCRFR propagates the valuable label information. The second
idea is to incorporate hand-labeled information on some voxels that
geologists can provide with high confidence. Here, the hand-labeling is
not to give a value for porosity, but for facies. The flow of our proposed
method, called enhanced TCRFR (E-TCRFR), is shown in Fig. 3. These
preprocessing steps and the mathematical framework of E-TCRFR are
described in the following sections.

Porosity
estimation

Facies

estimation

Fig. 3. Enhanced transductive conditional random field regression (E-TCRFR).
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Fig. 4. Typical 3D graph connections in a volume. Blue voxels represent labeled samples in a well. White voxels represent unlabeled samples: (a) 6-tile voxel connections; (b) unlabeled
connections in the volume; (c) radius for additional labeled (blue) to unlabeled (white) voxel connections in the horizontal slices; (d) example of connections from one labeled voxel to its
neighbors, considering a radius of 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. 3D input volume segmentation

In this step, we use graph-based image segmentation (Felzenszwalb
and Huttenlocher, 2004) to define connected clusters (or geobodies, in
this case) with similar features based solely on the impedance data. We
extended the publicly available code for 2D images to 3D. The
segmentation is applied to the whole volume. The impedance values
are converted to RGB colors in a 256 color table.

The method adaptively adjusts the segmentation criterion based on the
degree of variability in neighboring regions of the volume. The evidence for
creating a boundary between two regions is given by comparing two
quantities, one based on intensity differences across the boundary, and the
other based on intensity differences between neighboring voxels within
each region. Intuitively, the intensity differences across the boundary of
two regions are perceptually important if they are large relative to the
intensity differences inside at least one of the regions (Felzenszwalb and
Huttenlocher, 2004). The details are described in Appendix A.

Note that we do not use the resulting segments as super voxels, in
which all voxels are classified into a single facies category. Different
facies can still occur inside some segments after this step. The graph
construction step explained in the next subsection is essential for
taking a good balance between the densely available impedance
information and the sparsely available porosity information.

3.2. Neighborhood graph construction

By using the segmented 3D image obtained in the previous section, we
create a neighborhood graph that describes the interaction between the
latent variables (see Fig. 2). First, we connect in a 6-tile setting each voxel to
the neighbors that belong to the same segment (see Fig. 4(a) and (b)).
Then, we add edges from each labeled voxel (latent variable corresponding
to the location where the porosity is observed) to its surrounding neighbors
that are at the same depth in the volume (again, only if each pair of voxels
belongs to the same segment). These additional connections consider the
neighboring voxels that belong to a circle centered on the labeled voxel
(Fig. 4(c)). A white voxel corresponds to an unlabeled sample, while a blue
voxel represents a labeled voxel, i.e., the location where a well exists. The
reason why we treat x, y directions and z direction differently is because the
areal spatial continuity is usually greater than in the vertical direction
(Deutsch, 2002). The circle radius is defined as the distance from this
centered labeled voxel to its closest labeled neighbor. Fig. 4(d) shows an
example of those additional connections (in red) from a labeled voxel,
considering a radius equal to 2.

These additional edges help to propagate the reliable information
contained in the labeled samples to the surrounding neighbors.
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3.3. Incorporation of hand-labeling to facies

Although the graph construction explained in Section 3.2 improves
the performance, in some real case scenarios it is still not sufficient to
be used as a practical tool for the oil industry. To arrive at a better
performance, we can incorporate hand-labeling information provided
by the geologist.

We require the geologist to choose one or more 2D slices of the
input volume, and manually label some pixels to one of the facies
categories. Note that the geologist annotate only pixels where the
corresponding facies can be safely considered with high confidence.
This is possible, for instance, in the synthetic dataset for the shale
facies (blue colored in Fig. 1(b)) that are distant from the sand facies
(yellow colored in Fig. 1(b)). It is also possible to annotate some points
as the sand facies. An example annotation is shown in Fig. 5(a), where
the red points correspond to the well locations, the black dots
correspond to the manually annotated “sand” pixels, and the white
stripes correspond to manually annotated “shale” pixels. The connec-
tions from the hand-labeled facies voxels have a 6-tile setting
(Fig. 4(a)).

Geologists are used to make several assumptions about the
geological model, mainly during the geologic evaluation of a reservoir
in the exploration phase, where the available labeled data (i.e.,
porosity) is really scarce. The hand-labeling step is not necessarily a
requirement for the E-TCRFR method to work, but it can substantially
improve the porosity prediction results, if the geologist detains
sufficient expert knowledge to assign some hand-labeling facies. It is
important to keep in mind that even one pixel in one slice in the whole
volume can be already of great help for the method, as this valuable
information is propagated throughout the whole 3D segment that pixel
(voxel) belongs to in the volume, due to the graph structure.

3.4. Enhanced TCRFR

Here we give a mathematical description of our proposed method.
The enhanced TCRFR (E-TCRFR) solves the following problem:

min }n+m

v {”l
uE‘I‘(],ve'I'(z,(niEZ)g'l”’

subjectto  {mhem = 2.

©)]
where M is the index set of the hand-labeled voxels and 2 € ZM' the
corresponding set of facies categories. Note that we treat the hand-
labels as hard constraints, assuming that the geologists give labels only
when they are confident. £ (u, v, {r;}/4]") is a convex combination of the
objectives of the regression model and the conditional random field:

L, v, {miZi") = 0L, (mliz) + (1 = 0) Lax v, {m}i21"), (7)
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where
1 n
Lo, {m) == ulf + = Dby — (u, @G m))P,
2 Z; ®
1 | <
Lo (mh2) = ST 0E = X 00 ¥ (ikers (mier)
c=1
+log Z ({x;}21", v). 9)

In Eq. (9), we incorporate the result by graph-based segmentation. C
denotes the number of segments, and the disjoint set 7, for ¢ = 1,...,C
consists of the voxel indices within each of the segments. The joint
feature map ¥ ({x;}er., {m}icz,) is constructed according to the neigh-
borhood graph construction explained in Section 3.2.

For drastically saving computation time, we skip the MAP-inference
for some segments in the following way. Each segment ¢ =1,..., C
satisfies either of the following:

(a) The segment contains no labeled sample nor hand-labeled voxels;

(b) The segment contains only a single labeled samples or voxels hand-
annotated to a signal facies category;

(c) The segment contains multiple labeled samples and/or voxels
hand-annotated to multiple facies categories.

For the segments satisfying (a), our E-TCRFR cannot do much, because
the voxels in the segments are completely unlabeled. For those
segments, we assign the same facies category to the voxels in each
segment by majority voting based on the impedance. Also for the
segments satisfying (b), we assign the same facies category to the voxels
in each segment, however, in this case, the category is the one
estimated for the labeled voxel from the porosity or the one given to
the hand-annotated voxels in the segment. The full MAP-inference is
applied only to the segments satisfying (c). Although (a) and (b) are
exceptional cases where the full MAP inference is not necessary, those
cases apply to many segments under very sparsely labeled scenario.
Since the computation for those cases is done with constant time
complexity, this strategy provides a huge boost in runtime perfor-
mance.

For case (c), the optimization is performed in a similar fashion to
the original TCRFR. The pseudo-code is given in Algorithm 2.

Algorithm 2. Enhanced TCRFR algorithm.

Put t = 0 and initialize '’ and v’ (e.g., randomly)
repeat

Computers & Geosciences 106 (2017) 33—48

t:=t+ 1
c=0
repeat

Update {/}ie;, according to setting (a), (b), or (c) for the
current partition using the intermediate solutions #'~!' and v'~!
c=c+1
until ¢ = C
(2) Update u' with fixed {z/ )"
(3) Update v' with fixed {z/}}"
untilvi=1,...,N: 7/ = /!
Predict unlabeled examples x; = n + 1,...,n + m using the
n+m

inferred states {z/}}2},
u'y, =, @, )

and regression parameter

Fig. 5 illustrates how the additional techniques work in an example
situation. TCRFR assumes that the impedance for the whole volume
and the porosity observation at the wells (red dots in Fig. 5(a)) are
given. Additionally, E-TCRFR assumes hand-labeled voxels (black dots
and white stripes in Fig. 5(a)), and it performs graph-based segmenta-
tion on the impedance data (Fig. 5(b)). Note that Fig. 5(b) shows a slice
of the segmented volume and each disconnected segment in this slice
with the same color actually belongs to a single 3D segment (for
example the cyan regions in the upper part).

The two figures on the right show the facies estimation results by E-
TCRFR without (Fig. 5(c)) and with (Fig. 5(d)) the hand-labeled
annotations. We can see that the hand-labels are helpful in the regions
where there are no wells.

4. Experimental results

In this section, we conduct experiments on synthetic and real
reservoir datasets. On the synthetic data, we compare the performance
results with the provided ground truth for different criteria: for
prediction, we show the median absolute error (MDAE) and the
coefficient of determination (R?) score; for clustering (latent variable
estimation) accuracy, we show the adjusted rand score (ARS). On the
real dataset, we visually compare the results obtained with our
proposed method with the ones provided by the classical geostatistics
approach (Deutsch and Journel, 1998).

4.1. Empirical evaluation on synthetic seismic data

We use the second layer of the Stanford VI synthetic 3D reservoir

()

Fig. 5. Illustration of the effect of E-TCRFR. (a) Impedance input slice with well locations (red dots) and fixed facies given by annotators. The white stripes represent “shale” facies and
the black dots represent "sand” facies; (b) the 3D graph-based segmentation image; (c) the estimated facies by E-TCRFR without hand-labeling; (d) the estimated facies by (full) E-
TCRFR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Four distinct regions used for the synthetic data experiment. The red dots correspond to the well locations. Top row: the shear impedance input; Middle row: (a slice) of the
graph-based segmented volume; Bottom row: manual annotations given by a geologist, where the white stripe voxels are annotated as the “"shale” facies, and the black dot voxels are
annotated as “sand” facies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(Castro et al., 2005) (150 x 200 x 40 voxels), consisting of meandering ments by merging the point bar and channel sands in one facies (sand),
sand channels. For reservoir exploration purposes, it is enough to and the floodplain and boundary in another one (shale).

segment the meandering depositional system from the shale in this We divide the volume layer in four zones (in the z direction) that
example Miall, 2014, so we simplify the data model for our experi- present distinct geometry shapes (Fig. 6) and apply our method on

SN

Fig. 7. Estimated facies by E-TCRFR for 4 different regions in the synthetic data. The red dots correspond to the well locations. Top row: the ground truth facies; Bottom row: estimated
facies by E-TCRFR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Estimated porosity by E-TCRFR for 4 different regions in the synthetic data. The red dots correspond to the well locations. Top row: the ground truth porosity; Bottom row:

estimated porosity by E-TCRFR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Performance on synthetic seismic data.

Zone # Slices MDAE R2 ARS

1 12 0.17122 0.82054 0.68739
2 0.17492 0.80693 0.69699
3 10 0.16267 0.90446 0.86022
4 0.16527 0.91091 0.86165

(a) (b) (c)

Fig. 9. Facies (top) and porosities (bottom) results for different TCRFR methods. (a) ground truth; (b) original TCRFR; (c) TCRFR with graph construction based on the segmented

volume; (d) TCRFR with manual annotations; (e) (full) E-TCRFR.
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Fig. 10. Porosity statistics: (a) true porosity distribution; (b) estimated porosity distribution by E-TCRFR; (c) true vs. estimated porosity cross plot. Sand facies samples in yellow and

shale facies samples in blue.

each of them separately. For the input data, we use the shear
impedance volume.

Porosity observation is given at 17 production wells available in the
reservoir (P1-P6 and P21-P31 in Castro et al. (2005)). For each of the
four zones described above, we use all the porosity observations at the
17 wells.

The hyperparameter 0, A, I" are set in the following way: Let I" = v/
with v € R* and I being the identity matrix with ones on the diagonal
and zeros elsewhere. We then adjusted v such that the terms in Egs. (8)
and (9) are leveled. This simple heuristic proved to work reasonably
well on toy data. For the choice of 8 and A we applied leave-one-out
cross-validation for each of the 17 wells, obtaining 6 = 0.99 and 4 = 1.

Figs. 7 and 8 show the quality of facies and porosity estimation,
respectively, by E-TCRFR. We see that E-TCRFR (bottom row in each
figure) accurately estimates the ground-truth (top row). Table 1 shows
quantitative results with the performance criteria.

Fig. 9 compares the performance of E-TCRFR and the original
TCRFR.” Comparing with the ground truth (Fig. 9(a): facies (top) and
porosity (bottom)), we clearly see that E-TCRFR (Fig. 9(e)) outper-
forms the original TCRFR (Fig. 9(b)). Fig. 9(c) and (d) show the results
with other variants of TCRFR, where just one of the new techniques,
i.e., the new graph-construction and the incorporation of manual
annotation, is applied. We see that in this case both techniques are
essential for good performance of our proposed method. In particular,
in Fig. 9(c) the sand (yellow) channel is disconnected because of the
lack of label information which is compensated by hand-labeling in
Fig. 9(e), while in Fig. 9(d) the facies of the main sand channel is
accurately estimated, but the method incorrectly classifies shale (blue)
regions (mainly on the top left corner of the slice) as sand. As a result,
the regression model for the sand facies is inaccurately trained, which
results in a poor porosity prediction over the sand channel regions.

Fig. 10 shows some statistics of the true and the estimated porosity
distributions by E-TCRFR. Fig. 10(a) and (b) show that the distribution
of the estimated porosity is quite similar to the distribution of the true
one.

Fig. 10(c) shows that there are two small clusters with misclassified
samples: The blue one on the top shows shale (low) porosity samples
that were incorrectly classified into the sand facies; the yellow one on

5 We omit comparison with the previous methods other than TCRFR, since they were
shown to be outperformed by the original TCRFR (Gornitz et al., 2017).
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the bottom shows sand (high) porosity samples incorrectly classified in
the shale facies.

We performed sensitivity analysis on a slice of the synthetic data,
progressively adding Gaussian noise over the impedance input with
impedance values varying from 0% to 100%. Fig. 11 presents the
results. The top row of Fig. 11(a)—(e) shows the impedance input data.
The second row presents the corresponding estimated facies and the
third row shows the estimated porosity. The coefficient of determina-
tion (R2) and median absolute error (MDAE) results are presented in
Fig. 11(f). It can be observed that even with 20% Gaussian noise the R2
performance is still close to 85%, while the MDAE increases linearly
with the noise.

Fig. 12 presents sensitivity analysis considering the hand-labeled
facies. In Fig. 12(a) some portions of the sand channel are not correctly
identified by the method. In Fig. 12(b) we added a black (“sand”) point
on the upper half of the slice and, as a result, a good portion of the
channel is now detected by E-TCRFR. Adding a second black point to
the bottom half of the slice in Fig. 12(c) makes it possible for the
method to connect the whole sand channel. Fig. 12(d) and (e) illustrate
that adding more black points to the slice do not necessarily further
improve the overall result, showing that E-TCRFR just requires a
minimum number of hand-labeled points to provide a good perfor-
mance. The MDAE and R2 plots shown in Fig. 12(f) and (g) present the
corresponding increase in the method's performance as a result the
added hand-labeled facies.

E-TCRFR execution time is approximately linear in the number of
samples as shown in Fig. 13, where the method is executed varying the
number of contiguous slices in the volume from one (30,000 samples)
to 10 (300,000 samples).

4.2. Porosity prediction on real seismic data

We now apply our proposed method to a real carbonate reservoir,
located in the offshore coast of Brazil (cf. Fig. 14). It covers an area of
approximately 100 square kilometers, with 460 m in depth. The
reservoir is part of the sedimentary rock formation whose depositional
model is presented in Fig. 15. It comprises a carbonate platform with
progressive shallowing cycles strongly related to subsidence, salt
tectonics and sea level oscillations. The reservoir is composed of
oolitic/oncolytic calcarenites developed in high energy environments
(oolitic shoals). These shoals were developed in the highest parts of the
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Fig. 11. E-TCRFR sensitivity analysis on a slice of the synthetic data: increasing Gaussian noise applied to the impedance input, from 0% to 100% standard deviation over the original
values. Top row: the impedance input; Second row: the estimated facies; Third row: the estimated porosity; Bottom row: sensitivity analysis plots for median absolute error (MDAE) and
coefficient of determination (R2) with increasing Gaussian noise over the original input impedance.
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Fig. 12. E-TCRFR sensitivity analysis on a slice of the synthetic data for increasing number of hand-labeled facies defined by the geologist. Top row: the impedance input; Second row:
the estimated facies; Third row: the estimated porosity; Bottom row: sensitivity analysis plots for median absolute error (MDAE) and coefficient of determination (R2) with increasing
number of hand-labeled facies.
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Fig. 13. E-TCRFR execution time (in minutes) from one to ten contiguous slices. Each slice contains 30,000 samples.
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Fig. 14. The real data reservoir: (a) 3D view of an acoustic impedance subvolume in the reservoir with a cut section passing along the four wells; (b) map view; (c) section view passing
along the four wells.
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Fig. 15. Depositional model: (A) terrigenous, tidal plain; (B) wackstones/packstones;
(C) oolitic grainstones; (D) peloidal packstones; (E) oncolytic packstones; (F) wack-
stones/mudstones (open sea).

structures generated by the movement of the salt that accumulated in
that area during middle Albian. The variations in the tectonic regime
and/or fluctuations of the sea level promoted the cyclicity in the
depositional system characterized by the intercalation of sediments
with high and low energy. The extensive deposits of low energy, formed

Computers & Geosciences 106 (2017) 33—48

Table 2
Comparison between TCRFR and E-TCRFR on the real dataset. Errors are evaluated by
using the geostatistics estimation as reference.

Method RMSE MDAE
TCRFR 0.89065 0.48472
E-TCRFR 0.44430 0.17930

during high-sea level correspond to seals to distinct reservoir units.
Three facies groups occur in this region: grainstone at the bar crests
with high energy sediments; oolitic/oncolytic packstones with moder-
ate to low energy sediments at the flanks of the shoals; and peloidal
packstones and wackestones in depressions located around the bars.

The volume data in the reservoir region comprises 313 x 549 x 74
voxels of acoustic impedance samples and four exploratory wells with a
total of 121 (impedance, porosity) pair samples in seismic resolution. The
impedance volume was previously obtained using constrained sparke-
spike inversion in the Jason™ Workbench. We chose a subvolume with
6 contiguous time slices and used all the porosity values provided by
the four wells, so the number of labeled samples correspond to
approximately 0.01% of the total number of samples in this subvolume.
We also estimated the porosity with the traditional geostatistics
approach. The algorithm used was 3D Kriging with Locally Varying
Mean (LVM).

Fig. 16 shows (a) a time slice of the seismic impedance input with
manual annotation; (b) the graph-based segmentation result; (c) the
estimated facies by the original TCRFR; (d) the estimated facies by the

P

’

Fig. 16. Estimated facies and predicted porosity for one slice in the real data: (a) impedance input with manual annotations; (b) graph-based segmentation; (c) facies estimated by
original TCRFR; (d) facies estimated by E-TCRFR; (e) porosity estimated by original TCRFR; (f) Porosity estimated by E-TCRFR; (g) porosity estimated by geostatistics.
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Fig. 17. Porosity statistics: (a) geostatistics porosity distribution; (b) E-TCRFR porosity distribution; (c) geostatistics vs. E-TCRFR porosity cross plot.

improved TCRFR, (e) the estimated porosity by the original TCRFR; (f) the
estimated porosity by E-TCRFR; and (g) the estimated porosity by
geostatistics. Here we used the same hyperparameters estimated for the
synthetic case.

We can observe a significant gain from the original TCRFR—our
improved TCRFR (f) gives a more similar result to the geostatistics
estimation (g) than the original TCRFR (e). As we see in Fig. 16(c), the
original TCRFR is not able to correctly estimate the facies, as the number of
labeled samples (121 in this case) is much smaller than the unlabeled
samples (more than a million). Only one facies was found, leading to just
one regression model. With E-TCRFR, three facies were estimated.

Table 2 shows the RMSE and MDAE errors by original TCRFR and
E-TCRFR from the geostatistics estimation and Fig. 17 shows the
estimated porosity histograms and a cross plot comparing the geosta-
tistics and E-TCRFR estimation results. Again, one can observe that the
results from the improved TCRFR are similar to the ones obtained with
the geostatistical approach.

It is worth noting that our E-TCRFR gives sharper contours than
the geostatistics estimation. Although we cannot argue with only the
current results that this is an advantage of E-TCRFR over the
geostatistics estimation, it might imply that our semi-automatic
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method has a potential to improve even geostatistics estimation.

In general, even with partial facies overlap, E-TCRFR is able to
estimate the different facies present in a reservoir as long as the
corresponding regression models are distinct, i.e., if the slope and/or
intercept for each facies linear regressor is different from all the others.

5. Conclusion

Machine learning techniques have been applied to many fields in
recent decades. However, in many cases there still remains a gap
between the state-of-the-art machine learning methods and automatic
industrial tools. The oil industry is not an exception. Our work in this
paper to improve transductive conditional random field regression
(TCRFR) is exactly an effort to fill this gap, and make a machine
learning method a practically useful tool.

Equipped with two image processing techniques, our enhanced
TCRFR has taken a significant step forward in this direction, getting
closer to become a practical option for geologists in real applications.
Future work will aim to further enhance our method, minimizing
human interactions. Outside the application field of the oil industry,
where we mainly encounter spatial statistics, we consider TCRFR of
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Appendix A. Detail of graph-based segmentation (Felzenszwalb and Huttenlocher, 2004)

The volume is represented as a graph G = (V; E), where each node v; € V corresponds to a voxel and the edges in E connect pairs of neighboring
voxels (v;, vj) € E in a 6-connected tile, as shown in Fig. 4(a). A weight w ((v;, v))) is associated with each edge. This weight is a non-negative measure
of the dissimilarity between neighboring elements v; and v; based on the RGB color intensity difference between the voxels that it connects:
w((v, v)) = I (p) — I(p)\. I (p,) represents the color intensity of voxel p;.

The method is executed once for each of the red, green, and blue color components. Two neighboring voxels are set in the same cluster only if
they independently belong to each of the same red, green, and blue clusters.

The segmentation S is a partition of V into clusters such that each cluster C; € S corresponds to a connected component in a graph G’ = (V; E’),
where E’ C E. The algorithm compares inter-cluster differences to intra-cluster differences for every pair of adjacent clusters to create a boundary.
The idea is that edges between two vertices in the same cluster should have relatively low weights, and edges between vertices in different cluster
should have higher weights.

Appendix B. A simple example of joint feature maps

Our model consists basically of two parts: a latent variable with spatial connections part and a regression part. The defined two joint feature
maps for the CRF are ¥, and, for the ridge regression part @. The feature map ¥ resembles a CRF corresponding to an undirected graph G = (V, E)
with binary edges E (i.e., spatial connections) and vertices V (i.e., impedance measurements), where each vertex represents a sample and the state
space S:={0,...,K — 1} depends on the number of facies K.

In our little example, let G be a simple chain of length n with hidden variables s and 2-dimensional observations x (x° and x!) much like a
hidden Markov model. For further simplicity, we assume the feature mapping function ¢ to be the identity. The latent variables (facies) can take 2
distinct states 0 and 1 (i.e. S = {0, 1} and a realization of z € §).
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Hence, our joint feature map consists basically of two parts: a part that counts the number of state transitions and another emission part that
counts observations in a specific state. An illustrative example hereof is given in Fig. B.18.
The joint feature map @ for the regression part is much simpler (again, we assuming ¢ is the identity)

(B.1)
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Fig. B.18. An illustrative example of joint feature maps. (A) depicts the graphical model: a Markov random field with binary connections between latent variables (7, 2 states: State 0
and State 1) and between latent variables and observations (2 dimensional, continuous) x. (B) gives a concrete example with two observations (blue and red respectively) and latent
variables (black) while (C) gives an intuition how this examples translates into a joint feature map. Here, the red box sums the measurements from Observation 0 and State 1 and sets

them accordingly in the joint feature map.
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where A(x) € {0, 1}X with entries (A(z)) = 1 if # = k and 0 otherwise. Hence, when K = 2 the feature map can be re-written as

x0 ifz=0c¢lse 0
1 5 —
Dl m) = p) @ A = | %) Hr=0eke O g
xV ifr=1else O
x! ifz=1else 0
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