
Computers & Geosciences 89 (2016) 88–95
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m

jan.wes
journal homepage: www.elsevier.com/locate/cageo
Research paper
Parallel flow accumulation algorithms for graphical processing units
with application to RUSLE model

Johan Sten a, Harri Lilja b,n, Jari Hyväluoma b, Jan Westerholm a, Mats Aspnäs a

a Åbo Akademi University, Faculty of Science and Engineering, Vattenborgsvägen 5, 20500 Turku, Finland
b Natural Resources Institute Finland, Tietotie 4, 31600 Jokioinen, Finland
a r t i c l e i n f o

Article history:
Received 22 January 2015
Received in revised form
13 January 2016
Accepted 14 January 2016
Available online 15 January 2016

Keywords:
Algorithms
DEM
GPGPU
Hydrology
Parallel
RUSLE
x.doi.org/10.1016/j.cageo.2016.01.006
04/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: harri.lilja@luke.fi (H. Lilja),
terholm@abo.fi (J. Westerholm).
a b s t r a c t

Digital elevation models (DEMs) are widely used in the modeling of surface hydrology, which typically
includes the determination of flow directions and flow accumulation. The use of high-resolution DEMs
increases the accuracy of flow accumulation computation, but as a drawback, the computational time
may become excessively long if large areas are analyzed. In this paper we investigate the use of graphical
processing units (GPUs) for efficient flow accumulation calculations. We present two new parallel flow
accumulation algorithms based on dependency transfer and topological sorting and compare them to
previously published flow transfer and indegree-based algorithms. We benchmark the GPU im-
plementations against industry standards, ArcGIS and SAGA. With the flow-transfer D8 flow routing
model and binary input data, a speed up of 19 is achieved compared to ArcGIS and 15 compared to SAGA.
We show that on GPUs the topological sort-based flow accumulation algorithm leads on average to a
speedup by a factor of 7 over the flow-transfer algorithm. Thus a total speed up of the order of 100 is
achieved. We test the algorithms by applying them to the Revised Universal Soil Loss Equation (RUSLE)
erosion model. For this purpose we present parallel versions of the slope, LS factor and RUSLE algorithms
and show that the RUSLE erosion results for an area of 12 km x 24 km containing 72 million cells can be
calculated in less than a second. Since flow accumulation is needed in many hydrological models, the
developed algorithms may find use in many other applications than RUSLE modeling. The algorithm
based on topological sorting is particularly promising for dynamic hydrological models where flow ac-
cumulations are repeatedly computed over an unchanged DEM.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Soil erosion is a world-wide problem that has severe environ-
mental impacts as well as economic consequences. Surface topo-
graphy is a key factor in most erosion models (Toy et al., 2002) and
thus all models use elevation information in some way. The light
detection and ranging (Lidar) technique has made a breakthrough
in recent years and has increased the accuracy of digital elevation
models significantly. The revised universal soil loss
equation (RUSLE) is used in the present work (Renard et al., 1991).
The simple and robust model structure and minimal input data
needed makes RUSLE capable of producing even global erosion
risk maps (Yang et al., 2003). Although the model is simple, the
continuous increase in the DEM resolution makes the computa-
tional cost of DEM-based RUSLE modeling a critical issue since
finer DEM resolutions have been shown to improve the accuracy of
RUSLE results (Zhao et al., 2010). Because long computation times
are needed to produce detailed erosion maps for large areas it
would be advantageous and highly important to be able to in-
crease the speed of flow computations.

Using graphics processing units (GPU) for general applications
has become known as general purpose computing on graphical
processing units (GPGPU). GPUs are extremely well suited for
data-parallel problems because they contain a large number of
cores that concurrently execute the same instructions on in-
dependent data. This is known as single instruction multiple data
(SIMD) parallelism (Trobec et al., 2009). Each of the cores runs a
thread that receives a portion of the total work and the execution
of the threads is in parallel.

Here we describe four approaches for parallel flow accumula-
tion calculation. The Open Computing Language OpenCL (Munshi,
2011) has been chosen for implementation as it is suitable not only
for any GPU but can also be run on a large range of other types of
devices. In addition to two previously published GPGPU methods,

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.01.006
http://dx.doi.org/10.1016/j.cageo.2016.01.006
http://dx.doi.org/10.1016/j.cageo.2016.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.01.006&domain=pdf
mailto:harri.lilja@luke.fi
mailto:jan.westerholm@abo.fi
http://dx.doi.org/10.1016/j.cageo.2016.01.006

J. Sten et al. / Computers & Geosciences 89 (2016) 88–95 89
the flow-transfer algorithm (Ortega and Rueda, 2010) and the in-
degree-based algorithm (Zhan and Qin, 2011), we introduce two
new methods called dependency transfer and topological sort
based algorithms for GPGPUs. These algorithms are used as a part
of the GPGPU implementation of RUSLE and their performance is
measured and benchmarked against ArcGIS and SAGA, which
serve as industry standards.
Fig. 1. Structure of the GPGPU RUSLE model and the program options.
2. RUSLE model implementation for GPGPU

In this section we first give a brief description of the RUSLE
model. Readers are referred to Kinell (2010) for more details. Then,
the overall structure of the parallel OpenCL implementation is
described.

2.1. RUSLE model

RUSLE is a computerized version of USLE with revised estima-
tions of its equation factors. RUSLE estimates the long-term annual
average soil loss per unit area A (in tons/hectare/year) as the
product of five factors R, K, LS, C and P. The soil loss estimate is
given by the equation

= · · · · ()A R K LS C P, 1

where R quantifies the impact of rainfall; K the soil erodibility; LS
the effect of surface topography; C the cover management and P,
human efforts to prevent erosion. Three calculations are needed to
determine the LS factor from the DEM, namely slope, flow routing
and flow accumulation (see Section 3.3 for details). R and K have
units while the rest are relative and unitless quantities with values
ranging from 0 to 1, the largest value corresponding to conditions
identical to the unit reference plot used by RUSLE.

2.2. OpenCL implementation

OpenCL is an open-standard programming language platform
that enables parallel high performance computation on hetero-
geneous architectures (Jones, 1998). Although OpenCL allows
several or all available OpenCL devices to be used at the same time,
in this work we use a single CPU or GPU as the device.

We implemented the kernels, i.e., the programs that will run on
the device, using OpenCL (Munshi, 2011). As the device often has a
highly parallel architecture the kernels are designed as a collection
of preferably independent work-items, each executing a small part
of the entire calculation. The kernel is scheduled to be executed in
blocks of lock-stepped parallel work-items called work-groups.
Each work-group can contain hundreds of work-items. At the
program compile time we do not yet know which device the
programwill run on. Therefore, OpenCL has to compile the kernels
on-the-fly for the specific device at hand before they can be run on
the device. This is done automatically by the software driver for
the intended device.

The overall structure of the OpenCL implementation of RUSLE is
depicted in Fig. 1. Four factors, R, K, C and P, are typically local by
nature, and they are given by similar rasters of cell values as the
DEM. The fifth factor, LS, requires as input the DEM, a choice of
flow routing model (D8, FD8, FDD8 or anisotropic), and a choice of
flow accumulation method (transfer, dependency transfer, in-
degree or topological). All steps are run by one invocation of the
corresponding OpenCL kernel except the flow accumulation ker-
nels which may require repeated invocations.

3. Algorithms

In this section we describe the flow routing, flow accumulation,
slope, LS and RUSLE algorithms with OpenCL using pseudocode. As
a sample case we have used the FD8 flow routing but all pseu-
docodes are easily adapted for the other flow routing methods of
Section 3.1.

3.1. Flow routing

The flow routing algorithms used in this paper are D8
(O’Callaghan and Mark, 1984), FD8 (Quinn et al., 1991), FDD8
(Schauble, 2005) and Anisotropic (Hyväluoma et al., 2013), ex-
plained in detail in their original articles. Here we only give a brief
description of the basic idea behind the algorithms in Supple-
mentary material. A review of the flow routing algorithms is
presented in Wilson et al. (2008).

3.2. Flow directions and dependencies

For the flow accumulation computations it turns out to be
advantageous to record into which DEM cells the flow will go from
a given cell (flow directions) or from which cells a given cell will
receive its flow (flow dependencies). Here we present algorithms
to determine these two quantities.

Flow directions consist of those downslope directions into
which a cell distributes its accumulated flow. Flow directions are
determined by the used flow-routing algorithm. The number of
recipient cells varies from at most a single recipient (D8) to pos-
sibly all downslope cells (FD8). As a sample case, the kernel to
determine the FD8 flow directions is presented in Algorithm 1 as
pseudocode in Supplementary material. The DEM serves as the
input while the output is written to a byte array FD8_Dirswith
the same dimensions as the original DEM. For each DEM cell, the
result is stored as a byte in FD8_Dirs whose eight bits correspond
to the eight possible directions towards the neighboring cells, e.g.,
starting from north and going clockwise. The pseudocode line 3,
parallel for each cell, indicates that one OpenCL work-item
is run for each DEM cell, independently and in an arbitrary order.

Flow dependencies give an inverted description of the flow
directions. Instead of determining the directions into which a gi-
ven cell distributes its flow, a downslope cell keeps track of those
cells from which it receives flow. To compute the flow de-
pendencies of a cell, the flow directions for all cells are first de-
termined. Each cell is then treated as a potential downslope re-
cipient cell, and the flow directions of the neighboring cells are
checked to see if those cells will contribute flow to the cell under
investigation. In Algorithm 2, Supplementary material, a kernel for

1
2

3
4
5

6
7
8
9
1

1

1

1

1
1
1
1
1
1
2
2
2

J. Sten et al. / Computers & Geosciences 89 (2016) 88–9590
determining flow dependencies is presented. The input is a byte
array Dirs of the same size as the DEM array, containing the flow
directions for the appropriate flow model (the output from Algo-
rithm 1) and the output is another DEM sized byte array Deps

containing the dependencies, that is, for each cell the result is a
byte whose eight bits correspond to the eight possible flow di-
rections from the neighboring cells. Notice that even when the
flow routing algorithm may limit the number of flow directions,
the number of dependencies can be anything between zero and
eight. For example, in D8 there is at most one flow direction from a
cell, but even in D8 a pit cell may have eight dependencies. This
Dependencies kernel works in the same way irrespective of the
chosen flow model (D8, FD8, FDD8, anisotropic) but the result
depends on the selected flow model as it affects the input flow
directions.

3.3. Flow accumulation

Flow accumulation is a key quantity in many surface hydro-
logical simulations and in the calculation of the RUSLE LS factor.
Flow accumulation kernels can be either distributing or gathering.
A distributive algorithm sends the correct amount of water from a
cell to its downslope cells. The number of recipient cells and the
amount they receive are determined by the chosen flow routing
model. Distributive algorithms can be implemented straightfor-
wardly in sequential programs. However, when cells are processed
by parallel threads, a data race may occur if the values from two
(or more) upslope cells are added simultaneously to the same
recipient cell. Parallel distributive algorithms need to utilize syn-
chronization or atomic operations in order to prevent data races. A
gathering kernel works in the opposite way. Here a cell gathers
accumulation by reading the flow from its upslope neighbors. The
advantage of the gathering variant is that it completely avoids the
critical sections, i.e., sections of code that access shared resources
that must not be updated concurrently. Ortega and Rueda (2010)
have examined both variants and concluded that the synchroni-
zation overhead in distributing is greater than the cost of gather-
ing the values from the upslope cells. For this reason, we only
consider gathering kernels.

In the next subsections we describe four parallel flow accu-
mulation algorithms: flow transfer, dependency transfer, indegree
accumulation and accumulation using topological sorting.

3.3.1. Flow transfer
The conceptually simplest flow accumulation algorithm is

based on flow transfer (O’Callaghan and Mark, 1984; Ortega and
Rueda, 2010). The flow transfer algorithm iteratively transfers
water from a cell to its neighbors according to the chosen flow
routing model to implement flow transfer in parallel (see Algo-
rithm 3), the dependency array is used to determine from which
neighboring cells a given cell can receive flow. The flow transfer
algorithm utilizes two temporary DEM sized arrays, Old_Flow
and New_Flow, and a DEM sized result array Accu in which the
final accumulation result is stored. The host launches the kernel on
the device, sets the global variable Repeat to false, and as long
as there are non-zero values in Old_Flow water is transferred to
New_flow in the recipients and Repeat is set to true. Before the
first iteration the Old_Flow array is initialized to a starting value,
eg. 1, and New_Flow and Accu arrays are initialized to zero. After
each iteration, New_flow is added to Accu and the host swaps the
Old_Flow and New_Flow arrays, i.e., the output in New_Flow

from the previous iteration will act as input Old_Flow in the next
iteration. Iterations continue until Repeat is no longer set to true

by any work-item.
When multiple flow direction algorithms are used, the flow

from a cell is divided into smaller fractions that are transferred to
all downslope cells. As cells usually have several downslope
neighbors, pre-computation and storage of the flow fractions
would require a lot of memory. Therefore we calculate and store
only the normalization, i.e., the total sum of all flow fractions, in a
grid of the same size as the original DEM, eg. NormFD8. Normal-
ization values are computed in parallel, independently for each
grid cell (see Supplementary material). The flow fractions are then
computed by the accumulation kernel (function compute-

FractionFD8 in Algorithm 3) as needed using the pre-computed
normalization values. Actually the accumulation algorithms pre-
sented in this paper can be used for any multiple-direction flow
model simply by changing the function compute FractionFD8 to
the appropriate one.

Algorithm 3. FlowTransfer kernel for flow accumulation
computation.
.
 Repeat ¼ false
.
 kernel FD8FlowTransfer(input Old_Flow, Deps,

NormFD8, Accu
.
 output New_Flow, Accu, Repeat)
.
 parallel for each cell in DEM
.
 if Old_Flow(cell) is 0 or cell is on DEM

border then
.
 New_Flow(cell) ¼ 0
.
 else
.
 accumulation ¼ 0
.
 for each direction
0.
 if Deps(cell) contain di-

rection then
1.
 neighbor ¼ getNeighbor

(cell,direction)
2.
 accumulation þ¼ Old_Flow

(neighbor)*

3.
 computeFractionFD8

(neighbor,direction,NormFD8(neighbor))
4.
 end ifs
5.
 end for each
6.
 if accumulation 4 0 then
7.
 Accu(cell) þ¼ accumulation
8.
 Repeat ¼ true
9.
 end if
0.
 New_Flow(cell) ¼ accumulation
1.
 end if
2.
 end parallel for each
3.
 end kernel
2

3.3.2. Dependency transfer
The flow transfer algorithm involves transferring the flow from

a cell to its neighbors until the upslope parts of the DEM have run
out of water. This approach results in a large number of repeated
computations for some DEM cells. To minimize this repeated data
transfer, we present a new algorithm, dependency transfer, where
the accumulated water flows only from those cells which will not
receive any more flow.

The dependencies calculated in Algorithm 2 can be used to
decide which cells have received all their flows. In the dependency
transfer algorithm a cell which has non-zero dependencies is as-
sumed not to have received its final accumulation value whereas a
cell with zero dependencies has. In Algorithm 4 each cell is tested
whether any of its neighbors has reached its final accumulation
value. If this is the case, the flow from that cell can be transferred
and the dependency between these two cells is removed. Once all
dependencies have been removed the flow accumulation for a cell
is complete and that cell is no longer considered for accumulation

1

2

3

4

5

6

7

8

J. Sten et al. / Computers & Geosciences 89 (2016) 88–95 91
by future iterations. By keeping track of the dependency changes,
the temporary flow arrays in the flow transfer algorithm can be
replaced with temporary dependency arrays which require less
memory. This parallelization strategy is demonstrated in Algo-
rithm 4 for the FD8 flow routing model. The host controls the
dependency transfers in the same way as in the flow transfer
method by using the global variable Repeat. All input variables
are DEM sized except the variable Repeat.

Algorithm 4. : FD8DependencyTransfer kernel for flow accu-
mulation computation.

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

9
.
 Repeat ¼ false
1
.
 kernel FD8DependencyTransfer(input Old_Deps,

NormFD8, Accu
1
.
 output New_Deps,

Accu, Repeat)
1
.
 parallel for each cell in DEM
.
 Dependencies ¼ Old_Deps(cell)
1
.
 accumulation ¼ 0
.
 for each direction
1
.
1

if Dependencies contain direction

then
1
.
1

neighbor ¼ getNeighbor(cell,

direction)
1
0.
 neighbor_dependencies ¼ Old_-

Deps(neighbor)
1
1.
 if neighbor_dependencies is

0 then
2
2.
 accumulation þ¼ Accu

(neighbor)*

2
3.
2

computeFractionFD8

(neighbor,direction,NormFD8(neighbor))
2
4.
2

removeBit(De-

pendencies,direction)
2
5.
 Repeat ¼ true
2
6.
 end if
7.
 end if
8.
 end for each
9.
 Accu(cell) þ¼ accumulation
0.
 New_Deps(cell) ¼ Dependencies
1.
 end parallel for each
2.
 end kernel
2

3.3.3. Indegree-based algorithm
Zhan and Qin, (2011) proposed another improvement to the

flow transfer algorithm by utilizing graph theory to improve the
computational efficiency. In their method the DEM is treated as a
graph where each cell is a node and the flow paths between the
cells are edges. Each cell has a numerical property called indegree
which is equal to the number of incoming flow paths (Weiss,
1995), and which is easily computed from the number of set bits in
the Deps byte (Algorithm 2).

The indegree accumulation kernel for the FD8 flow routing
model is given in Algorithm 5, and it is controlled by the host in
the same way as in the previous iterative transfer methods. For
each iteration only cells with indegree value zero are processed by
letting downslope cells gather their accumulated flows. Once the
cell has been fully processed we mark it by the value �1. The
algorithm uses both distributive and gathering elements. A cell
gathers its accumulation values by reading from neighboring cells
while the Indegrees array is updated using atomic operations.
This prevents data races as the other threads are forbidden to
access the data during atomic operations. Here all input variables
are again DEM sized except the variable Repeat.
Algorithm 5. : FD8IndegreeAccumulation kernel for flow accu-
mulation computation.
.
 Repeat ¼ false
.
 kernel FD8IndegreeAccumulation(
.
 input Dirs, Deps, In-

degrees, NormFD8, Accu
.
 output Accu, Repeat)
.
 parallel for each cell in DEM
.
 indegree ¼ Indegrees(cell)
.
 if indegree is 0 then
.
 flow_to_cell ¼ 0
.
 for each direction
0.
 if Deps(cell) contain

direction then
1.
 neighbor ¼ getNeighbor

(cell,direction)
2.
 flow_to_cell þ¼ Accu

(neighbor)
3.
 *computeFractionFD8
(neighbor,direction,NormFD8(neighbor))
4.
 end if
5.
 end for each
6.
 Accu(cell) þ¼ flow_to_cell
7.
 for each direction
8.
 if Dirs(cell) contains direc-

tion then
9.
 neighbor ¼ getNeighbor

(cell,direction)
0.
 atomicDecrement(In-

degrees(neighbor))
1.
 end if
2.
 end for each
3.
 Indegrees(cell) ¼ -1
4.
 Repeat ¼ true
5.
 end if
6.
 end parallel for each
7.
 end kernel
2

3.3.4. Topological sort-based algorithm
The accumulation algorithms presented so far rely on a brute

force approach by examining all cells at each iteration. Sequential
implementations of flow accumulation algorithms utilize sorting
approaches as a pre-processing step to find an optimal computa-
tion path through the DEM and thus to speed up the accumulation
process. Here we need to know which cells can be computed in
parallel and when they can be computed. An ideal solution would
be to group together all cells for which the flow accumulation can
be computed in parallel.

The topological sort algorithm (Khan, 1962) can be adapted to
place the DEM cells into a one-dimensional order that guarantees
that a cell does not depend on any cell after it, only on cells before
it, in the topologically sorted order. The topologically sorted cells
can now be grouped using “Start” and “End” indices that tell us the
following: Beginning from cell number “Start” in the topological
order, we can process all cells in the interval [Start, End] in parallel
because they do not depend on each other.

The topological sort and its application to DEMs were men-
tioned by Zhan and Qin (2011), but they did not use topological
sort to preprocess the DEM to speed up the computation nor was
the topological ordering considered from a parallelization point of
view. However, our modified topological sort fulfills all the re-
quirements of a preprocessing step. The DEM is two-dimensional
but saved in computer memory as a continuous one-dimensional
block. Each cell has a position within that block called the index,

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

J. Sten et al. / Computers & Geosciences 89 (2016) 88–9592
from which both the row position and the column position can be
inferred if the DEM row length is known. The optimal sorting
solution should simply keep track of which set of indices are
computed during which iteration of the flow accumulation. In the
present work, the topological sort is accomplished as a sequential
procedure to be run on the host and the algorithm is similar to the
improved topological sort algorithm (Weiss, 1995). The topological
sort-based algorithm has been previously used to speed up flow
related computations by Huang and Lee (2013), Braun and Willett
(2013), and Schwanghart and Scherler (2014) but only for se-
quential computations, not as groups of cells for parallel
computation.

The main benefit of using a topologically sorted DEM to cal-
culate flow accumulation compared to transfer based methods is
that the algorithm scales better as the total number of work-items
needed is size(DEM) instead of size(DEM)x(length of longest
downslope). The utilization of the GPU improves as a larger
number of work-items in the kernel will have work to do. Ad-
ditionally, if a gathering kernel is used, no data race occurs which
makes synchronization unnecessary. Neither is any communica-
tion needed between the host and the device until the process has
completed, and thus the host can avoid checking the rerun flag
Repeat from the device to see if the algorithm needs to be re-
peated and thus stalling the device in the process. Provided that
the DEM is static, the topological sort only needs to be computed
once. The sorted DEM and the corresponding start and end values
for the parallel groups can be stored in memory and be reused by
subsequent flow accumulation executions. Finally, because there
are no data races and device-to-host communication is un-
necessary, the kernel becomes simpler and faster. The primary
disadvantage with the topological sort is the need to copy the
sorted indices once into device memory, possibly straining already
limited memory resources.

The end result of the topological sort is the array Sort, which
contains the indices of the cells in the DEM and has the same
number of elements as the DEM. An additional output is a list of
sizes that tells us how large each topologically sorted group is.
Pseudocode for the topological sort is presented in Supplementary
material. The topologically sorted DEM can now be used to cal-
culate flow accumulation efficiently on the GPU by invoking one
kernel for each topologically sorted group, with the DEM cells
found from the list Sort with indices ranging from Start to End.
A sample case of topological sorting is presented in Fig. 2 where a
5�5 DEM with D8 flow routing has been topologically ordered
into seven groups, numbered 1–7. The number of cells in each
topologically ordered group is {17,2,2,1,1,1,1} indicating that we can
first process 17 cells in parallel, then 2, and so on. The total
number of threads is 25 which is clearly less than the number of
threads in the flow transfer scheme, 7�25¼175.

A flow accumulation algorithm utilizing the topologically sor-
ted DEM is presented in Algorithm 6. Due to device hardware
properties the number of work-items launched is often a multiple
of 32. Therefore, we choose the number of work-items to be the
smallest multiple of 32 equal to or exceeding the number of items
in the topologically sorted group. To make sure we are not going
beyond our present topologically sorted group, line 6 was inserted
in Algorithm 6. The thread_ID is a numerical identifier for each
thread, starting from 0. Thus, in line 5 in the algorithm, each
thread chooses an individual work item among the topologically
ordered values from the range [Start, End]. The cells in this range
are independent of each other and can thus be processed in par-
allel. The arrays Sort, Deps, NormFD8 and Accu have the same size
as the DEM while Start and End are arrays whose lengths depend
on how many topologically sorted groups we have found. Roughly,
the sizes of these two arrays are equal to the length of the longest
slope.
Algorithm 6. FD8TopologicalAccumulation kernel for flow
accumulation computation.
.
 kernel FD8TopologicalAccumulation(
.
 input Sort, Deps, Start, End,

NormFD8,
.
 output Accu)
.
 parallel for each thread in invoked topologi-

cally sorted group
.
 sort_position ¼ Start þ thread_ID
.
 if sort_position o¼ End then
.
 cell ¼ Sort(sort_position)
.
 flow_to_cell ¼ 0
.
 for each direction
0.
 if Deps(cell) contain direction

then
1.
 neighbor ¼ getNeighbor(cell,

direction)
2.
 flow_to_cell þ¼ Accu(neighbor)*

3.
 computeFractionFD8(neighbor,

direction,NormFD8(neighbor))
4.
 end if
5.
 end for each
6.
 Accu(cell) þ¼ flow_to_cell
7.
 end if
8.
 end parallel for each
9.
 end kernel
1

3.4. Slope and LS-factor algorithms

To compute the LS factor in the RUSLE model the slope angle in
the steepest direction has to be computed for each cell in the DEM.
Slope refers to the absolute value of the inclination angle of the
surface. The slope is computed by the discrete Horn differentiation
operator (Horn, 1981). The slope angle kernel can be run in parallel
over the DEM as each cell slope can be computed independently of
other cells.

The LS factor combines the steepness factor S and slope length L
into a single factor. To take the flow convergence into account,
flow accumulation is often used in place of slope length. We use
the equation for the LS factor presented by Mitasova et al. (1996)
which relates the LS factor to flow accumulation per unit contour
width and slope by the equation:

() = (+)(()* ())

((())) ()

LS m A

sin b

cell 1 Accumulation cell resolution meters /

SlopeAngle cell / 2

m

n

0

0

where A0¼22.1 m, b0¼sin(5.14°)¼0.0896, m¼0.4 and n¼1.3. In
RUSLE the values for m and n are allowed to be terrain specific,
providing the opportunity to fine tune the results for a particular
type of DEM. Once the accumulation and the slope angle have
been evaluated we can normalize these values for the unit plot
values of the RUSLE model using Eq. (2). Again, this can be cal-
culated in parallel, independently for each cell in the DEM.

3.5. Rusle soil erosion

The RUSLE long term soil erosion estimate is now given as the
product of the five factors in Eq. (1). Four out of five factors, R, K, C
and P, are given as independent input values on similarly-sized
rasters as the DEM: R_DEM, K_DEM, C_DEM and P_DEM. The fifth
factor, LS, depends on two properties of a cell, the slope and the
accumulation, the latter of which can be computed in parallel on
GPUs as presented above.

The Rusle kernel is presented in Supplementary material as

Fig. 2. Topological sort of a 5�5 DEM with D8 flow routing: (a) cell elevations, (b) index to topological sort group and (c) flow directions.

J. Sten et al. / Computers & Geosciences 89 (2016) 88–95 93
Algorithm 7, which computes the final RUSLE grid. This kernel is
perfectly suited for parallel computing as the calculations for each
cell are independent of each other.
4. Results

Three OpenCL capable GPUs were used to measure the per-
formance of the algorithms presented above: NVIDIA Geforce 680
GTX, NVIDIA Geforce GTX Titan and AMD Radeon HD 7970. Since
OpenCL can also run on a CPU, the program was executed on an
Intel i7-3770K hyper-threaded quad-core processor. The proper-
ties of the devices are presented in Table 1. All devices were run
using the OpenCL platforms provided by their respective device
manufacturers.

The tests were performed using a DEM1 with 2 m resolution.
The size of the DEM is 12 km�24 km, mean elevation 97 m and
minimum/maximum values 76 m/142 m. In the tests we assume
that the DEM is preprocessed, and that flat areas and depressions
have already been handled in an appropriate way. Therefore, the
performance times do not include file I/O or DEM preprocessing
times (see footnote 1).

In the first test (Tables 2 and 3) we compared the performance
of the various kernels of the GPGPU implementation by running
the transfer based and the topological sort based accumulation
methods for all flow routing models on the three different OpenCL
platforms. In our second test (Table 4) we compared the speed of
the GPGPU algorithm to industry references ArcGIS2 and SAGA
(see footnote 2), with an NVIDIA Titan card. Here topological sort
was not used in order to maintain compatibility with ArcGIS and
SAGA and their file formats.

The timing results show that the LS, Slope and RUSLE kernels
perform well on GPUs and are the fastest individually measured
kernels in the program (Table 3). The RUSLE kernel is currently the
fastest as it is small and contains few instructions and branches.
The kernels perform well because their data-parallel structure fits
the single instruction multiple data execution model of the GPU
architecture perfectly. The algorithms involve very little compu-
tation per cell and all cells can be computed at the same time. Only
a minor amount of arithmetic operations is performed, and the
outputs consist of single values per work-item. Our design was to
arrange for the kernels to access memory in uniform strides and
within the work groups almost all work items should take the
same control paths. Optimization has been focused primarily on
scheduling as many work-items as possible, keeping the device
fully occupied. In the future if the number of cells in the DEM
1 The DEM (L3443) is downloadable at: https://tiedostopalvelu.maanmittaus
laitos.fi/tp/kartta

2 ESRI 2011. ArcGIS Desktop: Release 10.2.1, 32 Bit. Redlands, CA: Environ-
mental Systems Research Institute.
grows beyond what can fit into a single 32-bit word (corre-
sponding to 16 GB for the DEM using single precision floating
point values for the heights) the size of the topologically sorted
indices will require 64-bit integers.

The second test was run with both ArcGIS and SAGA CPU based
algorithms and our GPGPU code with flow transfer algorithm and
D8 flow routing model. We used four file formats in the test. The
ARC_ASCII,ARC_BINARY and SGRD are the industry standards
while GPGPU binary refers to a binary file format created for our
GPGPU implementation, essentially replacing the ASCII input file
by an equivalent binary file.

ESRI’s Arc_ASCII was used as a common import format. For
ArcGIS the time is the sum of the run times for flow direction and
flow accumulation. The flow accumulation is calculated from a
binary file in ArcMap in both cases since the ASCII input file is
converted to a binary file in ArcGIS before the flow accumulation is
calculated. The GPGPU implementation does not require the flow
direction as an external input file as the flow direction is formed
internally. The execution time is expressed in seconds in Table 4.
5. Discussion and conclusions

In this paper we evaluate the possibility of using GPUs to ac-
celerate the computation of flow routing and flow accumulation
models by parallel calculation, and we present an application of
these techniques using the RUSLE erosion model. To achieve this,
every part of the RUSLE computation was implemented using
OpenCL, with positive results. The algorithms were flow routing,
flow direction and flow accumulation followed by Slope, LS and
RUSLE. Most algorithms perform calculations on each cell in-
dependently of the calculations on other cells. This suits the GPU
architecture perfectly as it enables the algorithms to make full use
of the computational power of the GPU. The exceptions are the
flow routing algorithms combined with the accumulation process
which are the largest contributors to the overall time. Their slow
computation is a result of the strict order of computing and it is an
inherent property of the accumulation process that we presently
are unable to bypass. The optimizations were targeted primarily
on the way the work is scheduled and avoided smaller optimiza-
tions on the instruction level. For example in the topological sort
based flow accumulation algorithm we schedule only such threads
that complete the computations for a cell once it has been
scheduled, instead of scheduling many threads for a cell as in the
flow transfer algorithm.

Two new flow accumulation methods were devised, im-
plemented and tested. The first is the dependency transfer method
which is a modification of the flow transfer algorithm. It keeps
track of the changes to the DEM dependency graph between two
iterations of the algorithm instead of keeping track of the flow.
This approach reduces the memory requirements by replacing

https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta

Table 1
The test devices and their properties.

Device Cuda cores/stream processors Clock speed, Mhz On-board memory, GB OpenCL driver version

Nvidia Geforce GTX Titan, GPU 2688 836 6 355.60
Nvidia Geforce 680GTX, GPU 1536 1058 4 304.88
AMD Radeon HD 7970, GPU 2048 1000 3 1214.3
Intel i7-3770K, CPU 3500 32 1.2.0.76921

Table 2
Performance times in seconds for several flow routing kernels on three different
OpenCL platforms. The times include the calculations of flow normalizations, flow
directions and dependencies but they do not include input/output operations. The
time needed to topologically sort the test DEM was 6.17 s and this is not included in
the accumulation times.

Device Geforce 680GTX,
GPU

Radeon HD7970,
GPU

Intel I7-3770K,
CPU

Flow transfer (Ortega and Rueda, 2010)

D8 1.54 s 1.33 s 16.64 s
Dependency transfer
Anisotropic 16.37 s 9.63 s 113.28 s
D8 1.35 s 1.00 s 6.90 s
FD8 9.45 s 7.80 s 55.56 s
FDD8 9.94 s 6.54 s 59.65 s
Indegrees (Zhan and Qin, 2011)
FD8 8.96 s 5.59 s 25.57 s
Topological sort
Anisotropic 2.60 s 1.31 s 20.07 s
D8 0.32 s 0.24 s 0.84 s
FD8 0.96 s 0.64 s 2.37 s
FDD8 0.96 s 0.67 s 2.36 s

Table 3
Performance times in seconds for slope, LS and RUSLE kernels on three different
OpenCL platforms. The times do not include input/output operationsa.

Device Geforce 680GTX, GPU Radeon HD7970, GPU Intel I7-3770K, CPU

Slope 0.12 s 0.11 s 0.34 s
LS 0.13 s 0.11 s 0.46 s
RUSLE 0.12 s 0.10 s 0.23 s

a SAGA 2.2.3 System for Automated Geoscientific Analyses.

Table 4
Comparison between ArcGIS, SAGA and GPGPU algorithms performed with NVIDIA
Geforce GTX Titan GPU and Intel Xeon CPU-E5-2630 v2 (2.60 GHz).

Implement Data type Time Speed up

Flow
direction

Flow
accumulation

Total

ArcGIS 10.2.1 ARC_ASCII 95 s 75 s 170 s 1
ArcGIS 10.2.1 ARC_Binary 20 s 75 s 95 s 1
Saga 2.2.3 ARC_ASCII 78 s 78 s 1.95
Saga 2.2.3 SGRD_Binary 77 s 77 s 15.4
GPGPU ASCII 40 s 40 s 4.25
GPGPU Binary 5 s 5 s 19.0

J. Sten et al. / Computers & Geosciences 89 (2016) 88–9594
temporary flow arrays by dependency arrays that require less
memory, and thereby achieves a small speed up on the GPU (Ta-
ble 2). The second new method is the topological sort algorithm,
which utilizes a sorted DEM along with a list of group sizes to
compute the accumulation very quickly. The advantages include
less work-items to schedule, the GPU is filled with work with a
minimum of idle threads, no synchronization or read-back is
needed, no device stalling occurs, and kernel complexity is re-
duced. When comparing the topological sort against the corre-
sponding transfer-based algorithms, a speed-up factor of
minimum four and on average seven is obtained. This comes at the
cost of additional memory requirements on the device and the
time it takes for the host to sort the DEM before the accumulation
can begin. The sort can be done once and saved to disk, allowing a
reduced total time on subsequent executions. Thus the topological
sort is particularly beneficial in applications where flow accumu-
lations are computed several times for the same DEM. For all flow
routing models except D8 we found that the topological sort based
accumulation performed faster than the flow transfer even for a
single simulation. The sorting time increases linearly with the
number of cells. When the DEM size increases, at some point to-
pological sorting becomes the fastest alternative even for D8 de-
pending on a DEM’s character and used hardware. On the other
hand, for smaller DEM sizes the competitiveness of the algorithm
is reduced.

The current implementation enables the calculation of RUSLE
for an area of 12 kmx24 km (72 million cells, one UTM-25 map-
sheet) in less than a second when using binary datasets and stored
topological sorts. In dynamic hydrological models which repeti-
tively compute flow accumulation over an unchanged DEM, the
use of topological sorting will gain even greater benefits as sorting
needs to be performed only once. On larger areas the GPGPU im-
plementation of the RUSLE model would allow a faster updating of
maps of erosion. Our implementation can be developed further to
a platform that can be used as a system for erosion map produc-
tion on large areas, e.g. a whole country
Acknowledgments

The research for this paper was financially supported by the
Finnish Ministry of Agriculture and Forestry, Grant no: 1838/312/
2013 and the Niemi Foundation.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2016.01.006.
References

Braun, J., Willett, S.D., 2013. A very efficient O(n), implicit and parallel method to
solve the stream power equation governing fluvial incision and landscape
evolution. Geomorphology 180–181, 170–179. http://dx.doi.org/10.1016/j.
geomorph.2012.10.008.

Horn, B., 1981. Hill shading and the reflectance map. Proc. IEEE 69, 14–47.
Huang, P.-C., Lee, K.T., 2013. An efficient method for DEM-based overland flow

routing. J. Hydrol. 489, 238–245. http://dx.doi.org/10.1016/j.jhydrol.2013.
03.014.

Hyväluoma, J., Lilja, H., Turtola, E., 2013. An anisotropic algorithm for digital ele-
vation models. Comput. Geosci. 60, 81–87. http://dx.doi.org/10.1016/j.
cageo.2013.07.012.

Jones, K.H., 1998. A Comparison of algorithms used to compute hill slope as a
property of the DEM. Comput. Geosci. 24, 315–323.

Khan, A.B., 1962. Topological sorting of large networks. Commun. ACM 5, 558–562.
Kinell, P., 2010. Event soil loss, runoff and the universal soil loss equation family of

models: a review. J. Hydrol. 385, 384–397. http://dx.doi.org/10.1016/j.
jhydrol.2010.01.024.

http://dx.doi.org/10.1016/j.cageo.2016.01.006
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref2
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref2
http://dx.doi.org/10.1016/j.jhydrol.2013.03.014
http://dx.doi.org/10.1016/j.jhydrol.2013.03.014
http://dx.doi.org/10.1016/j.jhydrol.2013.03.014
http://dx.doi.org/10.1016/j.jhydrol.2013.03.014
http://dx.doi.org/10.1016/j.cageo.2013.07.012
http://dx.doi.org/10.1016/j.cageo.2013.07.012
http://dx.doi.org/10.1016/j.cageo.2013.07.012
http://dx.doi.org/10.1016/j.cageo.2013.07.012
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref6
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref6
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref6
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref7
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref7
http://dx.doi.org/10.1016/j.jhydrol.2010.01.024
http://dx.doi.org/10.1016/j.jhydrol.2010.01.024
http://dx.doi.org/10.1016/j.jhydrol.2010.01.024
http://dx.doi.org/10.1016/j.jhydrol.2010.01.024

J. Sten et al. / Computers & Geosciences 89 (2016) 88–95 95
Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R., 1996. Modelling topographic
potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 10,
629–641.

Munshi, A., The OpenCL Specification. ohttps://www.khronos.org/registry/cl/
specs/opencl-1.1.pdf4 , 2011 (accessed 1.12.14).

O’Callaghan, J.F., Mark, M., 1984. The extraction of drainage networks from digital
elevation. Data. Comput. Vis., Graph., Image Process. 28, 323–344.

Ortega, L., Rueda, A., 2010. Parallel drainage network computation on Cuda. Com-
put. Geosci. 36, 171–178. http://dx.doi.org/10.1016/j.cageo.2009.07.005.

Quinn, P., Beven, K., Chevalier, P., Planchon, O., 1991. The prediction of hillslope flow
paths for distributed hydrological modelling using digital terrain models. Hy-
drol. Process. 5, 59–79.

Renard, K.G., Foster, G.R., Wessies, G.A., Porter, J.P., 1991. Revised universal soil loss
equation. J. Soil Water Conserv. 46, 30–33.

Schauble H., Sedimentfrachtprognosen mit GIS—Neue Strategien für globale Mod-
ellgleichungen unter besonderer Berucksichtigung von Staudammen und des
zeitlichen Wandels.Dissertation.Institut für Angewandte Geowissenschaften,
Technische Universität Darmstadt, Darmstadt,Germany. ohttp://tuprints.ulb.
tu-darmstadt.de/id/eprint/6534 , 2005 (accessed 10.09.15).

Schwanghart, W., Scherler, D., 2014. TopoToolbox 2 - MATLAB-based software for
topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2,
1–7. http://dx.doi.org/10.5194/esurf-2-1-2014.
Toy, T.J., Foster, G.R., Renard, K.G., 2002. Soil Erosion: Processes, Prediction, Mea-
surement, and Control. John Wiley & Sons, New York.

Trobec, R., Vajtersic, M., Zinterhof, P., 2009. Parallel computing - Numerics, Appli-
cations and Trends. Springer, Londonhttp://dx.doi.org/10.1007/
978-1-84882-409-6_1.

Weiss, M.A., 1995. Data Structures and Algorithmic Analysis, 2nd Edition. The
Benjamin/Cummins Publishing Company, Redwood City, USA.

Wilson, J.P., Aggett, G., Deng, Y., Lam, C.S., 2008. Water in the Landscape: A Review
of Contemporary Flow Routing Algorithms. In: Zhou, Q., Lees, B., Tang, G. (Eds.),
Lecture Notes in Geoinformation and Cartography: Advances in Digital Terrain
Analysis, pp. 213–236. http://dx.doi.org/10.1007/978-3-540-77800-4_12.

Yang, D., Kanae, S., Oki, T., Koike, T., Musiake, K., 2003. Global potential soil erosion
with reference to land use and climate changes. Hydrol. Process. 17, 2913–2928.
http://dx.doi.org/10.1002/hyp.1441.

Zhan, L., Qin, C. (2011). A graph-theory-based method for parallelizing the multiple-
flow-direction algorithm, In: Proceedings of the IEEE International Conference
on Spatial Data Mining and Geographical Knowledge Services (ICSDM),
DOI:10.1109/ICSDM.2011.5969020, pp. 137–141.

Zhao, Z., Benoy, G., Chow, T.L., Rees, H.W., Daigle, J.L., Meng, F.R., 2010. Impacts of
accuracy and resolution of conventional and LiDAR based DEMs on parameters
used in hydrologic modelling. Water Resour. Manag. 24 (7), 1363–1380. http:
//dx.doi.org/10.1007/s11269-009-9503-5.

http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref9
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref10
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref10
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref10
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref13
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref14
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref14
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref14
http://tuprints.ulb.tu-darmstadt.de/id/eprint/653
http://tuprints.ulb.tu-darmstadt.de/id/eprint/653
http://tuprints.ulb.tu-darmstadt.de/id/eprint/653
http://tuprints.ulb.tu-darmstadt.de/id/eprint/653
http://tuprints.ulb.tu-darmstadt.de/id/eprint/653
http://dx.doi.org/10.5194/esurf-2-1-2014
http://dx.doi.org/10.5194/esurf-2-1-2014
http://dx.doi.org/10.5194/esurf-2-1-2014
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref16
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref16
http://dx.doi.org/10.1007/978-1-84882-409-6_1
http://dx.doi.org/10.1007/978-1-84882-409-6_1
http://dx.doi.org/10.1007/978-1-84882-409-6_1
http://dx.doi.org/10.1007/978-1-84882-409-6_1
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref18
http://refhub.elsevier.com/S0098-3004(16)30006-1/sbref18
http://dx.doi.org/10.1007/978-3-540-77800-4_12
http://dx.doi.org/10.1007/978-3-540-77800-4_12
http://dx.doi.org/10.1007/978-3-540-77800-4_12
http://dx.doi.org/10.1002/hyp.1441
http://dx.doi.org/10.1002/hyp.1441
http://dx.doi.org/10.1002/hyp.1441
http://dx.doi.org/10.1007/s11269-009-9503-5
http://dx.doi.org/10.1007/s11269-009-9503-5
http://dx.doi.org/10.1007/s11269-009-9503-5
http://dx.doi.org/10.1007/s11269-009-9503-5

	Parallel flow accumulation algorithms for graphical processing units with application to RUSLE model
	Introduction
	RUSLE model implementation for GPGPU
	RUSLE model
	OpenCL implementation

	Algorithms
	Flow routing
	Flow directions and dependencies
	Flow accumulation
	Flow transfer
	Dependency transfer
	Indegree-based algorithm
	Topological sort-based algorithm

	Slope and LS-factor algorithms
	Rusle soil erosion

	Results
	Discussion and conclusions
	Acknowledgments
	Supplementary material
	References

