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a b s t r a c t

A numerical model based on the lattice Boltzmann method is presented to investigate the viscous fin-
gering phenomena of miscible displacement processes in porous media, which involves the fluid flow,
heat transfer and mass transport. Especially, temperature- and concentration-dependent pore-fluid
viscosity is considered. A complete list is derived and given for the conversion of relevant physical
variables to lattice units to facilitate the understanding and implementation of the coupled problems
involving fluid flow, heat transfer and mass transport using the LBM. To demonstrate the proposed model
capacity, two different complex geometry microstructures using high resolution micro-computed to-
mography (micro-CT) images of core sample have been obtained and incorporated as computation
geometries for modeling miscible displacement processes in porous media. The viscous fingering phe-
nomena of miscible displacement processes are simulated in two different cases, namely in a channel
and a porous medium respectively. Some influencing factors on the miscible displacement process, such
as the pore-scale microstructure, Le number and Re number, are studied in great detail. The related
simulation results have demonstrated that: (1) the existence of the pore-scale microstructure can have a
significant effect on the front morphologies and front propagation speed in the miscible displacement
process; (2) as the Le number increases, the fluid front and thermal front evolve differently, with the
thermal front being less unstable due to more diffusion; (3) a larger Re number can lead to an increase in
the propagation speed of the front.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The fingering instability is a general phenomenon in natural,
which has a wide scientific and engineering background in the
fields of geosciences, petroleum engineering, underground mining
engineering, environment engineering and so forth. Generally, the
fingering instability can be triggered by many mechanisms, such
as viscosity mismatch between a less viscous fluid (i.e. displaced
fluid) and a more viscous fluid (i.e. displacing fluid), variation of
permeability and porosity in the porous media, and dissolved of
trapped nonaqueous phase liquids (NAPL) into aqueous phase
fluid. It is often called the viscous fingering instability (Ghesmat
and Azaiez, 2009; Saffman and Taylor, 1958), chemical-dissolution
front instability (Chadam et al., 1986; Zhao et al., 2008), and NAPL-
dissolution front instability (Imhoff and Miller, 1996; Zhao et al.,
2010), respectively. Owning to significant mechanism differences
between them, this paper focuses on the consideration of viscous
fingering problems.
In the case of viscous fingering instability, a less viscous fluid is
intruded into a more viscous fluid, so that the interface between
them can become unstable, resulting in the formation of viscous
fingering. It should be noted that when injected fluid velocity is
larger enough, the solid matrix will be destructed, and then the
permeability will be increased. It is so-called hydraulic fracturing.
Meanwhile, fluid-injection induced microseismicity will be gen-
erated, and its location can be analytical determined (Dong and Li,
2012; Dong et al., 2015a, 2015b). From the perspective of the two
fluids interaction, viscous fingering instability may occur in two
different processes (Homsy, 1987). One is the immiscible dis-
placement, in which the surface tension at the interface cannot be
neglected. The other is the miscible displacement, in which the
surface tension at the interface can be neglected. The main focus of
this investigation is on the computational aspects of the viscous
fingering in the miscible displacement process. Thus, a large
amount of researches have been carried out for understanding the
viscous fingering phenomenon over the past decades (Islam and
Azaiez, 2010; Rakotomalala et al., 1997; Yortsos and Zeybek, 1988).
All these researches were conducted at the representative

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2015.12.014
http://dx.doi.org/10.1016/j.cageo.2015.12.014
http://dx.doi.org/10.1016/j.cageo.2015.12.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.12.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.12.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.12.014&domain=pdf
mailto:xiaming105@126.com
http://dx.doi.org/10.1016/j.cageo.2015.12.014


M. Xia / Computers & Geosciences 88 (2016) 30–40 31
elementary volume (REV) scale, in which fluid flow is often de-
scribed by the Darcy's law. However, some flows deviated from the
linear relationship between Darcy velocity and pressure gradient,
which is called non-Darcy flow. Recently, Wang et al. (2012, 2013,
2015) have conductive some researches on the non-Darcy effects
on the performance of coal seam gas wells. At the REV scale, a real
porous medium, which contains the solid skeleton and the voids
with fully or partly occupied by fluid, is averaged into a homo-
geneous medium by the macroscopic average method. The com-
plex interaction between the fluid and microscopic porous struc-
ture in the porous medium at the REV scale are represented by
two macroscopic physical quantities, namely porosity and per-
meability. Although this treatment has simplified and favored the
theoretical analysis and numerical modeling, a detailed descrip-
tion of the pore structure is often neglected. Since pore structure
may have an important effect on the miscible displacement, it is
necessary to use a finer-scale model, in which the pore structure is
directly considered, so that the characteristic of fluid flow can be
described by the Navier–Stokes (NS) equations.

The accurate analytic solution of the miscible displacement
process in porous media is a challenging problem due to the
complexity of transport mechanisms with consideration of solid–
fluid interaction and the difficulty in representing the complicated
and tortuous nature of a porous medium accurately. As an alter-
native approach, numerical modeling has become a useful tool for
investigating the viscous fingering in miscible displacement pro-
blems through solving the NS equations directly. However, from
the macroscopic point of view, the major difficulty in modeling the
viscous fingering of miscible displacement in the porous medium
is the description of the complex geometry structure at the pore-
scale with some continuum-based numerical methods, such as the
finite element method (FEM) and finite difference method (FDM).
On the contrary, the lattice Boltzmann method (LBM) is a meso-
scopic simulation method, and the complex geometries of the
porous media can be easily considered. In particular, the LBM has a
sound theoretical foundation, on which the incompressible NS
equations can be derived form the Boltzmann equation through
the Chapman–Enskog procedure (He and Luo, 1997). This method
has already been used to study both the miscible and immiscible
displacement (Dong et al., 2011; Kang et al., 2004), in which the
fluid flow and mass transport were considered. Although the
previous works considered the displacement in a channel or a
porous medium with regular pore structure, both the real pore
structure and heat transfer process are neglected.

The forthcoming contents of this paper are arranged as follows.
In Section 2, the coupled lattice Boltzmann model that can be used
to simulate the coupled fluid flow, heat transfer and mass trans-
port problem is described. In Sections 3 and 4, the miscible dis-
placement process in both a channel and a porous medium are
simulated, respectively. The temperature- and concentration-de-
pendent pore-fluid viscosity and the effect of the pore-structure
are taken into account. In addition, to demonstrate the proposed
model capacity, two different complex geometry microstructures
using high resolution micro-computed tomography (micro-CT)
images of core sample have been obtained and incorporated as
computation geometries for modeling miscible displacement
processes in porous media. Finally, some conclusions and discus-
sion drawn from this study are given in Section 5.
2. The coupled lattice Boltzmann model

2.1. Lattice Boltzmann model for coupled fluid flow, heat transfer and
mass transport

In the LBM, a space domain is divided into regular lattice nodes,
while a fluid domain is divided into a large number of fluid par-
ticles that are allowed to move between lattice nodes or stay at
rest. At the same time, a time domain is also divided into a large
number of discrete time steps. During each discrete time step of
the simulation, there are two main processes for each fluid parti-
cle, namely the collision process and the streaming process. In the
collision process, a fluid particle can collide with another fluid
particle that arrives at the same node. The macroscopic variables
in this node are updated by following some rules. While in the
streaming process, the updated fluid node can move to its
neighboring lattice node along the moving direction. Within these
processes, data exchange between neighboring nodes is only
necessary.

According to the Boussinesq approximation, fluid density can
be assumed to be a linear function of both temperature and con-
centration, which is expressed as follows:

( ) ( )ρ ρ β β= − − − − ( )⎡⎣ ⎤⎦T T C C1 1T C0 0 0

where ρ is the pore-fluid density; ρ0 is the reference density of
pore-fluid; T is the pore-fluid temperature; T0 is the reference
pore-fluid temperature; C is the chemical species concentration;
C0 is the reference concentration of the chemical species; βT is the
thermal expansion coefficient of pore-fluid; βC is the concentration
expansion coefficient of the chemical species.

The considered coupled problem involves fluid flow, heat
transfer and mass transport in a two dimensional system with the
temperature- and concentration-dependent fluid densities. The
corresponding governing equations of the problem can be ex-
pressed as follows:
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where = ( )u uu ,x y is the velocity vector; p is the pore-fluid pres-
sure; v is the kinematical viscosity; F is the body force; α is the
thermal diffusion coefficient; D is the mass diffusion coefficient; g
is the gravity acceleration component in the vertical direction.

Based on the idea of the LBGK model, the temperature and
concentration can be treated as passive scalars (Chen and Doolen,
1998). Thus, fluid velocity, temperature and chemical species
concentration can be treated individually. By following the popular
linearized single-relaxation-time BGK formulation, the density-,
temperature- and concentration-distribution functions at each
time step are given as follows:
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Fig. 1. Geometry and boundary conditions for the miscible displacement problem
in a porous medium.
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where for any grid node x , + Δtx ei is its nearest neighboring node
along direction i; fi

eq, gi
eq and hi

eq are the equilibrium density-,
temperature- and concentration-distribution functions, respec-
tively; τf , τT and τC are the dimensionless relaxation time of the
density, temperature and concentration, respectively; cs is the
lattice sound speed; ei are the discrete velocities; Δt is the discrete
time step; ωi is the weighting factor.

Note that Eqs. (7–10) can be recovered from Eqs. (2–6), which is
the theoretical foundation for the success of the coupled lattice
Boltzmann model for modeling fluid flow, heat transfer and mass
transport problems.

In the commonly used D2Q9 model, the fluid particle at each
node can move to its eight immediate neighboring nodes with
discrete velocities ei (i¼0,…, 8). The discrete velocities are defined
as follows:
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where ( = Δ )c h t/ is the lattice speed with h and Δt being the
lattice spacing and time step, respectively.

The equilibrium density-, temperature- and concentration-
distribution functions depend only on the fluid density and velo-
city, which are defined in the D2Q9 model as follows:
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where ωi is the weighting factor with ω = 4/90 , ω =− 1/91 4 and
ω =− 1/365 8 .

The macroscopic fluid variables, namely density, velocity,
temperature and chemical species concentration, can be recovered
from the distribution functions as follows:
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The fluid pressure field is determined by the following equation
of state: ρ=p cs

2 , where cs is termed the fluid speed of sound and is
related to lattice speed c as follows: =c c/ 3s in the D2Q9 model.

The kinematical viscosity, thermal diffusion coefficient, and
mass diffusion coefficient of the fluid is implicitly determined as
follows:
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2.2. Concentration- and temperature-dependent fluid viscosity

The concentration- and temperature-dependent viscosity is
implemented in the present study, which is expressed as follows
(Tan and Homsy, 1986):

μ μ α α( ) = ( − − ) ( )C T exp C T, 22C T2

where μ2 is the viscosity of displaced fluid; αC is the natural
logarithm of the viscosity ratio (i.e. α μ μ= ( )log /C 2 1 ); thermal mo-
bility ratio αT represents the natural logarithm of the ratio of the
viscosity ( μ μ/T T2 1) at two different temperatures.

2.3. Boundary and initiation conditions

Fig. 1 shows the geometry and boundary conditions for the
miscible displacement problem, in which the computational do-
main for this example is a rectangular box with the length of Lx

and height of Ly. The pore space is initially fully-filled with a more
viscous fluid, and then a less viscous fluid with an initial velocity
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of u0 is applied to the left boundary to displace the more viscous
fluid, implying that there is a horizontal through flow from the left
to the right of the computational domain in the miscible dis-
placement process. Due to the viscosity difference between the
displaced fluid and displacing fluid, the interface between them
will become unstable, and then the viscous fingering will be
generated. Both the temperature of the displaced fluid and the
concentration of the chemical species are equal to zero initially.
While the temperature of the displacing fluid applied to the left
boundary of the computation domain is T1. Similarly, the con-
centration of the chemical species applied to the left boundary of
the computation domain is C1.

The treatments of boundary conditions play an important role
within both the FEM and LBM. However, compared with the FEM,
the boundary condition cannot be directly defined in the LBM. All
these macroscopic parameters at the boundary condition should
be converted into its corresponding distribution function at the
boundary nodes. In the present study, since the pore-structures
are considered, the treatment of solid–fluid interface in the solid
surface is a very important issue. The half-way bounce-back
boundary condition is adopted to represent no-slip conditions
along the solid surface. It can be defined that the nodes covered by
the solid particles are solid nodes, while the nodes in the fluid
region are fluid nodes. Note that the wall boundary is assumed to
be situated halfway between a solid and fluid node so as to achieve
second-order accuracy (Feng et al., 2007). The half-way bounce-
back rule requires that the incoming fluid particles from the fluid
node be reflected and bounced back in the opposite direction, i.e.

( + Δ ) = ( )‵f t t f tx x, ,i f i f , where xf is the position of the fluid node
close to the wall, i is the streaming direction that points at the
wall, and ′i is the opposite direction.

While in the present study, the temperature and concentration
boundary scheme is imposed on the inlet and outlet. Regarding
the outlet, the open flow boundary condition is adopted. The up-
per and lower boundary adopted the no-slip boundary condition.
Some concentration boundary conditions have been developed
(Chen et al., 2013; Zhang et al., 2012). In the present study, the
approach of Chen et al. (2013) is adopted at the computational
domain boundary. Meanwhile, the solid skeleton is impermeable.
Thus, as for the thermal and mass boundary conditions at the
fluid–solid interface, the bounce-back wall boundary condition is
also adopted. The lattice units are used to speed up the
computation.

It should be noted that when the lattice nodes are located on
the solid sub-domains, the density-, temperature- and con-
centration-distribution functions in Eqs. (7)–(9) are all equal to
zero, and hence the fluid velocity, fluid temperature and chemical
species concentration need not be calculated. The reason for this is
that the pore structure is impermeable, and then the fluid flow
only through the pore space at the pore scale. Recently, the com-
plicated fluid behavior in fractured porous media with variable
permeable pore structure is simulated at the REV scale (Gao and
Xing, 2012; Gao et al., 2014).

2.4. Conversion between physical and lattice units

It should be noted that both the physical units and the lattice
units can be used in the LBM formulation and computation.
However, compared with the physical units, the formulation as-
sociated with the lattice units is simpler and computational more
efficient. This is the reason why the lattice units system is widely
adopted in the LBM formulation and computation. In the present
work, the LBM is also implemented using the lattice units with
necessary conversions between the physical and lattice Boltzmann
systems. In order to facilitate the implementation and gain a better
understanding of the LBM, a theoretical analysis to established the
relationship of the variables used in the LB model between these
two unit systems has been conducted, in which a superscript ‘p’
and ‘LB’ are used to indicate a variable in the physical units and
lattice units, respectively.

The relationship of physical and lattice units associated with
temperature and chemical species concentration can be expressed
as follows:

=
−

− ( )
T

T T

T T 23
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p p

p p
min

max min
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where T p and TLB are the temperatures in the physical system and
lattice system, respectively; T p

min and T p
max are the minimum and

maximum temperatures in the physical system, respectively; Cp

and CLB are the concentrations of the chemical species in the
physical system and lattice system, respectively; C p

min and C p
max are

the minimum and maximum concentrations of the chemical
species in the physical system, respectively.

According to Eq. (1), the following equations exist:
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Substituting Eqs. (27) and (28) into Eqs. (25) and (26) yield the
following equations:

β Δ β Δ= ( )T T 29T
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T
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β Δ β Δ= ( )C C 30C
p p
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LB LB

Substituting Eqs. (23) and (24) into Eqs. (29) and (30) yield the
following equations:
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The relationship between physical system and lattice system
associated with other nine variables (i.e. αL u g c v k D, , , , , , ø, ,s ) in
the coupled problems involving fluid flow, heat transfer and mass
transport using the LBM can be analytically determined using the
dimensional analysis. These parameters can be divided into in-
dependent and dependent parameters. According to the Buck-
ingham π theorem (Buckingham, 1914), two independent dimen-
sions associated with two of the nine parameters need to be used
for describing the coupled problems involving fluid flow, heat
transfer and mass transport using the LBM, so that seven di-
mensionless parameters (i.e. α( )g u L c u v Lu k L Lu D Lu/ / , / , / , / , ø, / , /s

2 2 )
are involved in the mathematical expressions of the coupled
problems. According to the dimensional analysis (Tan, 2011), the
following equations exist:
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As for the conversion between physical and lattice units, the
following equations exist (He et al., 2009):

= ( )L L L 40p
r

LB

= ( )uu u 41p
r

LB

where Lr is the reference length, m; ur is the reference velocity, m/
s.

After substituting Eqs. (40) and (41) into Eqs. (33)–(39), a
complete list is given in Table 1 for the conversion of the variables
used in the LBM between these two unit systems.
3. Simulation of viscous fingering phenomenon of miscible
displacement in a channel

In order to model the viscous fingering phenomenon of mis-
cible displacement, especially involving the coupled fluid flow,
heat transfer and mass transport with the consideration of tem-
perature- and concentration-dependent viscosity, the proposed
Table 1
Conversion between physical and lattice units.

Variable Physical Lattice Relationship

Density ρp ρLB ρ ρ ρ=p LB
0

Length Lp LLB =L L Lp
r

LB

Velocity up uLB = uu up
r

LB

Spacing =h Lp
r =h 1LB –

Discrete time step Δ =t p Lr
ur

Δ =t 1LB –

Gravity acceleration gp gLB
= ( )g gp ur

Lr
LB

2

Sound speed cs
p cs

LB =c u cs
p

r s
LB

Kinematic viscosity νp νLB ν ν= L up
r r

LB
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Porosity øp øLB =ø øp LB
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Thermal diffusion coefficient αp αLB α α= L up

r r
LB

Mass diffusion coefficient Dp DLB =D L u Dp
r r

LB
coupled lattice Boltzmann model is designed to simulate the vis-
cous fingering phenomenon of miscible displacement in a channel
firstly. Since the real pore structure may have certain effects on the
viscous fingering of the miscible displacement at the pore-scale,
the porous medium is considered through a detailed parametric
study in the next section. In the simulations, the computational
domain is divided into a 400�100 lattice grid. The following
properties of the fluid are used in the LB models: the injection
velocity (u0) at the inlet is 0.02, the viscosity of the displaced fluid
(v2) is 0.02 with a solute mobility ratio α = 1.6C , the thermal dif-
fusion coefficient (α) is 0.0056, the mass diffusion coefficient (D) is
0.0056. The temperature and chemical species concentration are
both equal to 1.0 at the left boundary. In the following sections,
only the considered parameter is changed, while keeping other
parameters unchanged. In the numerical simulation, the average
density and the initial density of the fluid are all equal to 1.0, while
the particle speed is 1.0.

3.1. Effect of Le number

In order to investigate the effect of the Le number ( α=Le D/ ) on
the evolution of the miscible displacement process in a channel,
two different Le numbers are presented. In this section, the case
simply corresponds to a displacement with a solute mobility ratio
α = 1.6C where heat transfer has no effect on viscosity (i.e.
α = 0.0T ). The mass diffusion coefficient (D) is fixed to 0.0056,
while the thermal diffusion coefficient ( α) is choose to 0.0056,
0.056, and 0.56, respectively, so that the corresponding Le number
is 1, 10, and 100, respectively. All other parameters are kept the
same as those used in Section 2.3.

Fig. 2 shows the comparison of the miscible displacement
process with different Le numbers at t¼20,000. It is interesting to
note that the fluid front and thermal front evolve at the same rate
with Le¼1. The reason for this is that the heat transfer and mass
transport processes have the same diffusion coefficients. For all
values of the Le number, finger instability phenomenon of the
same pattern is observed in the concentration field. This indicates
that the Le number has little effect on the concentration field. On
the contrary, it has great effect on the temperature field. Further-
more, as the Le number increases, the fluid front and the thermal
front evolve differently, with the fluid front being more unstable.
The reduction in instability on the thermal front is due to the
enhancement of the thermal dispersion in such flow. The tem-
perature field becomes more diffuse with a weakly front without
major finger. Especially for Le¼100, the thermal front appears to
be stable.

3.2. Effect of Re number

The general expression for the Re number is given as follows:
= u L vRe /y0 1, where u0 and v1 is the injection velocity and viscosity

of the displacing fluid, respectively. In order to investigate the
effect of the Re number on the evolution of the miscible dis-
placement process in a channel, several simulations with different
Re numbers are performed by changing the initial velocity of the
displacing fluid. Four different injection velocities of the displacing
fluid, namely 0.004, 0.008, 0.02 and 0.04, are considered. The
corresponding Re numbers are 100, 200, 500 and 1000, respec-
tively. In this section, mobility ratio is fixed with α = 1.6C , α = 0.0T .

Fig. 3 shows the effects of Re number on the evolution of the
miscible displacement process in a channel. It can be observed
that the evolution pattern of the miscible displacement process
has the similar characteristic, for which the viscous fingering can
be observed as time goes on. At the early stage (t¼2000), the
interfaces are slightly bent and no finger is formed when Re¼100.
However, when Re¼500, two tips in the lower and upper part of



Fig. 2. Effects of the Le number on the miscible displacement process in a channel: (a) Le¼1; (b) Le¼10 and (c) Le¼100. The left part is the chemical species concentration
distributions, while the right part is the temperature distributions.
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interface have formed in a symmetric manner. At t¼10000, the
finger is formed in both cases. At t¼20000, the finger is also
formed in both cases, but the patterns are totally different. For
instance, the interface tip is located at x¼110.1 when Re¼100,
while the interface tip is located at x¼320.4 when Re¼500. This
means that a larger Re number will enhance the evolution of
miscible displacement, resulting in early breakthrough and re-
duced sweeping efficiency. In general, the breakthrough time is
shorted for a larger Re number. It is obvious that the Re number
has a great influence on the evolution pattern and the break-
through time of the miscible displacement. From the oil recovery
engineering point of view, this should be avoided to obtain a
higher economic benefit.

In order to quantitatively compare the difference, the trans-
verse-averaged concentration of chemical species and the con-
centration of chemical species at the middle height of the model
along the flow direction (i.e. =y L /2y ) are shown in Fig. 4. The
transverse-averaged concentration of chemical species is defined
as follows (Rakotomalala et al., 1997):

∫¯ ( ) = ( )
( )

C x t
L

C x y t dy,
1

, ,
42y

L

0

y

As shown in Fig. 4(a), the transverse-averaged concentration of
chemical species due to different Re numbers has the same be-
havior. At the area near the inlet, the transverse-averaged con-
centration of chemical species is equal to the chemical species
(t=200

(t=1000

(t=2000

Fig. 3. Effects of the Re number on the miscible displacement process in
concentration of the displacing fluid. It decreases along the flow
direction gradually. Meanwhile, the larger the Re number is, the
width the interface has (i.e. longer the finger length has). It can be
seen from Fig. 4(b) that the interface fronts have a general beha-
vior, indicating that behind the interface front, the concentration
of the chemical species is equal to the concentration of the che-
mical species in the displacing fluid, while before it, the con-
centration of the chemical species is equal to the concentration of
the chemical species in the displaced fluid. As for the concentra-
tion between them, a sharpness of the interface can be observed.
On the other hand, an increase of the Re number in the miscible
displacement system can lead to an increase in the propagation
speed of the viscous interface front.
4. Simulation of viscous fingering phenomenon of miscible
displacement in a porous medium

After the miscible displacement process in a channel is simulated,
it can be used to simulate the same kind of problem in a porous
medium. Convergence of the numerical results has also been tested
by simulating this case at lattice systems of 100�100, 200�200,
and 400�400. As similar evolution processes have been observed in
the later two cases, a lattice system of 200�200 with a porous
structure in Fig. 5 was used in the subsequent numerical study. While
the modeling parameters, boundary and initiation conditions are the
0) 

0) 

0) 

a channel at different time instants: (a) Re¼100 and (b) Re¼500.
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Fig. 4. Effects of the Re numbers on the chemical species concentration at
t¼20,000: (a) transverse-averaged concentration and (b) concentration at the
middle height.

Fig. 5. The pore-scale microstructure in the porous medium.
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same as those used in a channel except that a regular porous med-
ium is considered. Meanwhile, solute mobility α = 1.6C , and thermal
mobility ratio α = 1.0T are used in the simulation.

4.1. Effect of pore-scale structure

As stated in the Introduction, most of the previous studies in-
volving both immiscible and miscible displacement in the porous
medium do not consider the real pore structure, which may have a
certain effect on the miscible displacement process. With con-
sideration of this point, the regular pore structure in the porous
medium is represented by two different pore-scale micro-
structures in this section for simplicity. One is a regular solid
skeleton, which contains 25 solid particles in an in-line arrange-
ment manner, while the other one contains 41 solid particles in a
staggered arrangement manner (see Fig. 5). Fig. 6 shows the ef-
fects of two pore-scale microstructures on the miscible displace-
ment process in the porous medium. Generally, it can be seen that
the existence of the solid skeleton have a significant effect on the
viscous fingering front morphologies when the fluid passes
through it. At the early stage of the miscible displacement, irre-
gular fingers are formed within both pore-scale microstructures.
On the other hand, the front pattern of the miscible displacement
process in the porous medium with the in-line arrangement solid
skeleton has a similar characteristic to that in a channel, indicating
that the front pattern appears in a symmetrical manner. However,
with the in-line arrangement of the solid skeleton, a big front is
divided into six small bent fronts associated with little interaction
among them. Furthermore, due to the staggered arrangement of
the solid skeleton, there is a totally different front pattern in the
porous medium. At the later stage of the miscible displacement,
the interface front tip in the staggered arrangement porous
medium is lag behind that in the regular porous medium. The
reason for this is that the existing of the solid skeleton has pre-
vented the fluid flow along the flow direction in a certain degree. It
should be noted that the width of interface front is increasing as
time goes in the later stage of the miscible displacement (Fig. 6
(b)). Meanwhile, the interface is less clearly. This means that the
diffusion mechanism may be enlarged by the existence of the solid
skeleton at the pore-scale in the miscible displacement.

On the other hand, it also indicates that when the pore-scale
microstructure is considered, viscous fingering associated with the
miscible displacement process in the porous medium is much
more complicated and complex than in the channel. At the early
stage of the miscible displacement, the interface is clear in both
cases. However, in the later stage of the miscible displacement, the
interface is complex. In some areas, the displacing fluid is sur-
rounded by the displaced fluid. While in other areas, the displaced
fluid is surrounded by the displacing fluid. It is clear that the
homogeneous medium (i.e. the miscible displacement in a chan-
nel) does not have a significant effect on the viscous fingering
pattern, as shown in Fig. 2. Although some researchers simulated
miscible and/or immiscible displacement at pore-scale using the
LBM, they mostly treated porous medium with a higher porosity,
so that the viscous fingering can be formed at different times.
However, such a treatment cannot simulate the fundamental
mechanism of the miscible displacement processes associated
with viscous fingering instability problem. To simulate the mis-
cible displacement processes more realistically, the number of
solids in the porous medium should be increase to match the ac-
tual porosity. This indicates that the detailed and real micro-
structure of a porous medium, which consists of a mixture of
different material constituents and microscopic cracks, are re-
quired in the engineering analysis.

To demonstrate the model capacity, more complex micro-
structures should be considered. Based on high-resolution



Fig. 6. Effects of the pore-scale microstructure on the miscible displacement process in a porous medium at t¼2000, 4000 and 8000: (a) the in-line arrangement and (b) the
staggered arrangement.

Fig. 7. Pore microstructures obtained after image processing of the micro-CT scan: (a) pore microstructure 1; (b) pore microstructure 2.
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scanned digital images, the microstructures of rock sample can be
measured by using the image processing technique. In this way,
two pore-scale microstructures representing the porous media are
extracted from the micro-computed tomography (micro-CT) ima-
ges of core sample (Fig. 7), after noise reduction, binary conversion
and simplification. Pore microstructure 1 is of 458�459 in re-
solution (Fig. 7(a)), while pore microstructure 2 is of 348�349 in
resolution (Fig. 7(b)). In the Fig. 7, the black region represents solid
matrix, while white region represents pore space. Form the Fig. 7,
it can be seen that the pore-scale microstructures represent the
porous media is more complex and realistic, compared with Fig. 5.
As the pore-scale microstructure is obtained, the solid matrix in-
formation (e.g. its coordinates of solid nodes) can be obtained
through searching and then stored as an input file in a 2D array
style. After that, there are converted to computational domains
and incorporated as computation geometries for modeling mis-
cible displacement processes.

Fig. 8 shows the miscible displacement process within two
pore-scale microstructures of a realistic porous media. This further
indicates that the displacement patterns in the porous medium



Fig. 8. The miscible displacement process in porous media with complex microstructures: (a) pore microstructure 1; (b) pore microstructure 2.
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with complex geometry microstructure are significantly different
from the displacement ones in a channel or a porous mediumwith
regular geometry microstructure, implying that the present model
can be used to simulate miscible displacement problem in the
porous media with complex geometry microstructures at the
pore-scale. These two application examples with the consideration
of complex microstructure demonstrate the usefulness of the
proposed model in investigate the miscible displacement pro-
cesses in a realistic porous media with complex microstructures at
the pore scale.
Fig. 9. Effects of the Re number on the miscible displacement process in a staggered arra
4.2. Effect of Re number

Further study is carried out on the effects of Re number on the
miscible displacement process in a staggered porous medium.
Keeping the other parameters unchanged, three different Re
numbers, which are 675, 1350 and 2700, are considered. Fig. 9
shows the effects of Re number on the evolution of the miscible
displacement process in a porous medium. It can be seen that the
larger the Re number is, the quicker the viscous front of the in-
terface propagates. For example, the front tip at the centre part
reaches x¼60.1, 83.5 and 115.4 at t¼10,000, when Re¼675, 1350
ngement porous medium at t¼10000: (a) Re¼675; (b) Re¼1350 and (c) Re¼2700.
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and 2700, respectively. This behavior has the same characteristic
as that in a channel (see Fig. 3). It should be noted that as the Re
number increases, the width of the interface front, represented by
the distance between the displacing fluid and the displaced fluid,
is greater. It demonstrates that an increase of Re number can lead
to a more diffusion interface front.
5. Discussion and conclusions

To simulate viscous fingering phenomena of the miscible dis-
placement process in a porous medium at the pore-scale, a nu-
merical model based on the lattice Boltzmann model involving
fluid flow, heat transfer and mass transport is presented. In this
model, the temperature- and concentration-dependent pore-fluid
viscosities are considered. To demonstrate the proposed model
capacity, two different complex geometry microstructures using
high resolution micro-computed tomography (micro-CT) images
of core sample have been obtained and incorporated as compu-
tation geometries for modeling miscible displacement processes in
porous media. This model is used to simulate the miscible dis-
placement in three different pore structures, namely a channel, a
regular porous medium and a staggered arrangement porous
medium. Some influencing factors on the miscible displacement
process, such as the pore-scale microstructure, Le number and Re
number, are studied in great detail. The related simulation results
have demonstrated that: (1) the existence of the pore-scale mi-
crostructure can have a significant effect on the front morpholo-
gies and front propagation speed in the miscible displacement
process; (2) as the Le number increases, the fluid front and the
thermal front evolve differently, with the thermal front being less
unstable due to more diffusion; (3) a larger Re number can lead to
an increase in the propagation speed of the interface front.

The discrete element method (DEM) is a promising numerical
tool for simulation problems of a discrete/discontinuous nature
(Cundall and Strack, 1979), which can account for the particles
interaction and transport. And then it has been extended to
modeling mechanical deformation and heat conduction problems
at the laboratory length-scale in the last 10–15 years (Potyondy
and Cundall, 2004; Xia and Zhou, 2010; Xia et al., 2014; Xia and
Zhao., 2014; Xia, 2015a; Zhao et al., 2012; Zhao, 2013). Further-
more, with the establishment of the upscale theory recently (Feng
and Owen, 2014; Xia, 2015b), the DEM can be used to modeling
mechanical deformation and heat conduction problems at both
the engineering length-scale and geological length-scale directly.
On the other hand, as mentioned in the Introduction, the LBM can
be used to modeling the fluid flow problems. For this reason, the
coupled DEM-LBM model is proposed to modeling the fluid–par-
ticle interaction problems at the pore-scale (Cook et al., 2004; Feng
et al., 2007, 2010; Owen et al., 2011). Although both the coupled
DEM-LBM model and the present proposed model can be used to
modeling the fluid–particle interaction problems with complex
boundary geometries at the pore scale, the coupled DEM-LBM
approach is particularly advantageous when used to model fluid–
particle interaction problems with moving boundaries. On the
contrary, the present proposed model is particularly advantageous
when used to modeling the fluid–particle interaction problems
with stationary boundaries. Compared with the coupled DEM-LBM
model, the present proposed model is easy to implement and
computationally more efficient, from the computational point of
view. In addition, not only can the present proposed model be
used to deal with fluid flow problems, but also it can be used to
deal with heat transfer and mass transport problems in the porous
media with complex geometry microstructure at the pore-scale.
Acknowledgments

This work is financially supported by the Xiangtan University
(No. 15QDZ45). The author is grateful to the anonymous reviewers
for their constructive comments and suggestions in improving the
quality of the paper. Special thanks to Dr. Jinfang Gao at The
University of Queensland for providing the Fig. 7(a) used in this
paper.
References

Buckingham, E., 1914. On physically similar systems: illustrations of the use of di-
mensional equations. Phys. Rev. 4 (4), 345–376.

Chadam, J., Hoff, D., Merino, E., Ortoleva, P., Sen, A., 1986. Reactive infiltration in-
stabilities. IMA J. Appl. Math. 36, 207–221.

Chen, L., Kang, Q., Robinson, B.A., He, Y.L., Tao, W.Q., 2013. Pore-scale modeling of
multiphase reactive transport with phase transitions and dissolution-pre-
cipitation processes in closed systems. Phys. Rev. E 87, 043306.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech. 30, 329–364.

Cook, B.K., Noble, D.R., Williams, J.R., 2004. A direct simulation method for particle–
fluid systems. Eng. Comput. 21, 151–168 2-4.

Cundall, P.A., Strack, O.D.L., 1979. A discrete numerical model for granular assem-
blies. Geotechnique 29 (1), 47–65.

Dong, B., Yan, Y.Y., Li, W.Z., 2011. LBM simulation of viscous fingering phenomenon
in immiscible displacement of two fluids in porous media. Transp. Porous
Media 88 (2), 293–314.

Dong, L., Li, X., 2012. Three-dimensional analytical solution of acoustic emission or
microseismic source location under cube monitoring network. Trans. Non-
ferrous Met. Soc. China 22 (12), 3087–3094.

Dong, L., Li, X., Zhou, Z., Chen, G., Ma, J., 2015a. Three-dimensional analytical so-
lution of acoustic emission source location for cuboid monitoring network
without pre-measured wave velocity. Trans. Nonferrous Met. Soc. China 25 (1),
293–302.

Dong, L., Wesseloo, J., Potvin, Y., Li, X., 2015b. Discrimination of mine seismic events
and blasts using the Fisher Classifier, Naive Bayesian Classifier and logistic re-
gression. Rock. Mech. Rock. Eng. 48, 1–29. http://dx.doi.org/10.1007/
s00603-015-0733-y.

Feng, Y.T., Han, K., Owen, D.R.J., 2007. Coupled lattice Boltzmann method and dis-
crete element modelling of particle transport in turbulent fluid flows: com-
putational issues. Int. J. Numer. Methods Eng. 72 (9), 1111–1134.

Feng, Y.T., Han, K., Owen, D.R.J., 2010. Combined three-dimensional lattice Boltz-
mann method and discrete element method for modelling fluid–particle in-
teractions with experimental assessment. Int. J. Numer. Methods Eng. 81 (2),
229–245.

Feng, Y.T., Owen, D.R.J., 2014. Discrete element modelling of large scale particle
systems–I: exact scaling laws. Comput. Part. Mech. 1 (2), 159–168.

Gao, J., Xing, H., 2012. LBM simulation of fluid flow in fractured porous media with
permeable matrix. Theor. Appl. Mech. Lett. 2 (3), 032001.

Gao, J., Xing, H., Tian, Z., Muhlhaus, H., 2014. Lattice Boltzmann modeling and
evaluation of fluid flow in heterogeneous porous media involving multiple
matrix constituents. Comput. Geosci. 62, 198–207.

Ghesmat, K., Azaiez, J., 2009. Miscible displacement of reactive and anisotropic
dispersive flows in porous media. Transp. Porous Media 77, 489–506.

He, X., Luo, L.S., 1997. Lattice Boltzmann model for the incompressible Navier–
Stokes equation. J. Stat. Phys. 88, 927–944 3-4.

He, Y.L., Wang, Y., Li, Q., 2009. Lattice Boltzmann Method: Theory and Applications.
Science Press, Beijing.

Homsy, G.M., 1987. Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19,
271–311.

Imhoff, P.T., Miller, C.T., 1996. Dissolution fingering during the solubilization of
nonaqueous phase liquids in saturated porous media: 1. Model predictions.
Water Resour. Res. 32, 1919–1928.

Islam, M.N., Azaiez, J., 2010. Miscible thermo-viscous fingering instability in porous
media. Part 2: numerical simulations. Transp. Porous media 84 (3), 845–861.

Kang, Q., Zhang, D., Chen, S., 2004. Immiscible displacement in a channel: simu-
lations of fingering in two dimensions. Adv. Water Resour. 27, 13–22.

Owen, D.R.J., Leonardi, C.R., Feng, Y.T., 2011. An efficient framework for fluid-
structure interaction using the lattice Boltzmann method and immersed
moving boundaries. Int. J. Numer. Methods Eng. 87, 66–95 1-5.

Potyondy, D.O., Cundall, P.A., 2004. A bonded-particle model for rock. Int. J. Rock.
Mech. Min. Sci. 41 (8), 1329–1364.

Rakotomalala, N., Salin, D., Watzky, P., 1997. Miscible displacement between two
parallel plates: BGK lattice gas simulations. J. Fluid Mech. 338, 277–297.

Saffman, P.G., Taylor, G., 1958. The penetration of a fluid into a porous medium or
Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245,
312–329.

Tan, C.T., Homsy, G.M., 1986. Stability of miscible displacements in porous media:
rectilinear flow. Phys. Fluids 29 (11), 3549–3556.

Tan, Q.M., 2011. Dimensional Analysis with Case Studies in Mechanics. Springer-
Verlag, Berlin.

http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref1
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref1
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref1
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref2
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref2
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref2
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref3
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref3
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref3
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref4
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref4
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref4
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref5
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref5
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref5
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref7
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref7
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref7
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref7
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref8
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref8
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref8
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref8
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref9
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref9
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref9
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref9
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref9
http://dx.doi.org/10.1007/s00603-015-0733-y
http://dx.doi.org/10.1007/s00603-015-0733-y
http://dx.doi.org/10.1007/s00603-015-0733-y
http://dx.doi.org/10.1007/s00603-015-0733-y
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref11
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref11
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref11
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref11
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref12
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref12
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref12
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref12
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref12
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref56423
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref56423
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref56423
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref13
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref13
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref14
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref14
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref14
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref14
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref15
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref15
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref15
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref16
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref16
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref16
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref17
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref17
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6677
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6677
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref6677
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref18
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref18
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref18
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref18
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref19
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref19
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref19
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref20
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref20
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref20
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref21
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref21
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref21
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref21
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref22
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref22
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref22
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref23
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref23
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref23
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref24
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref24
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref24
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref24
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref25
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref25
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref25
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref26
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref26


M. Xia / Computers & Geosciences 88 (2016) 30–4040
Yortsos, Y.C., Zeybek, M., 1988. Dispersion driven instability in miscible displace-
ment in porous media. Phys. Fluids 31 (12), 3511–3518.

Wang, J.G., Kabir, A., Liu, J., Chen, Z., 2012. Effects of non-Darcy flow on the per-
formance of coal seam gas wells. Int. J. Coal Geol. 93, 62–74.

Wang, J.G., Liu, J., Kabir, A., 2013. Combined effects of directional compaction, non-
Darcy flow and anisotropic swelling on coal seam gas extraction. Int. J. Coal
Geol. 109, 1–14.

Wang, J.G., Ju, Y., Gao, F., Peng, Y., Gao, Y., 2015. Effect of CO2 sorption-induced
anisotropic swelling on caprock sealing efficiency. J. Clean. Prod. 103, 685–695.

Xia, M., Zhou, K., 2010. Particle simulation of the failure process of brittle rock
under triaxial compression. Int. J. Miner., Metall. Mater. 17 (5), 507–513.

Xia, M., Zhao, C., 2014. Simulation of rock deformation and mechanical character-
istics using clump parallel-bond models. J. Cent. South Univ. 21 (7), 2885–2893.

Xia, M., Zhao, C., Hobbs, B.E., 2014. Particle simulation of thermally-induced rock
damage with consideration of temperature-dependent elastic modulus and
strength. Comput. Geotech. 55, 461–473.

Xia, M., 2015a. Thermo-mechanical coupled particle model for rock. Trans. Non-
ferrous Met. Soc. China 25 (7), 2367–2379.
Xia, M., 2015b. An upscale theory of thermal-mechanical coupling particle simu-
lation for non-isothermal problems in two-dimensional quasi-static system.
Eng. Comput. 32 (7), 2136–2165.

Zhang, T., Shi, B., Guo, Z.L., Cai, Z., Lu, J., 2012. General bounce-back scheme for
concentration boundary condition in the lattice-Boltzmann method. Phys. Rev.
E 85, 016701.

Zhao, C., Hobbs, B.E., Hornby, P., Ord, A., Peng, S., Liu, L., 2008. Theoretical and
numerical analyses of chemical-dissolution front instability in fluid-saturated
porous rocks. Int. J. Numer. Anal. Methods Geomech. 32, 1107–1130.

Zhao, C., Hobbs, B.E., Ord, A., 2010. Theoretical analyses of nonaqueous-phase-liquid
dissolution induced instability in two-dimensional fluid-saturated porous
media. Int. J. Numer. Anal. Methods Geomech. 34, 1767–1796.

Zhao, Z., Jing, L., Neretnieks, I., 2012. Particle mechanics model for the effects of
shear on solute retardation coefficient in rock fractures. Int. J. Rock. Mech. Min.
Sci. 52, 92–102.

Zhao, Z., 2013. Gouge particle evolution in a rock fracture undergoing shear: a
microscopic DEM study. Rock. Mech. Rock. Eng. 46 (6), 1461–1479.

http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref27
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref27
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref27
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref28
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref28
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref28
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref29
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref29
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref29
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref29
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref30
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref30
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref30
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref30
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref30
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref31
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref31
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref31
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref32
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref32
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref32
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref33
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref33
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref33
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref33
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref34
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref34
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref34
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref35
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref35
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref35
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref35
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref36
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref36
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref36
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref37
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref37
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref37
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref37
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref38
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref38
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref38
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref38
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref39
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref39
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref39
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref39
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref40
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref40
http://refhub.elsevier.com/S0098-3004(15)30102-3/sbref40

	Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
	Introduction
	The coupled lattice Boltzmann model
	Lattice Boltzmann model for coupled fluid flow, heat transfer and mass transport
	Concentration- and temperature-dependent fluid viscosity
	Boundary and initiation conditions
	Conversion between physical and lattice units

	Simulation of viscous fingering phenomenon of miscible displacement in a channel
	Effect of Le number
	Effect of Re number

	Simulation of viscous fingering phenomenon of miscible displacement in a porous medium
	Effect of pore-scale structure
	Effect of Re number

	Discussion and conclusions
	Acknowledgments
	References




