
Computers & Geosciences 91 (2016) 19–32
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m

i.pan11@
journal homepage: www.elsevier.com/locate/cageo
Case study
Performance comparison of several response surface surrogate models
and ensemble methods for water injection optimization under
uncertainty

Masoud Babaei a,n, Indranil Pan b

a School of Chemical Engineering and Analytical Science, University of Manchester, M13 9PL, UK
b Department of Earth Science & Engineering, Imperial College London, SW7 2AZ, UK
a r t i c l e i n f o

Article history:
Received 8 February 2015
Received in revised form
25 February 2016
Accepted 26 February 2016
Available online 2 March 2016

Keywords:
Surrogate modeling
Mixture surrogates
Water injection optimization
x.doi.org/10.1016/j.cageo.2016.02.022
04/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: masoud.babaei@manchester.ac.u
imperial.ac.uk (I. Pan).
a b s t r a c t

In this paper we defined a relatively complex reservoir engineering optimization problem of maximizing
the net present value of the hydrocarbon production in a water flooding process by controlling the water
injection rates in multiple control periods. We assessed the performance of a number of response surface
surrogate models and their ensembles which are combined by Dempster–Shafer theory and Weighted
Averaged Surrogates as found in contemporary literature works. Most of these ensemble methods are
based on the philosophy that multiple weak learners can be leveraged to obtain one strong learner which
is better than the individual weak ones. Even though these techniques have been shown to work well for
test bench functions, we found them not offering a considerable improvement compared to an in-
dividually used cubic radial basis function surrogate model. Our simulations on two and three dimen-
sional cases, with varying number of optimization variables suggest that cubic radial basis functions-
based surrogate model is reliable, outperforms Kriging surrogates and multivariate adaptive regression
splines, and if it does not outperform, it is rarely outperformed by the ensemble surrogate models.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The inherent uncertain nature of the geological models—due to
the sparseness and scarcity of data over vast physical domains—
require the designer to assume multiple geological realizations to
predict flow. This adds up prohibitive computational costs to al-
ready demanding single-realization models. Moreover, the control
parameters for the fluid injection and production wells in the in-
dustrial scale are often numerous and are subject to operational
constraints and time-dependent uncertainties. This also makes the
computational domain of the optimization problem large and
consequently difficult, if not impossible, to handle for even the
modern computing systems. Surrogate models are an attractive
option in such circumstances. Surveys of implementation of sur-
rogates for optimization purposes in broad engineering applica-
tions can be found in Jin (2005) and Jin (2011). The improvement
of computational efficiency of surrogate-based optimization
compared to the traditional optimization such as genetic algo-
rithm has been shown in Ong et al. (2003).
k (M. Babaei),
The surrogate models are however approximations of the ori-
ginal objective functions, therefore they might introduce artificial
optimal solutions which do not exist in the original objective
function (Jin, 2011) and lead to premature convergence. Also the
techniques have shown a strong dependence on the complex dy-
namics of the non-linear interactions in the model, dimension of
the design space, etc. (Zubarev, 2009). Therefore a proper surro-
gate model management strategy is very important (Jin, 2011). The
choice of a particular surrogate model is also problem-dependent
and for a given problem, it is not trivial to decide which surrogate
model would give the best optimization result. It has been shown
that one surrogate model might give good results for a particular
problem while it might perform very poorly when applied to an-
other problem (Viana and Haftka, 2008). One solution to these
shortcomings might be to improve the accuracy of the surrogates
so that they are less prone to over-fitting and have more gen-
eralization capabilities for unseen solution points (Jin et al., 2002).

Another approach can be the use of multiple surrogate models
(Goel et al., 2007) which have been shown to be beneficial from
the optimization point of view. In this line of research, Zhou et al.
(2007) employed multiple surrogates such as regression and in-
terpolating local surrogates to provide a diversity of approxima-
tion models in a multi-surrogates assisted memetic algorithm.
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Gorissen et al. (2009) brought multiple surrogates to adaptive
sampling. The objective is to be able to select the best surrogate
model by adding points iteratively. Glaz et al. (2009) implemented
a weighted-average approach in use of multiple surrogates. In
their application they have found that at relatively little additional
cost compared with optimizing with a single surrogate, multiple
surrogates can be used to locate extrema of the objective function
of their interest that would be overlooked if only a single ap-
proximation method was employed. Zhang et al. (2012) developed
a hybrid surrogate modeling methodology that adaptively com-
bines the favorable characteristics of different surrogate models
including RBF and Kriging. The methodology generates different
surrogate models (component surrogates), and weights aggrega-
tion of the estimated function value based on the local measure of
accuracy of the individual surrogates.

In an attempt to put into test some of the developments that
have shown to work mostly for analytically tractable problems and
test bench functions, we assess the performance of two open
source toolboxes which use ensemble surrogate strategies. These
toolboxes are due to Müller and Piché (2011) that uses Dempster–
Shafer theory to mix surrogate models, and Viana et al. (2013) that
uses the multiple surrogates based on the square root of the pre-
diction sum of squares for surrogate selection. These methods
have not been used in the context of geo-engineering. So we assess
the performance of these developments of uncertainty-laden
models of heterogeneous reservoirs that adds to the complexity of
the models. Also we apply two different optimization strategies to
search for the optimal solution.
2. Model description, uncertainty and optimization problem

2.1. Governing equations

The water injection process into the oil reservoir is considered
herein with assumptions of an immiscible and incompressible
multiphase fluid flow with unit formation volume factor for oil
and water. Gravity and capillary effects are neglected. The problem
is described and sequentially solved by Darcy's law
( λ= − ( )∇v S pKt t w in Ω), mass conservation equation (∇⋅ =v qt )
and the transport equation ( φ + ∇·[ ( )] =∂

∂ v f S qS
t t w w w
w ), where

= +v v vt o w is the total Darcy velocity [m3/day] of the engaging
fluids (oil and water phases denoted by subscripts o and w, re-
spectively), q represents the volumetric total source and sink
contributions [m3/day] of oil and water phases from the wells and
boundary conditions. Also, K [mD] is the tensor of absolute per-
meability, λ λ λ( ) = ( ) + ( )S S St w o w w w is the total mobility and is a
function of water saturation, Sw . The fluid pressure, p [atm], is, in
the absence of capillarity, equal to oil and water phase pressures,
po and pw. Finally Ω is the problem domain.

In the transport equation, φ [–] is the porosity of the porous
medium, ( )f Sw w [–] is the fractional flow function of water defined
by λ λ( ) =f S /w w w t . The phase mobilities ( λo and λw) are herein
modeled by polynomial water and oil relative permeability curves,

( ) = ( − )k S k S1ro wD ro wD
n

, max o and ( ) = ( )k S k Srw wD rw wD
n

, max w and
constant phase viscosities, μo and μw, as λ μ( ) = ( )S k S /w w rw wD w and
λ μ( ) = ( )S k S /o w ro wD o, where = ( − ) ( − − )S S S S S/ 1wD w wc or wc . In
these relations no and nw are exponents of the polynomials con-
trolling curvature of the curves, SwD is the normalized water sa-
turation that varies between zero and one as opposed to the water
saturation that varies between Swc (connate water saturation) and

− S1 or where Sor is the oil residual saturation.
The above equations are solved with the open-source MATLAB

Reservoir Simulation Toolbox (Lie et al., 2012).
2.2. Geological model

2.2.1. Two dimensional model
The two dimensional geological model used in this work is

3000 m�3000 m�1 m long in x, y and z directions representing
a thin horizontal reservoir. The gridblocks are 50 m�50 m�1 in
length, width and height respectively so that the number of
gridblocks is 60�60. The boundaries are assumed fully closed and
the reservoir is fully saturated with oil. The porosity of the model
is a constant value of 0.2. The water and oil viscosities are
1.0�10�3 Pa s and 10.0�10�3 Pa s. The water and oil surface
densities are 1014 and 859 kg m�3. The relative permeabilities of
oil and water are represented by quadratic polynomials
( = =n n 2o w ) and = =k k 1ro rw, max , max and capillary pressure is
ignored and the initial water saturation is set to zero.

The permeability is assumed uncertain but exhibiting, in two
separate cases, the features of either of the following geo-en-
vironmental landscapes: a shale-dominant reservoir with multiple
narrow diagonal intersecting channels with 45° orientation (de-
noted hereafter simply by Model 2D-a) and a sandstone reservoir
crisscrossed with a multitude of lateral shale streaks (Model 2D-b).

In order to generate realizations of different permeability fields,
S-GeMS (the Stanford Geostatistical Modeling Software available
at http://sgems.sourceforge.net) is used. S-GeMS provides algo-
rithms for multiple-point geostatistics. A review of multiple-point
geostatistics is conducted by Hu and Chugunova (2008) and there
are numerous subsurface modeling applications of it in literature
(e.g., Ronayne et al., 2008; Mariethoz et al., 2010; Mariethoz and
Kelly, 2011). One such algorithm is FILTERSIM (Zhang et al., 2006;
Wu et al., 2008) that is used to build the image or numerical model
by conditioning to local data patterns using a prior structural
model given under the form of a visually explicit training image
(Zhang et al., 2006). Reproducing geological shapes based on a
training image by multiple-point geostatistics is more realistic
than the traditional two-point geostatistics that utilizes variogram
models to characterize the spatial structure of data as the vario-
grams often cannot capture curvilinear structures and shapes of
geological bodies such as channels (Journel, 1993; Strebelle, 2000).

The training image here is an image of a diagonally channelized
permeability field (Model 2D-a) or a shale populated sandstone
(Model 2D-b). The training image serves as prior knowledge of the
geology of the reservoir. Figs. 1 and 2 show the six realizations of
the absolute permeability obtained by unconditional continuous
FILTERSIM simulation using S-GeMS for the two cases of perme-
ability considered in this work to introduce uncertainty.

The water injection is performed by four injection wells (I1, I2,
I3 and I4) at the corners of the reservoir and one production well
in the center of the reservoir (P1) as shown in Fig. 1.

2.2.2. Three dimensional model
We use an ensemble version (with 100 realizations) of the Egg

Model (Jansen et al., 2013) for the three dimensional example and
we refer to it as Model 3D. The model has 60�60�7 grid cells of
which 18,553 cells are active leaving an egg-shaped model after
eliminating the inactive cells. The gridblocks are 8 m�8 m�4 m
in length, width and height respectively. The porosity is 0.2. Oil
and water viscosities are 5.0�10�3 Pa s and 1.0�10�3 Pa s. The
water and oil surface densities are 1000 and 900 kg m�3. For the
relative permeabilities of oil and water, = =n n4, 3o w and

= =k k0.8, 0.75ro rw, max , max and = =S S0.2, 0.1wc or . Capillary
pressure is ignored and the initial water saturation is set 0.1.

The permeability fields (Fig. 3a) demonstrate channelization
with strong vertical correlation. There are no aquifer or gas cap in
the model, the primary production is neglected, and the production

http://sgems.sourceforge.net
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Fig. 1. The six realizations of the absolute permeability [mD: millidarcy] for permeability Model 2D-a considered in this study. The realizations exhibit minimum and
maximum values of respectively 10�3 mD (shale, shown in black) and 235 mD (sand, shown in white) for all the realizations.
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mechanism is water flooding with eight injection wells (shown in
blue in Fig. 3b) and four production wells (shown in red in Fig. 3b).
2.3. Optimization problem formulation

The optimization problem is to find a set of optimal water in-
jection rates for the injection wells to maximize the Net Present
Value (NPV). The objective function is a simple NPV model based
on the discounted accumulated net cash-flow. A simplified version
for two-phase flow (not taking into account installation costs, shut
down, etc.) can be expressed as:

( ) ( )∑ ∑ ∑= − − Δ
( + ) ( )= ∈ ∈

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥NPV r q r q r q

t
d1 1P In

N

j
o o j

n
w w j

n

j
inj inj j

n
n

t
1

, , , n

where N is the number of time-steps, Δt is the time interval, P and
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Fig. 2. The six realizations of the absolute permeability [mD] for permeability Model 2D-b considered in this study. The realizations exhibit minimum and maximum values
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I are respectively the set of producers and injectors, qo j
n
, and qw j

n
,

[m3/day] the (surface volume) field production rates respectively
of oil and water for production well j at time step n, qinj j

n
, [m3/day]

is the field injection rate of water for injection well j at time step
n, and ro, rw and rinj [USD/m

3] are the oil production revenue, water
production cost and water injection cost per volume injected or
produced, respectively. Finally, d is the discount rate. The objective
function for an ensemble of realizations, to be maximized, is for-
mulated as:
( )
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∑
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Fig. 3. Six chosen realizations of the Egg Model showing the profile of the absolute permeability and the location of injection and production wells. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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where the superscript χ denotes realization number and Nr is the
total number of realizations. Np is the number of control periods at
the start of which the injection rates are modified. Therefore the
second term of ( )χF uNPV is the summation over all periods (denoted
by Pi, starting from time step n P

0
i and ending at time step nPi) of the

cost of injection throughout the simulation time. The maximum
allowable or available water injection rate throughout the simu-
lation is denoted by qmax. The state variables = { } ∈ Iu ju ,j , are the
injection multipliers to the maximum allowable injection rate and
are updated for each period. The constraints of optimization are
set as ≤ ≤u0 1j , which means that each injection well can inject
water at the maximum allowable or available injection rate when
the corresponding state variable (injection multiplier) is equal to
one or a well can be shut when its corresponding state variable
(injection multiplier) is equal to zero.

The number of variables will be the number of injection wells
multiplied by the number of control periods. Depending on the
number of optimization control parameters, the higher the num-
ber of control periods, the more effective the optimization i.e. a
higher value of NPV would be obtained. This is due to more de-
grees of freedom in the optimization problem and the algorithm
would be able to find a combination of optimization variables
which can give a better value of the NPV. More number of opti-
mization variables however implies an increase in the number of
iterations and consequent higher computational costs for the op-
timization algorithm to converge.

It should also be noted that the definition as above accounts for
the uncertainty of the model by taking the expected value of en-
semble of NPV's and finding a solution that works well on average
for all the realizations of the model. This is in accordance with the
recommendation of van Essen et al. (2009) who proposed to op-
timize the expectation of NPV's over a set of reservoir models in
order to reduce the risk arising from uncertainty in the geological
description.
3. Combining surrogate models

In contemporary literatures there are numerous implementa-
tions of combined/mixed/multiple surrogate models with the
promise of achieving better predictions of the true underlying
function and obtaining more reliable optimization solutions
compared to use of individual surrogate models Bishop (1995),
Zhou et al. (2007), Goel et al. (2007), Viana et al. (2009), and
Müller and Piché (2011). Out of these publications, we have chosen
the last two, which are the most recent ones and have their codes
in an open source repository, to be tested on a black-box optimi-
zation such as the one we defined in the previous section. Both
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algorithms attempt to find a suitable set of weights for individual
surrogate models in a mixture surrogate model, which is updated
dynamically over the iterations of the optimization algorithm:

∑ ∑^ ( ) = ^ ( ) = ≥
( )= =

y w y w wx x , 1, 0
3

mix
i

N

i i
i

N

i i
1 1

m m

where ŷmix represents the predicted values of the ith surrogate

model, ŷi, for the solution vector x , wi is the weight assigned to the
corresponding model and Nm is the number of surrogate models.
In the following we briefly describe the two algorithms.

3.1. Weighted average surrogates (WAS) approach

Viana et al. (2009) devised a weighted average surrogate of Nm

models. The weights were calculated either heuristically, or by the
optimal weighted surrogate algorithm from minimization of the
mean square error of data points at which the surrogate is fitted to
the actual model. In both approaches, first the prediction sum of

squares (e) is calculated. Then for p data points =e e eRMS p
1 T is

calculated. One way of calculating a vector of e is calculating the
cross-validation error from all data points except the data point
where the corresponding entry of ẽ is being calculated. Next, in
the heuristic computation of the weights, the algorithm proposed
by Goel et al. (2007) is used to calculate

∑α=
*

∑ *
* = +

( )

β

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w

w

w
w e

n
e,

4
i

i

i
N

i
i i

i

N

i

1 1
m

m

where ei is given by the eRMS of the ith surrogate. The two para-
meters α and β, control the importance of averaging and of in-
dividual e, respectively. Goel et al. (2007) suggested α¼0.05 and
β¼�1.

For the second approach using proposal of Bishop (1995), the
mean square error of a weighted average surrogate is minimized:

= = ( )MSE w Cw 1 warg min subject to 1 5w

T T

where C is the covariance matrix in Bishop's formulation:

( )

( )( )

∫

∫

= ( ) − ^ ( )

= ( ) − ^ ( ) ( ) − ^ ( )
( )

V
y y d

c
V

y y y y d

w Cw x x x

x x x x x

1

1

6

V

mix

ij

V

i mix j mix

T 2

Alternatively, cij which is the element i and j for surrogate

models i and j can be approximated as ~c e eij p i j
1 T Viana et al. (2009).

Using various analytically tractable optimization problems, Viana
et al. (2009) concluded that using eRMS for identifying the best
surrogate is a good strategy with increasing number of points.

3.2. Dempster–Shafer theory (DST)-based mixed surrogate approach

Müller and Piché (2011) used Dempster–Shafer's theory of evi-
dence as a means of combining information from different sources
and to construct a degree of belief. In brief the theory tries to assign
the so-called basic probability assignments (BPA's) to different sets
that are calculated from evidences ─ in this case, individual surro-
gate model's scaled good/bad characteristics such as

1. High/low positive correlation coefficients (CC) between the
observed and predicted function values.

2. Low/high root mean squared errors (RMSE) between surrogate

response and true function values: ∑ ( ( ) − ^ ( ))y x y xp p p ,
3. Low/high maximal absolute errors (MAE): (| ( ) − ^ ( )|)y yx xmax
4. Low/high median absolute deviation (MAD): (| ( ) − ^ ( )|)y yx xmedian .

For estimating the belief functions of each surrogate model
these four model characteristics are scaled so that the sum of each
BPA over all the models is equal to one. The additional constraint
that the BPA's cannot be negative Müller and Piché (2011) is also
imposed. DST is then applied based on these belief functions to
decide the weights assigned to each of the models.

Based on 13 deterministic test cases, an application problem
that deals with groundwater bioremediation (Yoon and Shoe-
maker, 1999) and an application that arises in energy generation
using tethered kites, Müller and Shoemaker (2014) concluded that
surrogate model mixtures containing radial basis functions model
work better than other mixture options.
4. Sampling strategy and optimization algorithm

For continuous black-box optimization problems such as the
one defined in Section 2, we have used a gradient-free, popula-
tion-based algorithm that decides on the next expensive function
evaluation sampling point by considering both criteria of where
the optimal solutions are likely to be located and where the fi-
delity of the surrogate model can be improved by sampling in
unexplored regions of the parameter space. To this end, we use the
candidate sampling strategy based on Müller and Shoemaker
(2014). This is a randomized approach for finding sampling points
which is shown to be more successful than optimizing an auxiliary
function (Regis and Shoemaker, 2007). The algorithm starts with
generating two groups of points, one by uniformly selecting points
from the variable domain D, and one by perturbing the already
sampled points with the lowest function value
( = ( )

∈
fx xarg minbest

Dx
) with a designated probability, so that xbest are

perturbed by randomly adding or subtracting small, medium, or
large random perturbations.

Next, the distance of every candidate point to the set of already
sampled points and also the objective function value predicted by
the surrogate model are considered as two criteria with which the
candidate points are scored. The candidate point with the best
score is chosen as the next sampling site. A more weight on the
distance criterion allows a more global search for unexplored areas
of the domain, whereas a more weight on the criterion of the
objective function value allows a more local search in the vicinity
of promising points as shown in Müller and Shoemaker (2014). To
have a balance of both local and global searches, the algorithm
implements a cyclic weighting pattern for the two criteria of
sampling. It means that the algorithm starts with a large weight to
the distance criterion and gradually decreases it to give a pro-
portionally larger weight to the second criterion, and after the
weight of the distance criterion has reached its minimum, it is re-
initialized and decreased again. With the aid of this algorithm, no
auxiliary sub-problem has to be optimized to find the next sample
site, and the potential problem of getting trapped in a local opti-
mum of the response surface is avoided as discussed in Müller and
Shoemaker (2014). The flowchart of optimization assisted by
Candidate Point Strategy and surrogate models is shown in Fig. 4.

In order to be able to rank the different surrogate models and
their combinations, and to avoid confusing the effects of a prob-
ably outperforming or underperforming optimization algorithm
with the effects of using different surrogate models, we use the
strategy described above unchanged for all the models. For ex-
ample, Viana et al. (2013) have used multiple surrogate efficient
global optimization algorithm which adds several (as many as the



Fig. 4. The flowchart of the Candidate Point Strategy for optimization.
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surrogate models) points per optimization cycle. This algorithm is
suitable when the main concern is wall-clock time rather than
number of function evaluation. However, for the sake of compar-
ison we restrict the number of function evaluations, and therefore
we use the candidate sampling strategy with WAS as well.
5. Optimization results

In this work we consider some of the popular individual and
combined surrogate models as also used in the comparisons of
Viana et al. (2009) and Müller and Piché (2011). The individual and
combined surrogates are listed in Table 1. The selection is based on
preliminary results that are not shown in this paper. We selected
the high performing individual/combined surrogate models
among the available options. For example, since we had observed a
very poor performance of polynomial response surface, we have
not used it or its mixed models in this comparative work.

5.1. Results of optimization on the two-dimensional model

The maximum allowable water injection rate, qinj
max, is set to

0.001 of pore volume of the reservoir per day which is
4.5�103 m3/day. The injection continues for 2000 days. In three



Table 1
List of the individual and combined/multiple surrogate models used in this study.

Surrogate model Model number (used in
analysis)

Method of
combining

Abbreviation

Cubic radial basis function 1 – R
Gaussian Kriging 2 – K
Multivariate adaptive regression splines 3 – M
Cubic radial basis functionþMultivariate adaptive regression splines 4 DST RM DST
Gaussian KrigingþMultivariate adaptive regression splines 5 DST KM DST
Cubic radial basis functionþGaussian Kriging 6 DST RK DST
Cubic radial basis functionþGaussian KrigingþMultivariate adaptive regression spline 7 DST RKM DST
Gaussian KrigingþCubic radial basis function 8 WAS RK WAS
Gaussian KrigingþCubic radial basis functionþpolynomial response surfaceþ linear Shepard
modelþsupport vector regression model

9 WAS RKPSV WAS
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separate control-period cases, we assume the number of control
periods (Np) to be 1, 2 and 3 to provide 4, 8 and 12 optimization
variables respectively. In the first case the rates are not updated, in
the second case, the rates are updated on day 1000, in the third
case the rates are updated twice on days 667 and 1333. The eco-
nomic constants are set as =r 100o USD/STB, =r 10w USD/STB and

=r 10inj USD/STB, where STB stands for stock tank barrel and is
equivalent to 0.159 m3. We assume no discount factor ( =d 0).

The number of function evaluations for Latin hypercube sam-
pling (NLHS) and the total number of function evaluations (Neval)
Fig. 5. The best solutions obtained per optimization cycles (1 to Neval–NLHS) by various in
using Np¼1. (For interpretation of the references to color in this figure legend, the read
are specified by the user. We set NLHS equal to 10 multiplied by the
number of control periods (10, 20 and 30 for the three control-
period cases) and Neval equal to 25 multiplied by the number of
control periods (25, 50 and 75 for the three control-period cases).

We ran the optimization problem with each individual or
mixed surrogate model 10 times so that the comparisons between
the models are fair. In order to be able to run the models 10 times
each, we have parallelized the original codes of Müller and Piché
(2011), both in calculating the objective function between the
6 realizations and in running each of the 10 runs independently.
dividual and mixed surrogate models for Model 2D-a (green) and Model 2D-b (blue)
er is referred to the web version of this article.)



Fig. 6. The best solutions obtained per optimization cycles (1 to Neval–NLHS) by various individual and mixed surrogate models for Model 2D-a (green) and Model 2D-b (blue)
using Np¼2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The results of the optimization problems for Model 2D-a (chan-
nelized) and Model 2D-b (shale) cases, for Np¼1, 2 and 3, are
shown in the format of box plots at each step of the optimization
in Figs. 5–7. We show the results for F(u) after the initial design by
Latin hypercube sampling only.

In order to quantitatively interpret the results shown in the
above figures, we define the following metrics:

Metric 1: The median of the optimization objective function
values using a particular surrogate model, ℓ, between 10 runs of
the problem and after the final optimization cycle (25 times the
number of control periods). We denote this metric which corres-
ponds to the circles at the last function evaluation point for each
surrogate model by ¯

ℓfNPV , [USD].
Metric 2: The best of the optimization objective function values

for 10 runs of the problem, denoted by ℓfNPV
best

, [USD], after the final
optimization cycle (25 times the number of control periods).

Metric 3: The convergence of the optimization with a particular
surrogate model, ℓ, to ℓfNPV

best
, at each optimization cycle, i, defined

by sum of the difference between the best and the worst NPV
values for iterations after LHS sampling stage. The lower this value,
the faster the optimization based on the particular surrogate has
converged to the best solution. It is an important metric because it
shows which models would have performed reliably well if the
maximum number of function evaluations was even lower.
The analysis of the results with these metrics is shown in Fig. 8.
From the figure we can interpret:

1. Between the individual models, radial basis function surrogate
model ( ℓ¼1 on the x-axis) outperforms Kriging ( ℓ¼2) and
multivariate adaptive regression splines (ℓ¼3) for almost all the
cases and metrics except for metrics 1 and 2 when Np¼1 where
Kriging is slightly better than radial basis function. However, by
increasing the number of control variable to Np¼2 or Np¼3,
radial basis function has outperformed Kriging. This shows that
it is more reliable to use radial basis function than Kriging for
high number optimization variables. Likewise, in terms of Me-
tric 3 (convergence), radial basis function is considerably su-
perior to Kriging and multivariate adaptive regression splines
for Np¼2 and 3 as well.

2. None of the mixed surrogate models ( ℓ¼4, 5, 6, 7, 8 and 9)
exhibits any better, performance (they are sometimes worse off)
than radial basis function surrogates.

3. The mixed surrogates are only noticeably useful when their
performances are compared with the performance of individual
Kriging or multivariate adaptive regression splines. This is par-
ticularly manifested by comparing the convergence (Metric 3)
for Np¼2 and Np¼3 of Kriging (ℓ¼2) or multivariate adaptive
regression splines (ℓ¼3) respectively with mixed RK (ℓ¼6) and
RM (ℓ¼4).



Fig. 7. The best solutions obtained per optimization cycles (1 to Neval–NLHS) by various individual and mixed surrogate models for Model 2D-a (green) and Model 2D-b (blue)
using Np¼3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The best results for Model 2D-a (channelized system) is NPV
around 7.03�108 USD, using Np¼3. One solution obtained by RK
DST with the injection multipliers u¼10�3� [0, 87, 1, 0, 33, 287,
379, 0, 0, 29, 81, and 160]. Given that qinj j

n
,

, max is 4.5�103 m3/day, the

rates of injection for four wells and in three injection periods are
qinj¼[0, 391, 4, 0, 148, 1291, 1705, 0, 0, 130, 364, 72] m3/day.
Fig. 8. Analysis of Model 2D results: (a) Metric 1 for various surrogate models (refer t
surrogate models.
The best results for Model 2D-b (shale system) is NPV around
8.72�108 USD, using Np¼3. One solution is obtained by RM DST
with the injection multipliers u¼10�3� [ 0, 0, 0, 128, 0, 0, 21, 0,
256, 419, 279, 54]. Given that qinj j

n
,

, max is 4.5�103 m3/day, the rates

of injection for four wells and in three injection periods are
qinj¼[0, 0, 0, 578, 0, 4, 93, 0, 1154, 1886, 1257, 243] m3/day.
o Table 1) (b) Metric 2 for various surrogate models, and (c) Metric 3 for various
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5.2. Results of optimization on the three-dimensional model

Similar to Model 2D, for Model 3D the maximum allowable
water injection rate, qinj

max, is set to 100 surface m3/day. The in-

jection continues for 10 years. We assume two control-period
cases, Np¼1 and Np¼2 to provide 8 and 16 optimization variables.
The economical constants are set to =r 50o USD/STB, =r 10w USD/
STB and =r 10inj USD/STB. We assume no discount factor ( =d 0).
Fig. 9. The best solutions obtained per optimization cycles (1 to Neval–NLHS) by various ind
using Np¼2 (green). The number of function evaluations for Np¼2 after LHS stage is twi
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Analysis of Model 3D results: (a) Metric 1 for various surrogate models (refer
surrogate models.
We set NLHS to 20�Np and Neval to 60�Np. Similar to the two-
dimensional models, we ran the optimization problem with each
individual or mixed surrogate model 10 times. The results of the
optimization are shown in the format of box plots at each step of
the optimization in Fig. 9. We show the results for F(u) after the
initial design by Latin hypercube sampling only. Also the analyses
of results in terms of the metrics defined in the previous subsec-
tion are shown in Fig. 10.
ividual and mixed surrogate models for Model 3D using Np¼1 (blue) and Model 3D
ce as number of function evaluations for Np¼1. (For interpretation of the references

to Table 1) (b) Metric 2 for various surrogate models, and (c) Metric 3 for various



Fig. 12. The injection and production curves for 6 realizations used in Model 3D.
For each realization, the summation of oil production rate for 4 production wells,
water production rate for 4 production wells and water injection rate for 8 injection
wells are shown.
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The analyses of the results in terms of the metrics defined
previously, re-affirms the previous conclusions that, firstly, the
radial basis function surrogate models perform agreeably well
compared to other individual surrogate models and it is not no-
ticeably and significantly outperformed by any of the mixed
models in a consistent manner between Np¼1 and 2. Interestingly
similar to Model 2D, Kriging is performing well for Np¼1 in terms
of Metrics 1 and 2, but it “catastrophically” fails for Np¼2 in terms
of all three metrics. This fact demonstrates that Kriging may not be
reliable when the numbers of optimization variables are high.

Secondly, between all the possible mixed surrogate models
examined, we have found none to be consistently better than ra-
dial basis function or better than other mixed surrogate models. It
may be a counter–intuitive deduction, however considering the
agreeable performance of radial basis function on its own, it may
not be too far from expectation that mixing it with other surrogate
models by either of the two combination schemes of DST or WAS
only undermines its performance.

Lastly, one can easily note the significant improvement of re-
sults of Kriging based optimization by implementing mixed sur-
rogate models for Np¼2. We believe this was the conclusion of
Viana et al. (2013).

In order to illustrate the best solution of optimization, we use
the highest NPV value obtained by radial basis function, Np¼2,
where NPV¼9.69�109 USD. The values of the optimization vari-
ables (u), for 8 injection wells and two control periods are re-
spectively: [0.22, 0, 0.17, 0.26, 0, 0, 0.03, 0.30, 0, 0.26, 0.03, 0, 0.37,
0.55, 0.38, 0.02]. The injection rate is obtained by multiplying u
with 100 m3/day. This means that the total water injection rate for
the first control period is 98 m3/day and for the second control
period is 161 m3/day. The water saturation profiles of the six rea-
lizations and the profiles of the injection and production for the
wells used in Model 3D are shown in Figs. 11 and 12.

The optimization has found a solution in which the water in-
jection is increased for the second period. This increase coincides
with the decrease in oil production rate and increase in water
production rate at year 5. Then for a 2 year period, the oil pro-
duction is maintained high until at year 7 water production in-
creases again. One expects that increasing the number of control
periods could potentially increase oil production and subsequently
increase net present value of the operation.
Fig. 11. The distribution of water saturation after 10 years of injection for Model 3D and f
of optimization for injection rates obtained from radial basis function surrogate model.
6. Discussions, conclusions and future works

In this work we compared radial basis function, Kriging and
multivariate adaptive regression splines as surrogate models used
individually or as ensembles by two available schemes of combi-
nation. The optimization problem was defined over two and three
dimensional water flooding examples with reasonably high degree
of complexity compared to field scale uncertain reservoir en-
gineering models. A derivative-free optimization of expensive
black-box objective functions with fixed user-defined parameters
was used across all the present models to provide a fair compar-
ison between the models.

Firstly, we did not compare the results of optimization with
Genetic Algorithm (GA) as Müller and Shoemaker (2014) have al-
ready established the superiorities of surrogate-assisted optimi-
zation for the same algorithms. In general GA requires more
number of expensive function evaluations for convergence and
with a limited budget of function evaluations, it does not give good
results. The number of iterations is a proxy for the computational
runtimes that are required. This gives a baseline to compare the
or 6 realizations considered for optimization. This is the results of using the solution
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computational efficiency across different hardware platforms and
different objective functions as the physical runtime would be
different for each of these separate cases. We have done this
comparison with GA on similar reservoir engineering problems in
(Pan et al., 2014), and it is well-established that the GA does not
give good performance with a limited number of function eva-
luations, in comparison with the surrogate methods.

Secondly, since the optimization algorithm is a stochastic one,
it gives slightly different answers every time it is run. To ensure
that the results are statistically consistent we ran it multiple times
(10 in this case) and used the summary statistics (quantiles, mean,
min, max etc.) to compare the accuracy of different variants of the
algorithm. This is important since it shows the consistency of the
algorithms in finding the best solutions. It might so happen that in
one run, one of the algorithms luckily sampled a point very close
to the true optima and got a good result, but in general the algo-
rithm is not good at finding such good solutions if it is run mul-
tiple times. If our conclusions were based on only one run then
they would have been erroneous and therefore there is a need of
using multiple runs for comparison.

Our results for individual and ensemble surrogate modeling
demonstrate that radial basis function is reliable consistently
for different reservoir optimization problems with varying
numbers of optimization variables. Even though ensemble sur-
rogate models have been shown to perform somehow better
than individual ones on test bench functions (Müller and Piché,
2011; Viana et al., 2013; Müller and Piché, 2014) our results
indicate that this is not always the case for realistic reservoir
engineering problems. Müller and Piché (2014) showed that the
ensemble surrogates outperformed nonsmooth optimization by
mesh adaptive direct search (NOMAD) and particle swarm
pattern search algorithm (PSWARM), but between the different
surrogate models we can hardly choose a consistently superior
model. Compared to ensemble models, they showed that for
large-dimensional and application problems, R-c (cubic radial
basis function with Candidate Point Strategy) has the best
average performance. The extensive simulation results on re-
servoir engineering problems here showed that we may actually
jeopardize the performance of cubic radial basis function by
combining it with other surrogates.

One plausible reason for this apparent inconsistency in these
results might be due to the fact that the objective function of the
reservoir engineering problem has complicated underlying non-
linearities which is very different from the ones in the test bench
functions. Therefore, even though empirical evidence on the test
bench functions have suggested that the DST or WAS based en-
semble methods are better than individual surrogates, these do
not generalize well to all classes of problems. Therefore these
ensemble methods would need to be adapted for similar reservoir
engineering problems or new methods of combining multiple
surrogates need to be developed, so that they can be useful in such
circumstances.

For the case of Viana et al. (2013), we have at least showed that
their claim stands true only when the individual model under the
comparison is not radial basis function but is others like Kriging
for example.

The conclusions of the paper indicate that more work needs to
be done on finding an effective surrogate model management
strategy which works for realistic reservoir engineering problems.
Future research efforts can be geared towards overcoming these
shortcomings. Nonetheless it is shown that using radial basis
function can be safely used.

In future, we will look at the performance of the algorithms on
increasing the number of optimization variables to more accu-
rately reflect a realistic reservoir engineering problem. We would
use the methodology for well location optimization for a field-
scale realistic reservoir with massively parallelized schemes.
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