
Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Parallelization of interpolation, solar radiation and water flow simulation
modules in GRASS GIS using OpenMP

Jaroslav Hofierkaa,⁎, Michal Lackoa, Stanislav Zubalb

a Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04001 Košice, Slovak Republic
b Department of Software Engineering, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6, Czech
Republic

A R T I C L E I N F O

Keywords:
Parallel computing
OpenMP
Interpolation
Solar radiation
Water flow simulation
GRASS GIS

A B S T R A C T

In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS
GIS using the OpenMP application programming interface for multi-core computers. These include the
v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water
module for water flow simulation. We briefly describe the functionality of the modules and parallelization
approaches used in the modules. Our approach includes the analysis of the module's functionality, identification
of source code segments suitable for parallelization and proper application of OpenMP parallelization code to
create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne
laser scanning data representing land surface in the test area and derived high-resolution digital terrain model
grids. We discuss the performance speed-up and parallelization efficiency depending on the number of
processor threads. The study showed a substantial increase in computation speeds on a standard multi-core
computer while maintaining the accuracy of results in comparison to the output from original modules. The
presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source
GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on
standard multi-core computers.

1. Introduction

Over the last decades, the advances in multi-core processor
architecture enabled parallel processing that can better utilize the
power of modern computers. The need for a better computer perfor-
mance is also stimulated by the increasing availability of massive
geospatial data, such as from laser scanning. However, this requires
specific software with the ability to employ parallel computational
capabilities (Guan and Wu, 2010).

First studies related to parallelization of Geographic Information
System (GIS) operations were done by Healey et al. (1998) and Mineter
and Dowers (1999). Several parallelization studies were published in
the area of digital terrain modeling and analysis (for example, Huang
and Yang, 2011; Huang et al., 2011; Schiele et al., 2012; Xie, 2012) and
hydrological modeling (Cui et al., 2005; Sten et al., 2016). Still
surprisingly, most of the current GIS software products exploit these
advances in a very limited way and nearly all operations are executed
by a single process. While most GIS operations are computationally
simple and therefore executable quickly even by a single process, some
geospatial tasks are more complex and computationally very intensive.

For example, spatial interpolation techniques, often used in GIS for
digital terrain modeling, usually require complex mathematical opera-
tions, and only rarely run in parallel. Most GIS operations are serially
designed without any consideration of concurrent execution (Guan and
Wu, 2010).

There are also various simulation models implemented in GIS
ranging from simple models based on map algebra to fully dynamic
simulation models such as, for example, hydrological or traffic models
that need thousands of iterations to represent the dynamical behavior
of the phenomenon. Moreover, these operations must be often run
repeatedly with various input parameters in order to get the most
accurate result. Thus, the issue of computation speed is very important
for most GIS users. However, despite the growing performance of
current computers, the tremendous volume of data make their proces-
sing using a standard GIS rather problematic. Obviously, the compu-
tationally intensive GIS operations originally run in a sequential mode
by a single process need a parallelization modification to fully exploit
the power of current multi-core systems.

The computer architecture and multiple processor organization
determine various parallel approaches. These depend on the number of

http://dx.doi.org/10.1016/j.cageo.2017.07.007
Received 18 December 2016; Received in revised form 29 April 2017; Accepted 29 July 2017

⁎ Corresponding author.
E-mail address: jaroslav.hofierka@upjs.sk (J. Hofierka).

Computers & Geosciences 107 (2017) 20–27

Available online 31 July 2017
0098-3004/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.07.007
http://dx.doi.org/10.1016/j.cageo.2017.07.007
http://dx.doi.org/10.1016/j.cageo.2017.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.07.007&domain=pdf


processors, access to physical memory and communication (Flynn,
1972). Typically, there are two major types of parallel architectures
that use either a distributed memory model or a shared memory model.
Distributed memory systems require a communication network to
connect the inter-processor memory. In the shared memory model the
access to the main memory is via Uniform Memory Access (UMA) or
Non-Uniform Memory Access (NUMA). NUMA provides a higher
scalability to systems with a higher number of processors (typically
more than 8–12), however, it increases the complexity of parallel
programming (Stallings, 2010). Recently, high performance computing
platforms have increasingly used general purpose computing on
graphics processing units (GPGPUs). The graphics processor unit is
used to perform computation in applications traditionally handled by
the central processing unit. The most common parallel computing
platforms based on GPGPU are CUDA and OpenCL (Fang et al., 2011).
The ideal GPGPU applications have large datasets, high parallelism
exploiting a large number of threads, and minimal dependency
between data elements.

There are several commonly used parallel programming approaches
depending on the memory model. The distributed memory model uses
a message passing system with the Message-Passing Interface (MPI)
application programming interface being the most widely used. The
shared memory model can be used by various parallel programming
tools such as Open Multi-Processing (OpenMP), POSIX Threads, or
Cilk. The distributed memory systems have dominated on network-
connected computer clusters. Currently, however, most mainstream
computers are equipped with multi-core central processing units
(CPUs), thus opening the power of parallel processing using a shared
memory model to any user with a single computer. In this study, we
will explore the implementation of shared memory parallelism for
multi-core systems using OpenMP and open-source GRASS GIS.

The OpenMP parallelization tool can be used to make new or
modify existing programs to run in parallel simply by adding compiler
directives or functions to the original program code. OpenMP (Open
Multi-Processing) is an application programming interface (API) that
supports shared memory multiprocessing (multithreading) on most
common platforms ranging from desktop computers to supercompu-
ters, processor architectures and operating systems (Chapman et al.,
2007). It consists of a set of compiler directives, library routines, and
environment variables that execute a task in parallel by several threads
allocated to different processors (cores). The core elements of OpenMP
are the constructs for thread creation, workload distribution (work
sharing), data-environment management, thread synchronization,
user-level runtime routines and environment variables. In C/C++,
OpenMP uses #pragmas.

In geospatial tasks, the concept of parallel computing can be used to
shorten computation time via decomposing the geospatial problem into
several subtasks that are handled simultaneously by different threads.
However, it is quite common that some subtasks depend on completion
of some other subtasks. Therefore, different parallelization problems
have different implementation schemes for shortening the duration of
computation. Parallel algorithms are usually used to partition the
temporal/spatial domain into sub-domains. Because almost all natural
processes are temporally successive, domain decomposition is mostly
carried out spatially (Li et al., 2011).

GRASS is an Open Source GIS with a wide-range functionality and
applications (GRASS, 2016; Neteler and Mitasova, 2008; Neteler et al.,
2012). It can handle 2D and 3D data in vector or raster format and
offers many advanced geospatial modeling algorithms and visualization
techniques. GRASS is not a monolithic application, but it rather
consists of over 300 modules following the Unix philosophy that each
module does a specific task. Therefore, each module is autonomous
including a memory management and error handling. The core
libraries and most modules are written in POSIX-conforming ANSI
C. Some functions are written in the C++ and Python programming
languages. Recently, Object Oriented Python Application Programming

Interface for GRASS GIS was introduced to expand the capabilities of
the software (Zambelli et al., 2013). The software is released under
GNU General Public Licence (GPL) (Neteler et al., 2012). A few
parallelization studies were done for GRASS GIS. For example,
Sorokine (2007) parallelized GRASS GIS visualization using high-
resolution tiled displays powered by Linux-based cluster of PCs, and
Huang et al. (2011) also used a Linux-based cluster for a parallel
inverse distance weighting interpolation algorithm using MPI. In
GRASS GIS, the shared-memory parallelization model based on
OpenMP has been used in the mathematical (gmath) and partial
differential equations (PDE) libraries for matrix and vector calculations
and linear equation solvers which are used by some GRASS GIS
modules, such as r.gwflow or r.solute.transport (GRASS, 2016).
There are still many computationally demanding modules that run
using a single process and thus do not exploit the full power of the
current multi-core technology. For example, the r.sun solar radiation
module was used in several studies with large datasets representing
Europe (Šúri et al., 2005) or large regions such as Andalusia (Romero
et al., 2008). Pintor et al. (2015) have found the speed of r.sun to be a
limiting factor for its application to high-resolution DEMs. A similar
situation can be found for other modules, such as r.sim.water for
dynamic hydrologic simulations or v.surf.rst for spatial interpolation
that also require a lot of time to process large datasets.

The goal of this paper is to present our shared-memory paralleliza-
tion approach based on OpenMP and applied to three existing and
computationally very intensive modules of GRASS GIS with different
functionality. These modules perform frequent geospatial operations:
spatial interpolation (v.surf.rst), solar radiation modeling (r.sun) and
hydrologic simulations (r.sim.water). The parallelized modules will be
applied to the test area represented by massive airborne laser scanning
data to document the efficiency of the parallel implementation.

2. Methods and data

2.1. OpenMP

The OpenMP standard was defined in 1997 as an API for writing
portable, multithreaded applications. The multithreading is a method
of parallelizing in which a master thread (a series of instructions
executed consecutively) forks a specified number of slave threads and
the system divides a task among them. The threads then run
concurrently while being allocated to different processors.

The OpenMP programming model provides a set of compiler
directives, function calls, and environment variables that instruct the
compiler how and where to use parallelism in the application. The main
task of OpenMP is to create and manage threads, distribute the tasks
and manage the data environment. The directive based approach
makes it possible to write sequentially consistent codes for easier
maintenance. The well-known advantage of OpenMP is its global view
of application memory address space that allows relatively fast devel-
opment of parallel applications. OpenMP is supported by almost all
major compilers (Akhter and Roberts, 2006).

OpenMP can be used effectively for the parallelization of the
originally sequential code because this requires only minimal code
changes, and thus minimizing the logical mistakes of the programmer.
The programmer does not create threads directly within the application
code, but just inserts OpenMP directives for the compiler, which
generates the code for threads during the translation. The advantage
of this approach is obvious; in most cases it is sufficient just to insert
directives to indicate which section of code will run in parallel. The
original code does not need to be changed. The functionality of the
originally sequenced code is clearly visible and the parallelization code
is separable. Obviously, this approach is especially useful when it is
necessary to parallelize the existing code.

In our study, we have used the following OpenMP directives valid
for C/C++ programming languages:

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

21



– #pragma omp parallel { } – defines a section of the parallel
calculation

– #pragma omp for schedule (dynamic) – defines a parallel loop and
each iteration will be assigned to threads dynamically

– #pragma omp critical { } – creates a critical section
– #pragma omp atomic – a simple critical section, a command under

this directive becomes an atomic (indivisible), therefore a command
during the execution is locked for the other threads

– firstprivate { } – variables that read the value from the main thread
but later become private for each thread

– shared {} – defines shared variables between all threads

The pragmas control how the program works. By the C/C++
standards, even if the compiler does not support pragmas, the program
will run correctly, however, without parallelism. Therefore adding the
OpenMP directives can be done very safely.

2.2. v.surf.rst

Spatial interpolation is one of the most computationally intensive
operations in GIS. There are many interpolation methods, but usually
more advanced and accurate methods require more computer re-
sources due to more complex calculations. The Regularized Spline
with Tension (RST) is an interpolation method that belongs to the wide
group of global methods based on radial basis functions (Mitas and
Mitasova, 1999). The global interpolation methods use all input points
to generate the resulting surface. Obviously, this is not possible for very
large datasets containing millions of points. For example, RST requires
solving a system of N linear equations that scales the computer time to
N3 (Mitas and Mitasova, 1999). Therefore software implementations
rely on the spatial autocorrelation principles of continuous phenom-
ena, i.e. they are used globally only for a smaller segment of the area.
Then the proper segmentation procedure must be taken to ensure a
smooth connection of all segments of the resulting surface. Still, the
application of global interpolation methods is computationally inten-
sive, and with the advance of the laser scanning technology producing
massive datasets with hundreds of millions of input points it seems
inevitable to use faster computational methods.

The bivariate RST interpolation has been implemented in GRASS GIS
as v.surf.rst (Neteler and Mitasova, 2008). In this module, the interpola-
tion process is controlled by several internal parameters such as tension,
smoothing and anisotropy. These parameters control the character of the
resulting surface. They can be selected empirically, based on the knowl-
edge of the modeled phenomenon, or automatically, by minimization of
the predictive error estimated by, for example, a cross-validation proce-
dure (Hofierka et al., 2002). Another set of the v.surf.rst parameters
controls the data processing: minimum and maximum distances between
input points, number of points used within and outside of areal segments
to ensure their smooth connection. The minimum distance between input
points can be very efficient in reducing the number of points used in the
interpolation process. It is based on the fact that it is not necessary to use
all points that fall within one cell of the resulting grid. Therefore, the value
of the minimal distance parameter can be set approximately to the cell
size. However, with the increasing availability of dense point clouds it is
also possible to compute high-resolution digital terrain models (DTM)
leading to very large grids with tens of millions of grid cells. Thus the
problem with efficient computation still needs to be addressed.

The v.surf.rst segmentation procedure uses a decomposition of the
interpolated area into rectangular segments with a variable size
dependent on the density of data points using 2d-trees (Mitasova
et al., 2005). The interpolation process in the segment uses input data
points from within this segment and its neighborhood to ensure a
smooth connection of interpolated surfaces from all segments (Mitas
and Mitasova, 1999). Thus the segmentation procedure of the v.surf.rst
module presents a task decomposition into several subtasks (inter-
polation segments) that can be parallelized.

2.3. r.sun

Spatial distribution of solar radiation at the land surface plays an
important role in many environmental applications. It depends on
many factors, such as the Earth's geometry, terrain morphology and
atmospheric conditions. These factors are described by a set of
equations creating a complex model, such as r.sun (Šúri and
Hofierka, 2004), that is capable of estimating the amount of global
solar radiation in all its components (beam, diffuse and reflected
radiation) for any point on land surface. The r.sun model is one of
the most widely used GIS-based solar radiation models that is
implemented in the open-source environment of GRASS GIS (Neteler
and Mitasova, 2008). Originally developed as a clear-sky model
(Hofierka, 1997), it was later further substantially improved by Šúri
and Hofierka (2004) to include diffuse and reflected components of
solar radiation for clear-sky and real-sky conditions. It has been used in
a wide range of applications at various scales (e.g., Romero et al., 2008,
Ruiz-Arias et al., 2009, Bergamasco and Asinari, 2011).

The r.sun module in GRASS GIS computes grids of solar radiation
using several input data such as DTM, atmospheric and land cover
conditions (Neteler and Mitasova, 2008). The most computationally
intensive part of the calculation is a sky obstruction (shadowing) by
terrain. Solar rays can be blocked by terrain features especially at lower
solar altitudes or in mountainous regions. The shadowing algorithm is
based on solar ray tracing and comparison of solar rays’ altitude to
terrain elevation in selected positions along the solar ray line. This is
calculated for each grid cell and repeatedly for selected times from
sunrise to sunset throughout the day if a daily sum of solar radiation is
calculated. The calculations for grid cells can be assigned as subtasks to
threads and computed in parallel.

2.4. r.sim.water

Overland flow (surface runoff) is the flow of water over the land that
usually occurs during heavy rainfalls, rapid snow thawing or from other
sources during which the amount of water exceeds the infiltration
capacity of the soil. Overland flow is controlled mainly by the terrain
gradient and roughness of the land surface and drives the processes of
soil erosion. The Saint-Venant differential equations are commonly
used to describe the shallow water flow conditions in surface runoff
(Maidment, 1993). There are several approximation techniques used
for overland flow simulations. Because overland flow is a dynamic
phenomenon, the simulation also needs to be dynamic. The overland
flow is usually simulated by iterations replicating the flowing water
(flow routing).

The r.sim.water module in GRASS GIS is part of the SIMWE model
proposed by Mitas and Mitasova (1998). It is based on the Monte Carlo
simulation and diffusion-wave approximation of the Saint-Venant
differential equations (Mitasova et al., 2004; Hofierka and Knutová,
2015). The key input parameters for the r.sim.water module include
elevation, water flow gradient (defined by the first-order partial
derivatives of the elevation grid), rainfall excess rate and a surface
roughness coefficient given by the Manning's n. The Monte Carlo part is
represented by walkers (particles) that simulate the flowing water. The
number of walkers depends on the size of grid. The duration of the
simulation is defined by the number of iterations. The number of
iterations and the grid size have a strong influence on the speed of
calculations. The outputs include grids of water depth [m], and water
discharge [m3/s] (Neteler and Mitasova, 2008). The module also
contains several other parameters controlling the movement behavior
of the water flow especially in depressions or near terrain obstacles.

The module runs in iterations representing time steps in the water
flow simulation. The water depth is calculated for each grid cell during
the iteration, however, the lateral movement of water between the cells
makes a parallelization more complicated. The concurrent addition of
walkers to the same cell by different threads must be prohibited.

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

22



Therefore the parallelization must be done in blocks of grid cells
sufficiently apart from each other.

2.5. Test area and the data

We have selected a small test area near the state border of Slovakia
with Hungary, Central Europe, to test the parallelized GRASS GIS
modules (Fig. 1). The area covers 68 km2 of karst landscape with many
karst landform features and a diverse mosaic of forests, shrubs,
permanent meadows and some arable land. The area was mapped by
airborne laser scanning (ALS) in 2014. A very detailed ALS was done to
map specific karst landform features such as sinkholes with varying
sizes even under a dense forest canopy. The complete ALS dataset
contains 1.99 billion of points with an average point density of 29
points per sq. metre representing the canopy as well as the land
surface. The average density of ground returns representing the land
surface is 4 points per sq. meter with a varying point density in forested
and open areas. The workflow and technical details on processing the
ALS dataset is described in (Hofierka et al., 2017).

The size of the dataset was further reduced to 25% of the original
file in the LAStools software by random selection of points leading to
the average point cloud density of 1.1 point/m2. This operation was
done outside of this study for other reasons. However, this is still more
than sufficient for grids with 2-meter (6250 × 5500) and 5-meter (2500
× 2200) spatial resolutions selected for the test area. Thus, the
resulting dataset used in this study contains about 75 million of points
representing the land surface. The workflow and technical details on
processing the ALS dataset is described in (Hofierka et al., 2017).

3. Results

The parallelization of GRASS GIS modules required several steps.
First, the functionality and algorithm of the module needs to be fully
understood. Then the source code must be thoroughly analyzed
including the libraries called from within the program. This analysis
helps to identify possible code segments suitable for parallelization.

The test data must be sufficiently complex to identify software bugs and
yet small enough to minimize the time for repeated calculation. The
identified code segments should be analyzed by a timer control to
identify the parts of the most time-consuming code. These parts of the
code might be good candidates for a parallelization and therefore need
a further analysis. Usually they contain a recursion or a nested loop. A
parallelization should be done at the top layer (upper loop) since this is
the most effective way of parallelization without creating and destruc-
tion of threads at lower layers as this consumes time. After these steps
and identification of the code that could be parallelized, we can add
necessary OpenMP parallelization code. The result of the calculation is
compared to the original, sequential version. The results of both
versions must be identical.

The tests were performed using the dataset described in the Section
2.1 and a high-resolution DTM derived by v.surf.rst. The modules were
executed on a Linux-based desktop computer with an Intel i7-3770K
hyperthreaded quad-core processor and 8 GB of RAM. In this study, we
have used the current stable version of GRASS GIS (v. 7.2). The source
code was compiled using GNU Compiler Collection (gcc 4.4.6) as a
component of the Scientific Linux v. 6.3 operating system.

3.1. Parallelization of the v.surf.rst module

The v.surf.rst module uses the segmentation procedure for proces-
sing large datasets. The interpolated area is split into quadtree-based
rectangular segments. The size of each segment is adjusted to the
density of points. To ensure smooth connection of segments, the
interpolated surface in each segment is computed using the points in
the given segment and the points in its neighborhood which is defined
by a rectangular window surrounding the given segment (Mitasova
et al., 2005). In the source code, the division into quad-tree segments is
done by the multtree data structure. The tree is searched recursively
with the interpolation segments saved in the leaves of the tree.
However, the recursion is not very appropriate for parallelization
because calculation tasks should be divided equally between the
threads. In recursion, this is not possible because each task depends

Fig. 1. Location of the test area.

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

23



on some other task. Therefore we have removed the recursive calcula-
tions and replaced them by the cut_tree function. This function cuts
the tree, and the required data segments are stored in an array. The
components of the array can be accessed in parallel thus leading to an
easy access to data.

After splitting the region into segments and filling the arrays, the
parallel computation is performed. The number of threads (1–4) is
defined by the user using the threads parameter. Each thread takes the
data from the array for a single interpolation segment. After the task is
finished, it passes the information about it to the management of the
calculation and selects the next segment. Consequently, the threads
process all interpolation segments, and results are stored in a final grid.
Hence, the parallelization solution is based on the segmentation
procedure that is part of the interpolation algorithm.

The parallelized v.surf.rst module was applied to the test area and
data (Fig. 2). The output elevation grids were computed with a 2-m and
5-m spatial resolution (cell size). To reduce a still oversampled input
dataset, we have used the minimum distance between the input points
parameter in v.surf.rst with the value of 2 and 5 m reflecting the spatial
resolution of the grids. Thus we reduced the number of input points
actually used in the calculation to 8.8 million and 2.1 million points for
2-m and 5-m spatial resolutions, respectively. The execution times of
the original and parallelized v.surf.rst are presented in Table 1. A
higher resolution requires substantially more computer resources and

time. The speed-up of computation (execution time of the original
version/execution time of the parallelized version) is 2.31 and 2.33 for
2 threads and 4.08 and 4.18 for 4 threads, respectively. The speed-up is
slightly higher for 2-meter resolution due to a lower share of I/O
operations in the computation. Normally, the speed-up will not exceed
the number of processor cores. The parallel algorithm is considered
highly efficient if the speed-up is equal or very close to the number of
cores. The speed-up number in this case is exceeding the number of
threads because the parallel version uses a more efficient algorithm
dealing with the interpolation segments.

The source code of the parallelized v.surf.rst module is already
included in the active development version of GRASS GIS (v. 7.3) and it
is available at https://grass.osgeo.org/download/software/.

3.2. Parallelization of the r.sun module

The r.sun code has been parallelized relatively easily at the top level
of the program without excessive code changes. The primary paralle-
lization task was to split the grid cells between the processor cores. The
forscheduledynamic function assigns the blocks of input grid cells to
the threads. The cells are read sequentially from the grid. After the
completion of the task, the thread asks sequentially for another cell.
The variables that should not be shared between the threads because
they would be overwritten within different threads were assigned as

Fig. 2. The DTM (elevation in meters) computed by the parallelized v.surf.rst module.

Table 1
Execution times (in seconds) and speed-up for the original and parallelized version of v.surf.rst.

Spatial resolution Original version 1 Thread 2 Threads 4 Threads

Time (s) Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up

2 m 13,598 11,323 1.20 5,832 2.33 3,255 4.18
5 m 2,622 2,184 1.20 1,137 2.31 642 4.08

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

24

https://grass.osgeo.org/download/software/


private. Also we modified the calculation of variables representing the
indexes of the grid cells in order to make the calculation by threads
independent from the iteration.

To demonstrate the applicability of the parallelized r.sun module,
we used the DTM computed by the v.surf.rst module. The area used for
the analysis contains approximately 2.7 million of cells in the 5-meter
resolution grid and 17 million of cells in the 2-meter resolution grid.
We computed the beam radiation for the spring equinox day (Fig. 3).
The execution times of the original and parallelized r.sun are presented
in Table 2. The speed-up of computation is 1.95 and 1.97 for 2 threads
and 3.44 and 3.72 for 4 threads, respectively. This indicates that the
software is efficiently parallelized despite the fact that some sequential
parts of the code are identical (such as input/output operations). The
speed-up is clearly higher for the 2-meter resolution.

The parallelized source code of r.sun is available from the Add-ons
repository of GRASS GIS at https://trac.osgeo.org/grass/browser/
grass-addons/grass7/raster/r.sun.mp.

3.3. Parallelization of the r.sim.water module

The analysis of the r.sim.water module showed that this module
depends on the Monte Carlo simulation library (r.sim). Therefore the
parallelization had to be done in this library and r.sim.water contains

just a parameter for selecting the number of threads. This module is
impossible to parallelize at the top level of the program because the
final grid is created iteratively and each step depends on the previous
step. Therefore the parallelization has to be done at lower level of the
program. This also causes a slightly lower speed-up of the paralleliza-
tion in comparison to previous modules (Table 3). The parallelization is
applied to large segments of grid cells, and threads work on sufficiently
distant grid cells. The grid is split into regular segments via spatial
decomposition according to the number of threads. Each thread works
on its own segment.

The parallelized r.sim.water module was applied to the test area
using the same high-resolution DTM derived by v.surf.rst. We simu-
lated 120-min. rainfall event using default simulation parameters and
uniform soil and land cover properties. The output grids include water
flow depth and water discharge (Fig. 4). The computation times of the
original and parallelized r.sim.water are presented in Table 3. The
speed-up of computation is 1.83 and 1.90 for 2 threads and 2.87 and
2.97 for 4 threads, respectively. The speed-up of the computation is
slightly lower than in previous modules due to a less efficient
parallelization as discussed above. Still, the speed-up is higher for 2-
meter resolution showing a better performance for large grids.

The parallelized source code of r.sim.water is available from the

Fig. 3. Beam solar radiation (daily sum in W h/m2) computed using the parallelized r.sun module.

Table 2
Execution times (in seconds) and speed-up for the original and parallelized version of
r.sun.

Spatial
resolution

Original version/1
Thread

2 Threads 4 Threads

Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up

2 m 2,652 – 1,345 1.97 713 3.72
5 m 189 – 97 1.95 55 3.44

Table 3
Execution times (in seconds) and speed-up for the original and parallelized version of r.
sim.water.

Spatial
resolution

Original version/1
Thread

2 Threads 4 Threads

Time (s) Speed-
up

Time (s) Speed-up Time (s) Speed-up

2 m 21,824 – 11,501 1.90 7,343 2.97
5 m 2,631 – 1,440 1.83 916 2.87

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

25

https://trac.osgeo.org/grass/browser/grass-addons/grass7/raster/r.sun.mp
https://trac.osgeo.org/grass/browser/grass-addons/grass7/raster/r.sun.mp


Add-ons repository of GRASS GIS at https://trac.osgeo.org/grass/
browser/grass-addons/grass7/raster/r.sim.water.mp.

4. Discussion

If we compare results of all parallelized modules and their original
versions presented in Tables 1–3, we can see a substantial improve-
ment in execution times depending on the number of threads. The
most efficiently parallelized is the v.surf.rst module because the
modification of the original code also included changes in the manip-
ulation of interpolation segments, which proved to be more efficient
than in the original version. The results of calculations were verified
with the results of the original versions and they are identical. Very
small variations in the resulting output grids exist in the case of the
r.sim.water module because of the independent use of the g_drand48
random generator within each thread. However, the differences are
very small and within the expected accuracy of the Monte Carlo model.

Spatial resolution has a major impact on execution times in all
modules. The least efficient is the r.sun module; the original version
calculates an output for the 2-m resolution grid with (6250 × 5500) 14
times longer than for the 5-m resolution grid (2500 × 2200) but still
within one hour. However, the calculation of a high-resolution grid by
the original versions of r.sim.water and v.surf.rst lead to execution
times that are rather too long (4–6 h). Both modules require thorough
parameterizations, so the user often needs to run the modules
repeatedly to analyze results. Still, the 6250 × 5500 grid is nothing
unusual in geoscientific applications. The OpenMP parallelization has
led to a substantial reduction of execution times, almost linearly with
the number of processor cores. The speed-up factors for 4 threads are
4.18 (v.surf.rst), 3.72 (r.sun) and 2.97 (r.sim.water) using a 2-meter
resolution grid. Schiele et al. (2012) report a speed-up in a range of
2.58–3.23 in a study with similar data using the POSIX Threads
parallelization library. The authors calculated flow directions using the
grid-based DEM. Guan and Wu (2010) achieved a speed-up factor of

3.66 for spatial interpolation of DEM using Intel Threading Building
Blocks parallelization library and similar laser scanning data. In both
studies, the new custom-based algorithms were developed. In contrast,
this study demonstrates the efficiency of the OpenMP parallelization
approach applied to existing open-source algorithms.

Several parallelization studies (for example, Guan and Wu, 2010;
Xie, 2012) discuss the scalability of the parallelization relating the
number of threads to the speed-up. Depending on the amount of data,
the optimal number of threads is around 4–5. When the number of
concurrent threads is greater than 6, the speed-up quickly decreases
due to serial input/output operations (Guan and Wu, 2010). The use of
GPGPU with thousands of threads may be a good solution to
algorithms with a high level of parallelism and local character of the
calculations applied to large datasets (Sten et al., 2016). The r.sun
module could be a good candidate for such a parallelization approach,
especially for cell by cell calculations of local solar parameters.

5. Conclusions

Current geospatial software products include several computation-
ally intensive operations that could be efficiently parallelized using
appropriate tools such as OpenMP or MPI depending on the hardware
architecture. In this study, we present an OpenMP-based paralleliza-
tion approach suitable for multi-core systems with a shared memory
model applied to existing open-source GRASS GIS modules.

We have parallelized three computationally intensive GRASS GIS
modules: v.surf.rst, r.sun and r.sim.water. These modules often use as
an input massive and high-resolution geospatial data presenting
challenges for computational capacity. Moreover, they are often run
repeatedly in order to get optimized input parameters or the most
accurate result.

The parallelization was done in several steps. These include the
analysis of the module's functionality, identification of source code
segments suitable for the parallelization and proper application of

Fig. 4. Water flow discharge (in m3/s) computed using the parallelized r.sim.water module.

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

26

https://trac.osgeo.org/grass/browser/grass-addons/grass7/raster/r.sim.water.mp
https://trac.osgeo.org/grass/browser/grass-addons/grass7/raster/r.sim.water.mp


parallelization code to create efficient threads processing the subtasks.
The parallelized modules were applied to the test area represented by
massive airborne laser scanning data and derived high-resolution
DTMs. The parallelized modules showed a substantial speed-up of
computation depending on the number of threads. This documents that
the parallelization was implemented efficiently, thus maximizing the
processor performance.

In this study, we demonstrated the simplicity and efficiency of the
parallelization of open-source GRASS GIS modules using OpenMP,
leading to an increased performance of this geospatial software on
standard multi-core computers. The parallelization can substantially
improve the speed of complex geospatial operations such as spatial
interpolation or landscape process simulations. This paper showed that
parallelization of existing GIS operations can be done easily and
without excessive code changes. The parallelized GIS modules should
very well benefit the GIS users and inspire for further efforts in this
field.

Acknowledgement

This work originated within the APVV-0176-12 and VEGA 1/0474/
16 research projects supported by the Slovak Research and
Development Agency and Slovak Research Grant Agency VEGA,
respectively.

References

Akhter, S., Roberts, J., 2006. Multi-Core Programming. IntelPress, Hillsboro, USA, 360.
Bergamasco, L., Asinari, P., 2011. Scalable methodology for the photovoltaic solar energy

potential assessment based on available roof surface area: application to Piedmont
Region (Italy). Sol. Energy 85, 1041–1055.

Chapman, B., Jost, G., van der Pas, R., 2007. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, Cambridge, 384.

Cui, Z., Vieux, B.E., Neeman, H., Moreda, F., 2005. Parallelisation of a distributed
hydrologic model. Int. J. Comput. Appl. Technol. 22, 42–52.

Fang, J., Varbanescu, A.L., Sips, H., 2011. A comprehensive performance comparison of
CUDA and OpenCL. In: Proceedings of the 40th International Conference on Parallel
Processing, Taipei City, Taiwan, 13-16 September 2011, pp. 216–225.

Flynn, M.J., 1972. Some computer organizations and their effectiveness. IEEE Trans.
Comput. C–21 (9), 948–960.

GRASS, 2016. GRASS GIS [online]. 〈http://grass.osgeo.org/〉 December 2016.
Guan, X., Wu, H., 2010. Leveraging the power of multi-core platforms for large-scale

geospatial data processing: exemplified by generating DEM from massive LiDAR
point clouds. Comput. Geosci. 36, 1276–1282.

Healey, R., Dowers, S., Gittings, B., Mineter, M., 1998. Parallel Processing Algorithms for
GIS. Taylor & Francis, London, UK, 460.

Hofierka, J., Gallay, M., Kaňuk, J., Šašak, J., 2017. Modelling karst landscape with
massive airborne and terrestrial laser scanning data. In: Ivan, I., Singleton, A.,
Horák, J., Inspektor, T. (Eds.), The Rise of Big Spatial Data, Lecture Notes in
Geoinformation and Cartography. Springer International Publishing, Cham,
Switzerland, 141–154.

Hofierka, J., 1997. Direct solar radiation modelling within an open GIS environment. In:
Proceedings of the 1997 Joint European GI Conference, Vienna, Austria, pp. 575–
584.

Hofierka, J., Knutová, M., 2015. Simulating spatial aspects of a flash flood using the
Monte Carlo method and GRASS GIS: a case study of the Malá Svinka Basin
(Slovakia). Open Geosci. 7, 118–125.

Hofierka, J., Parajka, J., Mitasova, H., Mitas, L., 2002. Multivariate interpolation of
precipitation using regularized spline with tension. Trans. GIS 6, 135–150.

Huang, F., Liu, D., Tan, X., Wang, J., Chen, Y., He, B., 2011. Explorations of the
implementation of a parallel IDW interpolation algorithm in a Linux cluster-based
parallel GIS. Comput. Geosci. 37, 426–434.

Huang, Q., Yang, C., 2011. Optimizing grid computing configuration and scheduling for
geospatial analysis: an example with interpolating DEM. Comput. Geosci. 37,
165–176.

Li, T., Wang, G., Chen, J., Wang, H., 2011. Dynamic parallelization of hydrological model
simulations. Environ. Model. Softw. 26, 1736–1746.

Maidment, D.R., 1993. Handbook of Hydrology. McGraw-Hill, New York, 1424.
Mineter, M.J., Dowers, S., 1999. Parallel processing for geographical applications: a

layered approach. J. Geogr. Syst. 1, 61–74.
Mitas, L., Mitasova, H., 1998. Distributed soil erosion simulation for effective erosion/

deposition modeling and enhanced dynamic visualization. Water Resour. Res. 34,
505–516.

Mitas, L., Mitasova, H., 1999. Spatial interpolation. In: Longley, P., Goodchild, M.F.,
Maguire, D.J., Rhind, D.W. (Eds.), Geographical Information Systems: Principles,
Techniques, Management and Applications. GeoInformation International, Wiley,
New York, 481–492.

Mitasova, H., Mitas, L., Harmon, R.S., 2005. Simultaneous spline interpolation and
topographic analysis for lidar elevation data: methods for Open source GIS. IEEE
Geosci. Remote Sens. Lett. 2, 375–379.

Mitasova, H., Thaxton, C., Hofierka, J., McLaughlin, R., Moore, A., Mitas L., 2004. Path
sampling method for modeling overland water flow, sediment transport and short
term terrain evolution in Open Source GIS. In: C.T. Miller, M.W. Farthing, V.G.
Gray, G.F. Pinder (Eds.) Proceedings of the XVth International Conference on
Computational Methods in Water Resources (CMWR XV), June 13–17 2004, Chapel
Hill, NC, USA, Elsevier, pp. 1479–1490.

Neteler, M., Bowman, M.H., Landa, M., Metz, M., 2012. GRASS GIS: a multi-purpose
open source GIS. Environ. Model. Softw. 31, 124–130.

Neteler, M., Mitasova, H., 2008. Open source GIS: A GRASS GIS approach. third ed. In:
The International Series in Engineering and Computer Science, volume 773,
Springer, New York.

Pintor, B.H., Sola, E.F., Teves, J., Inocencio, L.C., Ang, M.R.C., 2015. The resolution
dilemma: Finding the optimum DEM resolution for large-scale solar energy resource
assessment using R.sun. In: Lagmay, A.M. (Ed.) Proceedings of the 36th Asian
Conference on Remote Sensing 2015 (ACRS 2015): Fostering Resilient Growth in
Asia, 19–23 October 2015, Quezon City, Manila, Philippines, Asian Association on
Remote Sensing, pp. 1357–1366.

Romero, L.F., Tabik, S., Vías, J.M., Zapata, E.L., 2008. Fast clear-sky solar irradiation
computation for very large digital elevation models. Comput. Phys. Commun. 178,
800–808.

Ruiz-Arias, J.A., Tovar-Pescador, J., Pozo-Vázquez, D., Alsamamra, H., 2009. A
comparative analysis of DEM-based models to estimate the solar radiation in
mountainous terrain. Int. J. Geogr. Inf. Sci. 23, 1049–1076.

Schiele, S., Möller, M., Blaar, H., Thürkow, D., Müller-Hannemann, M., 2012.
Parallelization strategies to deal with non-localities in the calculation of regional
land-surface parameters. Comput. Geosci. 44, 1–9.

Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., Aspnäs, M., 2016. Parallel flow
accumulation algorithms for graphical processing units with application to RUSLE
model. Comput. Geosci. 89, 83–95.

Stallings, W., 2010. Computer Organization and Architecture: Designing for Performance
eighth ed.. Prentice Hall, Upper Saddle River, New Jersey.

Sorokine, A., 2007. Implementation of a parallel high-performance visualization
technique in GRASS GIS. Comput. Geosci. 33, 685–695.

Šúri, M., Hofierka, J., 2004. A new GIS-based solar radiation model and its application to
photovoltaic assessments. Trans. GIS 8, 175–190.

Šúri, M., Huld, T.A., Dunlop, E.D., 2005. PVGIS: a web-based solar radiation database
for the calculation of PV potential in Europe. Int. J. Sustain. Energy 24, 55–67.

Xie, J., 2012. Implementation and performance optimization of a parallel contour line
generation algorithm. Comput. Geosci. 39, 21–28.

Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: an object oriented python application
programming interface (API) for geographic resources analysis support system
(GRASS) geographic information system (GIS). ISPRS Int. J. Geo-Inf. 2, 201–219.

J. Hofierka et al. Computers & Geosciences 107 (2017) 20–27

27

http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref1
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref2
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref2
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref2
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref3
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref3
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref4
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref4
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref5
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref5
http://grass.osgeo.org/
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref6
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref6
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref6
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref7
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref7
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref8
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref8
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref8
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref8
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref8
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref9
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref9
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref9
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref10
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref10
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref11
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref11
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref11
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref12
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref12
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref12
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref13
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref13
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref14
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref15
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref15
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref16
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref16
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref16
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref17
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref17
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref17
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref17
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref18
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref18
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref18
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref19
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref19
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref20
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref20
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref20
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref21
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref21
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref21
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref22
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref22
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref22
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref23
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref23
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref23
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref24
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref24
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref25
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref25
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref26
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref26
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref27
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref27
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref28
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref28
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref29
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref29
http://refhub.elsevier.com/S0098-3004(16)30835-4/sbref29

	Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP
	Introduction
	Methods and data
	OpenMP
	v.surf.rst
	r.sun
	r.sim.water
	Test area and the data

	Results
	Parallelization of the v.surf.rst module
	Parallelization of the r.sun module
	Parallelization of the r.sim.water module

	Discussion
	Conclusions
	Acknowledgement
	References




