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A B S T R A C T

This paper provides a solution to the problem of estimating the mean value of near-land-surface temperature
over a relatively large area (here, by way of example, applied to mainland Spain covering an area of around half
a million square kilometres) from a limited number of weather stations covering a non-representative (biased)
range of altitudes. As evidence mounts for altitude-dependent global warming, this bias is a significant problem
when temperatures at high altitudes are under-represented. We correct this bias by using altitude as a secondary
variable and using a novel clustering method for identifying geographical regions (clusters) that maximize the
correlation between altitude and mean temperature. In addition, the paper provides an improved regression
kriging estimator, which is optimally determined by the cluster analysis. The optimal areal values of near-land-
surface temperature are used to generate time series of areal temperature averages in order to assess regional
changes in temperature trends. The methodology is applied to records of annual mean temperatures over the
period 1950–2011 across mainland Spain. The robust non-parametric Theil-Sen method is used to test for
temperature trends in the regional temperature time series. Our analysis shows that, over the 62-year period of
the study, 78% of mainland Spain has had a statistically significant increase in annual mean temperature.

1. Introduction

Changes in near-land-surface temperatures are perhaps the most
common and reliable indicator of global warming (Robeson, 1994).
Near-land-surface temperature is usually measured at a finite number
of irregularly spaced sampling locations comprising networks of
weather stations. Although temperature measurements are affected
by many factors, including longitude, latitude, altitude, slope orienta-
tion, atmospheric circulation and proximity to the sea, altitude is the
most significant variable and explains most of the spatially dependent
variance in temperature (Hudson and Wackernagel, 1994). In moun-
tainous areas, altitude is the simplest direct measurement that is most
highly correlated with temperature (Dodson and Marks, 1997;
Benavides et al., 2007). The correlation is usually linear and negative
so that temperature decreases as altitude increases with, in general, a
mean gradient of 0.6 °C per 100 m of altitude (Viers, 1975). However,
for large areas (several degrees of latitude), the many other factors
listed above may affect the temperature in such a way that the linear
relationship between altitude and temperature is much weaker be-
cause, for example, different climate factors are merged within the

large area. For example, for mainland Spain the Mediterranean marine
influence is different to the Atlantic marine influence. In addition,
temperature measurements are biased because weather stations tend to
be located at low altitudes (Rolland, 2002) and areas at high altitudes
(for example, mountainous areas) are poorly represented (Robeson,
1994). This under-representation is particularly important as evidence
mounts for altitude-dependent global warming (see, for example, Pepin
and Lundquist, 2008 and Mountain Research Initiative EDW Working
Group, 2015). Fig. 1 shows a histogram of altitudes obtained from a
digital elevation model (DEM) of mainland Spain together with a
histogram of the altitudes of weather stations for the year 1994. This
figure shows that 25% of the surface of mainland Spain has altitudes
less than 400 m and 20% of the surface has altitudes greater than
1000 m; whereas, 42% of the temperature monitoring stations (i.e., the
data collection points) are located at altitudes less than 400 m and only
10% of the stations are at altitudes greater than 1000 m. This problem
can be solved by using the DEM altitude as a secondary variable
together with the linear relationship between altitude and temperature.
However, the correlation of altitude and temperature over large areas is
relatively small because of the influence of other factors such as
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latitude, longitude, proximity to the sea, pressure and wind patterns.
Thus, it is useful to identify zones in which the correlation between
altitude and temperature is as strong as possible. Cluster analysis is
highly suited to this purpose.

Clustering algorithms (Stooksbury and Michaels, 1991; Fovell and
Fovell, 1993; Gerstengarbe et al., 1999; DeGaetano, 2001; Unal et al.,
2003; Huth et al., 2008; Mahlstein and Knutti, 2010; Cannon, 2012;
Tang et al., 2012; Zscheischler et al., 2012) have been used for similar,
but not identical, problems to the one dealt with here. In this work we
propose a new cluster method that has two novel aspects. The first is
the recognition that the problem is a particular form of a constrained
cluster analysis problem. The second is accounting for the spatial
correlation of the data when testing the spatial correlation of the
residuals of the regression of temperature on altitude for the clusters.
There is no requirement for the obtained clusters to coincide with
climatic regions because the definition of the latter differs from that of
the obtained clusters. For example, the Spanish state meteorological
agency (la Agencia Estatal de Meteorología) defines climate regions on
the basis of the Köppen-Geiger Climate Classification (AEMET, 2011),
which is a classification system based on the assumption that native
vegetation is the best expression of climate. The purpose of our
clustering approach is not to identify climate regions but to obtain
regions with a high correlation between temperature and altitude. The
regions resulting from the cluster analysis are not interpreted clima-
tologically, they are used solely to obtain optimal estimates of mean
areal temperatures. In addition, the regional clusters implicitly take
account of secondary variables such as latitude, longitude and proxi-
mity to the sea. A detailed explanation of the methodology employed in
this study is given in the following section.

2. Methodology

Geostatistical methods are widely used for mapping temperature
(Hudson and Wackernagel, 1994) and estimating areal values of
temperature (Ishida and Kawashima, 1993). The mean areal value of
temperature over a particular area is defined by:

∫T
χ

T u du= 1 ( )
χ (1)

where χ⊂ 2 is the zone of interest of finite area and T u( ) is the
temperature at the spatial point location u χ∈ .

The integral in Eq. (1) is approximated by summing the tempera-
tures of a discrete pixel or small cell representation of the zone of
interest:

∑T
k

T u= 1 ( )
i

k

i
=1 (2)

where k is the number of discrete cells comprising the zone χ⊂ 2 and
T u( )i is the temperature at the ith cell.

The value T u( )i is usually unknown and must be estimated from a
finite set of data values. To avoid the bias introduced by the data
(because of over-representation of low altitudes) and to account for the
correlation between altitude and temperature, the altitude of each cell
is determined from a DEM of the zone of interest. For very large zones,
such as mainland Spain with a surface area of 492,072 km2, the
relationship between altitude and temperature would be obscured if
data from all temperature stations were considered together. This is
because the topography of the Iberian Peninsula is complex and there
are many specific effects that change with latitude and longitude; for
example, the different Atlantic and Mediterranean marine influences,
the different frequencies of easterly winds in the Mediterranean area
and westerly winds in the Atlantic area, the heating and cooling of
hillsides depending on their orientation and perturbation effects such
as the incursion of relatively cold air masses from the Atlantic. For
these reasons we divide the zone of interest into smaller areas in which
the relationship between altitude and temperature is stronger (higher
negative correlation between altitude and temperature). These areas,
which maximize the correlation between altitude and temperature, are
identified by a new cluster analysis procedure.

Classical cluster analysis identifies groups of objects that are
similar. It does so by maximising the similarity of objects (in our case,
temperature measurements from weather stations) within a group and
maximising the dissimilarity of different groups of objects (Gordon,
1996). There are two broad types of clustering methods: hierarchical
clustering and non-hierarchical clustering. Among the non-hierarchical
clustering algorithms the most widely used is the k-means algorithm.
The similarity of objects is usually defined in terms of a distance (e.g.,
Euclidean, Mahalanobis) according to the measured characteristics of
the objects.

For the problem addressed in this paper, the first difference with
respect to classical clustering is that, instead of defining the similarity
measure as a distance between the objects of a group, it is an objective
function to be maximised or minimised. The second difference is that
the problem addressed in this paper is a case of constrained clustering
in which a contiguity constraint restricts the sets of allowable solutions
(Gordon, 1996), i.e., the objects in each group must comprise a
spatially contiguous set. Thus, given a number of groups, an object
can change its membership from group A to group B if two require-
ments are met: (i) groups A and B are contiguous and (ii) the value of
the objective function is improved. Clustering temperatures into
regions with high linear correlation between altitude and temperature
can thus be seen as a contiguity-constrained optimisation problem.

The first issue is the definition of clusters and contiguity. The
locations of the weather stations are used as the seeds of a Voronoi
tessellation of the geographic space covered by the stations. A cluster,
or group, of weather stations (or of the corresponding temperature
measurements) is a union of contiguous Voronoi cells and the
boundary of the cluster is the outermost sequence of its constituent
cell boundaries. Two clusters are contiguous if they share a boundary. A
member, or object, belonging to cluster A is contiguous with cluster B if
its Voronoi cell shares a boundary with the Voronoi cell of any member
of cluster B. These definitions are used in the application of the
contiguity constraint.

In the proposed algorithm for contiguity-constrained classification
of a set of N objects (weather stations) the algorithm starts with an
exhaustive classification into M groups. The manner in which this
starting classification is obtained is described below. The classification
is exhaustive in the sense that the N objects have been classified and
each belongs to one of the M groups.

For any given configuration of groups G G( ,…, )M1 the objective
function, OF G G( ,…, )M1 , of the configuration is defined by:

Fig. 1. Histogram of digital elevation model (DEM) altitudes for mainland Spain (blue)
and altitudes of weather stations for the year 1994 (green). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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∑OF G G n r( ,…, ) = *M
i

M

i i1
=1 (3)

where ni is the number of objects that belong to the ith group and r*i is
the value of the modified Pearson product-moment correlation coeffi-
cient:

r r σ r* = + 1.96 ( )i i i (4)

where ri is the estimated Pearson correlation coefficient of the ith group
and σ r( )i is the associated standard error. The correlation between
altitude and temperature is negative and thus, from Eq. (4), r r< *i i . The
modified coefficient, r*i , can be used instead of ri as an experimental
measure of correlation between altitude and temperature that accounts
for the size of the group, i.e., the uncertainty of the estimated value of
the correlation coefficient as quantified by the standard error in Eq. (4).
The value σ r1.96 ( )i is the lower bound of the 95% confidence interval
and has been chosen as a conservative value for including cluster size in
the comparison of the correlation coefficients of two different clusters.

The estimated Pearson product-moment correlation coefficient, ri,
for the ith group is:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ ∑r T T H H T T H H= ( − )( − )/ ( − ) ( − )i

j

n

ij i ij i
j

n

ij i
j

n

ij i
=1 =1

2

=1

2
i i i

(5)

where Tij is the temperature at the jth station of the ith group and Hij is
the altitude of the jth station of the ith group. Weather stations are thus
defined by their pair (T, H) of temperature and altitude. Stations are
also defined by their geographical co-ordinates (X, Y), which are
implicitly included in the proposed methodology by the contiguity
constraint.

It is obvious that

OF G G N( ,…, ) ≥ −M1 (6)

with the minimum value N− being unattainable in practice because it
would imply the unlikely case of a perfect (negative) correlation
between altitude and temperature for a given partition G G( ,…, )M1 ,
with correlation coefficient of −1 for each group of the partition.

The standard error, σ r( )i , of the estimated Pearson correlation
coefficient can be calculated by a parametric method such as Student's
t-distribution or by using a non-parametric method such as the
bootstrap. The advantage of the latter is that it works when the
sampling distribution of the correlation coefficient is asymmetrical
and the data are (spatially) correlated, as is the case in the application
described here.

The clustering process is applied to each set of annual tempera-
tures. In the clustering process there are two permitted operations:
coalescence of two groups and moving an element from one group to
another. Both operations use the definitions of contiguity given above.

Two groups Gi and Gj will coalesce to form a new group, Gk, if

1) The two groups, Gi and Gj, are contiguous.
2) The value of the objective function improves.

An object, ok , that belongs to group Gi can move to group Gj if:

1) The object ok is contiguous with the group Gj.
2) The value of the objective function improves.

Finally, the constrained clustering algorithm comprises the follow-
ing steps:

(i) Start with an initial partition of M clusters, where M is greater
than the expected optimal number of clusters. For example, M =
100 is used in the case study. Select at random M stations from
the total N stations (N > M). Call these locations the seed
stations. Next, each of the N stations is assigned to the nearest

seed station and then M groups that satisfy the contiguity
constraint are formed. This is the starting random partition with
M groups:

G G G{ ,…, }M1, 2 (7)

for which the initial value of the objective function is given by Eq.
(3).

(ii) Each group, G{ }i , is taken in turn and the closest contiguous group
(in terms of geographical distance) G{ }j is found. The closest group
is the one that contains an object that has the shortest geogra-
phical distance (calculated using geographical co-ordinates (X, Y))
of a member of the group G{ }i . Obviously the two objects and the
two groups are contiguous. Three operations are then tried.
Operation 1 (O1): if either of the two groups has less than nmin
objects, the groups are merged; Operation 2 (O2): try to merge
both groups; Operation 3 (O3): try to move an object from one
group to the other. The purpose of O1 is that if either of the two
groups has a small number of elements, defined by the threshold
value nmin (for example, n = 20min is used in the case study), there
is no point in calculating a very unreliable correlation coefficient
and thus the groups are merged to create a larger group. The
meaning of O2 is that two groups are merged if the resulting group
is better than the worse of the two groups. In other words,
operation 2 consists in merging group G{ }i and group G{ }j into a
single group if the following criterion is satisfied:

r max r r* ≤ ( *, *)ij i j (8)

where r*ij is the modified Pearson correlation coefficient, defined in
Eq. (4), for the merged group G G G{ } = { } ∪ { }ij i j . Note that a
maximum operator is used in Eq. (8) because the correlations are
negative and groups with the largest possible negative correlation
are required.

(iii) If the operation of merging the two groups fails (because Eq. (8) is
not satisfied) then the operation of moving an element to the
closest group is tried. If the pair of elements o o{ , }ik jl are the two
closest elements between groups G{ }i and G{ }j , such that
o G{ }∈{ }ik i and o G{ }∈{ }jl j , there are two possibilities to try: (1)
station o{ }ik leaves group G{ }i and joins group G{ }j and (2) station
o{ }jl leaves group G{ }j and joins group G{ }i . Note that the
possibility of both stations swapping groups is not allowed
because it violates the contiguity constraint. Thus, for possibility
(1), let r*i and r*j be the correlation coefficients of G{ }i and G{ }j
respectively and let r*i− and r*j+ be the correlation coefficients of
G{ }i− and G{ }j+ , where G G o{ } = { }−{ }i i k− , i.e., group G{ }i without
object o{ }k , and G G o{ } = { }+{ }j j k+ is group G{ }j with object o{ }k

added. The proposal to move an object from group i to group j is
accepted if

r r max r rmax( *, * ) < ( *, *)i j i j− + (9)

where max(A, B) is the operator that selects the maximum of A
and B.

Similarly, for possibility (2), the proposal to move an object
from group j to group i is accepted if

r r max r rmax( *, * ) < ( *, *)i j i j+ − (10)

Combining (9) and (10), and noting that both conditions
cannot hold simultaneously, gives:

r r r r max r rmin{max( *, * ),max( *, * )} < ( *, *)i j i j i j− + + − (11)

(iv) Go to (ii) to operate on the next group until all M groups have
been visited in turn.

Obviously this process could be repeated many times with a
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different starting number of groups or with the same starting number
of groups but with different group configurations (i.e., different station
numbers chosen as seeds) or with a different collection of random
numbers used in the merging process of forming groups. In our work
we repeat it for each year of the time span considered. Next, the
solution for each year is used as the starting configuration for each year
and the cluster that is the best for all the years is selected. The unique
final cluster is chosen such that it is better than the solution obtained
by considering one cluster for every year. However, the main reason for
having only one cluster classification is to avoid temporal disconti-
nuities in the time series at the pixel level (i.e., time series of the pixel
temperatures). As each pixel belongs to the same cluster for all years
there are no temporal discontinuities. To avoid spatial discontinuities
between clusters, a local moving window is used to smooth the
estimated slope and the intercept for each cluster. This smoothing
only affects borders between clusters because inside a cluster the slope
and intercept values are constant. Spatial discontinuities are minimal
and appear only at the contacts between the clusters; they are of no
significance because our purpose is to provide optimal estimates of
areal temperatures at the local (pixel) level and/or at the Spanish
mainland level (aggregation of all pixels).

The final configuration of groups provides a means of estimating
regional temperatures for all years as follows:

(i) Use the DEM of the region of interest to provide a discrete cell
representation of the region.

(ii) For any cell of any group use a linear regression of temperature on
altitude to estimate temperature from altitude:

T u a bH u*( ) = + ( )0 0 (12)

where T u*( )0 is the estimated temperature over a given cell located
at the coordinates of its centre u x y= { , }0 0 0 ; H u( )0 is the altitude of
the cell and a and b are the least squares estimates of intercept and
slope of the regression line. The estimation variance of the
temperature estimate in Eq. (12) is given by :

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑V T u s n H u H H u H( *( )) = 1/ +( ( ) − ) / ( ( ) − )

i

n

i0
2

0
2

=1

2

(13)

where n is the number of data in the cluster and H is the mean of
the altitudes of the n data in the cluster:

∑H n H u= 1/ ( )
i

n

i
=1 (14)

s2 is the estimated variance of the regression residuals
R u T u T u i n{ ( ) = *( )− ( ); = 1,…, }i i i :

∑s n R u= 1/( −2) ( ( ))
i

n

i
2

=1

2

(15)

The final estimate of the temperature of a cell at location u0 is
given by the temperature estimated by the regression line plus the
estimate of the residual, which accounts for the variability not
explained by the regression:

T u T u R u**( ) = *( )+ *( )0 0 0 (16)

where T u*( )0 is given by Eq. (12) and R u*( )0 is the ordinary kriging
(Olea, 1999) estimate of the residual:

∑R u λ R u*( ) = ( )
j

m

j j0
=1 (17)

where m is the number of neighbours of, or locations close to, u0,
the residuals of which are used in the estimation process; λj is the
weight assigned to the jth residual in the estimation of the residual
at u0. These weights are obtained by solving the kriging system,

which can be found in any standard textbook on geostatistics (e.g.,
Olea, 1999). In geostatistics, the estimator given in Eq. (16) is
known as regression kriging (Hengl et al., 2007). The variance
of the estimator given in Eq. (17) is the kriging estimation
variance:

σ u B λ( ) =2
0

T (18)

where B and λ are described in Olea (1999). Because the
regression estimates are independent of the kriged estimates, the
uncertainty of the estimator given in Eq. (16) is the sum of the
uncertainties:

V T u V T u σ u( **( )) = ( *( )) + ( )0 0
2

0 (19)

(iii) Any regional average obtained as the union of a given number of K
cells, can be calculated as the mean of the estimates of the K cells:

χ u= ⋃
i

K

i
=1 (20)

∑T χ K T u**( ) = 1/ **( )
i

K

i
=1 (21)

A measure of the uncertainty of the estimator in Eq. (16) is
given by the variance of the mean of the estimates of the K cells:

∑ ∑V T χ K T u T u( **( )) = 1/ Cov( **( ), **( ))
i

K

j

K

i j
2

=1 =1 (22)

where T u T uCov( **( ), **( ))i j is the covariance of the estimates for
cells i and j. The off-diagonal terms (i ‡ j) in Eq. (22) are:

X C X

λ C λ

T u T u T u T u R u R u
T u T u

R u R u

Cov( **( ), **( )) = Cov( *( ), *( ))+Cov( *( ), *( ))
Cov( *( ), *( )) =

Cov( *( ), *( )) =

i j i j i j

i j i
T

Reg j

i j i
T

R j

(23)

where:

X H u= [1 ( )]i
T

i

λ λ λ λ= [ … ]i
T

m1 2

m : number of neighbours used in the estimation of R u*( )i
CReg: variance-covariance matrix of the two coefficients of the
linear regression
CR : covariance of the residual.

We use a two-step approximation of Eq. (22). First, we follow the
widely used convention in global estimation of ignoring the off-
diagonal terms on the assumption that they are generally small with
respect to the diagonal terms (see, for example, Matheron, 1962;
Journel and Huijbregts, 1978, 2003; David, 1977, 1982). In our
application, the error incurred in this approximation decreases as the
size of the cell increases; in addition, as groups do not have common
data, the approximation error reduces even further. Second, we
approximate the diagonal terms in Eq. (22) by

T u T u V T u V T u σ uCov( **( ), **( )) = ( **( ))≈ ( *( )) + ( )i i i i Nugget i
2

(24)

σ u( )Nugget i
2 is the kriging variance as in Eq. (18) but assuming a pure

nugget variance for the variogram model (i.e., no spatial correlation).
This is a conservative approximation because:

σ u σ u( ) ≥ ( )Nugget i i
2 2 (25)
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Eqs. (21) and (22) give the areal estimates of annual mean
temperature and the uncertainty of the estimate for any given year
and any region or sub-region. Thus, repeating the estimations for a
number of years gives a climatic time series for a given region or sub-
region.

The time series, starting in year 1 and ending in year N, is obtained
as:

T χ T χ T χ{ **( ), **( ),…, **( )}N1 2 (26)

and the general linear regression equation fitted to it can be written as:

T β β T⎯⇀ = + **0 1 (27)

where β0 and β1 are, respectively, the intercept at the origin and the
slope.

3. Case study

3.1. Study area and research materials

The study area of this work is all of mainland Spain. It is bordered
to the northeast by France; to the south and the east by the
Mediterranean Sea; and to the west and northwest by Portugal and
the Atlantic Ocean. A DEM of mainland Spain with a resolution (i.e.,
cell size) of 0.8 km × 0.8 km is used in this study to estimate the
regional temperature so as to include the effect of elevation on average
temperature. We used the Universal Transverse Mercator (UTM)
projection and selected UTM-30N as the reference system.
Temperatures are recorded daily at the official mainland weather
stations of Spanish Meteorological Agency (Agencia Estatal de
Meteorologia). We used annual mean temperature (temperatures
averaged over a whole year) for 62 years (1950–2011) and for a given
number of stations. Over the 62-year period, the number of stations at
which annual mean temperatures were recorded ranges from a
minimum of 306 in 1950 to a maximum of 1361 in 1994. The primary
reason for this variation in the number of stations is the failure to
record temeperatures due to severe weather conditions or lack of
maintenance of meteorological equipment. For illustrative purposes,

Fig. 2 shows the locations of the 1303 stations that recorded tempera-
tures for the year 2000.

3.2. Results of constrained spatial clustering

Scatterplots of altitude and annual mean temperature for each year
(for example Fig. 3 shows the scatterplot for the year 2000), show a
clear linear relationship but with significant dispersion within a broad
band. In Fig. 3 the dispersion of temperatures is approximately 7 °C,
which is most evident for altitudes less than around 1000 m comprising
almost 90% of the weather stations. The total correlation coefficient is
−0.74 with a 95% confidence interval of [−0.76, −0.72]. Student's t-
statistic was used to calculate this interval; for such a large sample, the
non-parametric bootstrap evaluation gives virtually the same value.

When applying the proposed clustering approach, the uncertainty
introduced by the possibility of choosing among different configura-
tions has been evaluated and shown to be very small. Hence,
empirically we set the initial number of groups M = 100 and the
threshold number of elements for merging (operation 1) nmin = 20 for

Fig. 2. Locations on the mainland Spain DEM of the 1303 stations at which temperature was recorded for year 2000.

Fig. 3. Linear relationship between altitude and annual mean temperature for mainland
Spain, as recorded at the 1303 stations for the year 2000; r is the correlation coefficient
and the black line is the linear regression line.
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all years. Clusters retained by the spatial clustering algorithm are
shown in Fig. 4A for year 2000. When applied to all years, the
minimum value of the objective function (Eq. (3)) is achieved for a
configuration of 11 groups for year 2000; this configuration was then
used for all years.

For comparison, we use the classical k-means clustering method,
implemented using coordinate X, coordinate Y, altitude and tempera-
ture in standardized units. For comparative purposes, the two methods
should have the same number of groups. Thus, for all years we have
specified 11 groups, the number that gave the minimum objective
function value using our proposed clustering method. The initial
number of groups was 11 with centriods chosen at random for all
years. The k-means algorithm was applied to the stations for each of
the 62 years and the results for year 2000 are shown in Fig. 4B.

The scatterplots of altitude and annual mean temperature for each
spatially constrained cluster are shown in Fig. 5 in which stations with
different symbols and colours represent the different clusters. The 11
clusters are clearly distinguishable in these plots and the stations in
each cluster display a strong (negative) correlation between altitude
and annual mean temperature. In particular, the weakest correlation
coefficient among all spatial clusters is −0.86, which is significantly
higher than the correlation coefficient (−0.74) for all temperatures
taken as a single group and the weakest correlation coefficient (−0.74)
for the k-means clusters. The strongest correlation coefficient for the
spatial clusters is −0.95, which is marginally higher than the strongest
value (−0.94) of the k-means clusters. The objective function value (Eq.
(3)) for the 11 retained clusters is −1113.30, which is less than the
value of −918.30 when all stations are considered as one group and the
value of −1025.70 for the k-means algorithm. These results demon-
strate the ability of the constrained spatial clustering approach to
identify geographical regions with a strong linear relationship between
altitude and annual mean temperature. In addition, the use of the
modified correlation coefficient in the spatial clustering algorithm is a
simple way of accounting for the effects of the uncertainty caused by
different cluster sizes. Similar results were obtained for other years.

Another preliminary aspect to evaluate is the magnitude and spatial
variability structure of the regression. Fig. 6 shows the omni-direc-
tional semi-variogram of the regression residuals for all 11 constrained
clusters for the year 2000 taken together. The fitted model is a nugget
variance of 0.45 (°C)2 and a spherical model with a structural variance
of 0.34 (°C)2 and a range of approximately 130 km. The variance of the
temperatures for the year 2000 is 9.5(°C)2 and thus the structural
variance of the residual represents only 3.5% of the total temperature
variance. The regression thus explains most of the temperature
variability. Similar results were obtained for other years.

3.3. Trend detection in optimal temperature time series

The time series shown in Fig. 7 was obtained by using the improved
regression kriging estimator to calculate the annual mean temperature
over mainland Spain for each year of the period 1950–2011. In Fig. 7,
this time series shows a significant variability in estimated annual
mean temperature from year to year of up to 2.4 °C between 1956 and
2011. This raises the question of whether there is any statistically
significant trend in the time series in Fig. 7. This question can be
answered by applying statistical methods of trend detection together
with the principle of parsimony. The latter suggests a simple trend
model, such as the linear trend shown in Fig. 7, which would indicate
(if confirmed as statistically significant at a given confidence level such
as 95%) that there has been an increase in mean temperature over the
entire time interval [1950,2011]. The slope of the linear trend of this
time series is 0.014 with a 95% confidence interval of [0.0071, 0.0211].
The slope is statistically significant and supports the evidence for
warming over mainland Spain over the 62-year time interval.

Results for the non-parametric Theil-Sen estimator (Theil, 1950;
Sen, 1968) are shown in Fig. 8. Fig. 8A shows the slope of the local
(pixel) time series for the time interval [1950,2011]; Fig. 8B and C
show the lower and upper limits respectively of a 95% confidence
interval for the values plotted in Fig. 8A. Because of the equivalence
between confidence intervals and hypothesis testing, if the slope is
positive in Fig. 8A and the lower and upper limits are also positive,
then the positive slope is statistically significant with a significance
level of 0.05, or with a confidence level of 95%. Alternatively, if the
slope is negative in Fig. 8A and the lower and upper limits are both
negative, then the negative slope is statistically significant with a
significance level of 0.05, or with a confidence level of 95%. Note that
there are areas with negative slope indicating that the mean tempera-
ture is decreasing with time. However, these areas of negative slope
represent only 1% of the total surface area of mainland Spain (Fig. 9A).
As can be seen in Fig. 9A, 99% of the total area has a positive slope and
78% of the total area has a statistically significant positive slope (pink
area in Fig. 9B). Thus it is clear that the annual mean temperature has
increased over most of mainland Spain from 1950 to 2011.

4. Conclusions

We have introduced a constrained clustering algorithm for identify-
ing geographical regions that maximize the correlation between
altitude and mean temperature. This algorithm provides a means of
estimating mean areal temperatures by using a digital elevation model
that accounts for temperature information in areas where there are no

Fig. 4. Clusters obtained by A: constrained spatial clustering algorithm; B: k-means algorithm.
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temperature measurements. The algorithm was used to calculate the
time series of annual mean temperatures for the whole of mainland
Spain. These results were then used to test an hypothesis of linear trend
in mean temperature for the period of observation (from 1950 to
2011). We have shown that 99% of the total area of mainland Spain has

Fig. 5. Scatterplots of altitude and annual mean temperature based on constrained spatial clusters for year 2000.

Fig. 6. Omni-directional experimental semi-variogram (red crosses) of the regression
residual for the year 2000 and the fitted model (black line): a spherical model with a
nugget variance of 0.45(°C)2, a structural variance of 0.34(°C)2 and range of approxi-

mately 130 km. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Estimated mean yearly temperature for the period 1950–2011 (black dots) and
fitted regression line (black line).

H. Wang et al. Computers & Geosciences 106 (2017) 109–117

115



a positive slope and 78% of the area has a statistically significant linear
trend that indicates an increase in the annual mean temperature over
the period 1950–2011.
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