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A B S T R A C T

Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A
Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid
modeling scheme with different spatial representations also presents such problems. The time-consuming problem
affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing)
parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on
the HRU level. Such parallel implementation takes better advantage of the computational power of a shared
memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological
modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to
nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread
configuration. The study results demonstrate that parallel models save considerable time relative to traditional
sequential simulation runs. Parallel computations of environmental models are beneficial for model applications,
especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a
promising tool for large-scale and high-resolution water resources research and management in addition to of-
fering data fusion and model coupling ability.
1. Introduction

Watershed models have been extensively used by researchers and
decision-makers to understand how hydrological and ecological pro-
cesses, human activities and climate-change affect water resources (Li
et al., 2013). SWAT (Soil and Water Assessment Tool) is one of the most
widely used watershed models for physically based studies of the Earth
and of water resources and environmental management around the
world (Arnold et al., 1998). It has been applied for cross-disciplinary
research and applications in recent years (Ki et al., 2015; Neitsch et al.,
2011; Pai et al., 2012; Zhang et al., 2015). Scholars from around the
world have been devoted to developing and applying SWAT.

Numerical models such as SWAT are today not only applied for single
scenario tests but also for complex assessments like sensitivity analyses,
uncertainty analyses, and data assimilation (Rajib et al., 2016; Xie and
Zhang, 2010). Most of these applications require considerable amounts of
computational time to use. To save the model users' time spent on model
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runs or calibrations, a parallel feature (a high-performance computing
method) has been successfully integrated into most numerical models (Ki
et al., 2015; Li et al., 2011; Vrugt et al., 2006; Yalew et al., 2013; Zhang
et al., 2013). From the rapid development of computer technologies,
computers now contain many Central Processing Units (CPUs), and each
CPU includes several cores (threads) that can execute computational
tasks simultaneously. A key issue to consider when programming a par-
allel model on a distributed or shared memory system involves balancing
data across memory and computation units over CPUs (Chapman et al.,
2007; Palis et al., 1996). To address this issue, two parallel computing
approaches are typically applied when using the SWAT model: (1)
Distributed memory parallel (DMP). DMP is a computer system in which
each CPU is given its own individual memory. Rouholahnejad et al.
(2012) proposed the SWAT-CUP tool for model uncertainty analysis
using a Message Passing Interface (MPI) parallel algorithm for DMP.
Zhang et al. (2012) developed a software program for optimizing SWAT
that can accelerate SWAT optimization by roughly eight-fold on a 16-core
ote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and
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Fig. 1. Schematic flowchart of the SWATG model application.
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SMP system. Though the efficiency of the calibration procedure has in
turn been improved, SWATmodeling timewas not decreased through the
above studies. Wu et al. (2013) employed MPI to parallelize SWAT based
on subbasin level to speed up individual model runs and manual and
automatic calibration procedures and to optimize best management
practices on a DMP system. (2) Shared memory parallel (SMP). SMP is a
system through which all CPUs can access the same memory and benefit
from low-latency memory-access while sharing data among CPUs during
computation. OpenMP (Open Multi-Processing) is one of the most suit-
able APIs for software parallelization on an SMP system. The use of
OpenMP for enhancing the computational efficiency of a single SWAT
run (especially for parameter calibration procedures) has been previously
discussed (Ki et al., 2015). OpenMP is highly scalable for model appli-
cations. Each hydrological model must be employed through a distinct
parallel computing strategy and based on its own modeling structure.

The objective of this paper is to describe the parallel method
(OpenMP) as it is implemented in the gridded SWAT (SWATG). We
compare the computation time of the parallel SWATG by applying it to
study a basin with at different spatial resolutions over different periods
using different computer configurations. Finally, we summarize the
performance of the parallelized SWATG and computation time saved
through parallel processing. Source codes of SWATG and SWATGP are
listed on the first author's website: http://hexiayouxi.tk.

2. Overview of gridded SWAT

Three spatial modeling levels are used in SWAT: the watershed,
subbasin and Hydrologic Response Unit (HRU) levels. The model pre-
sents weaknesses in terms of subbasin level hydrologic modeling. Spatial
variability in weather conditions within a subbasin cannot be adequately
represented by a weather station (forcing data have a uniform distribu-
tion at the subbasin level). This spatial distribution of hydrologic com-
ponents is not natural and significantly affects the accuracy of watershed
hydrologic process modeling (Domeneghetti et al., 2014). Another
weakness related to SWAT concerns its delineation of HRUs. HRUs with
irregular shapes and no geospatial locations complicate model coupling,
data fusion, manager implementation and BMP analysis. Modeled results
(e.g. soil moisture and snow cover) are difficult to map for 2D
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visualization. Traditional SWAT model input and output data integrate a
combination of raster, vector and tabular data with complex structures,
restricting their incorporation by other tools. Additionally, more and
more data are now accessible andmost of them are of gridded forms (e.g.,
remote sensing data) and can be used through SWAT to improve
modeling accuracy levels and our understanding of watersheds (Chen
et al., 2011).

Grid modeling schemes are advantageous in that the integration of
gridded data reveals spatial characteristics at the represented resolution
(Liang et al., 2004). Such models based on regular grids such as VIC
(Liang et al., 1996) can provide spatial distribution characteristics of
various critical water cycle components for regional and global earth
science studies. The impacts of spatial changes in land use and BMPs on
specific regions can be more realistically assessed through a gridded
model (Arnold et al., 2010). Usually, to achieve a comprehensive phys-
ical representation, an individual model with or without poor physical
process representation must be extended (e.g., to couple with other
models). Several valuable models (e.g., WRF, MODFLOW) which have
hardly been coupled with SWAT but can be efficiently coupled with
grid-based models. A gridded SWAT model based on subbasins has been
proposed as a means to address the problems we noted above (Rathjens
and Oppelt, 2012; Rathjens et al., 2015). However, the number of input
files for such a SWAT project increases dramatically as the number of
delineated subbasins increases. The approach cannot be applied for
large-scale high-resolution watershed hydrologic modeling. Modeling,
data processing and storage will cost model users a great deal of time and
effort, in turn will inhibiting the development and application of the
model. A SWAT model with not only grid features but also offering
computationally efficient implementation can facilitate watershed
research and application.

3. Materials and methods

3.1. The gridded soil and Water Assessment Tool (SWATG)

The Soil and Water Assessment Tool (SWAT) provides detailed rep-
resentations of physical processes related to water and nutrient move-
ment such as percolation, evapotranspiration, runoff, groundwater
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Fig. 2. Execution time of the functions' tree (only five most time-consuming subroutines are shown) in the SWATG model for a simulation period of one year.
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system, nutrient cycling, and pollution transport (Arnold et al., 1998). A
watershed is divided into several sub-watersheds (subbasins) based on
Digital Elevation Model (DEM) data, and each subbasin is composed of
Hydrologic Response Units (HRUs) with uniform soil characteristics, land
use types, and topological characteristics (slopes). Hydrological pro-
cesses such as evaporation, runoff, infiltration, lateral flow, irrigation,
snowmelt and ground water systems are modeled in each HRU. In most
cases, an HRU with a certain soil type, land use type and slope often
occupies several discrete grids in which the water balance is simulated
independently without interactions within one subbasin. Subbasin-level
variables are summed up by modeled HRU-level variables. After subba-
sin level simulation is completed, the model routes water and other el-
ements upstream to downstream, i.e., from the entire watershed to its
outlet through the channel network. Input observational weather data
include daily/hourly precipitation, air temperature, wind speed, solar
radiation and relative humidity data. The water balance for each HRU is
calculated as follows:

SWm ¼ SWo þ
Xm

j¼1

�
Pj � Qj � Ea;j � Sj � Gj

�
(1)

where SWm is the soil water content at time m; SWo is the initial soil
water content; and Pj, Qj, Ea;j, Sj and Gj are precipitation, surface runoff,
actual evapotranspiration, infiltration and groundwater flow at time j,
respectively. All units are recorded in mm H2O.

Wemodified SWAT to consider each grid cell as an HRU (also referred
to as a gridded HRU; the modified model can be referred to as a gridded
HRU-based SWAT (SWATG)). Therefore, HRU-related parameter
variables (e.g., slope length) must be redefined. HRU has an additional
characteristic: spatial locations within the watershed grid map. Subbasin
loops are nested in HRU loop simulation in the SWATG due to
independent modeling between subbasins. The subroutine virtual is
modified to sum HRU variables to the subbasin level at the end of each
HRU loop. Fig. 1 shows components of the SWATG model architecture.

Input data for SWATG include grid forcing data, soil parameters (e.g.,
available water content and the saturated hydraulic conductivity of soil
layers), land surface parameters (e.g., plant water update compensation
factor, Manning's “n” value for overland flow, and lateral subsurface flow
slope length) and HRU identification numbers. Grid forcing data can be
obtained through remote sensing, weather modeling or weather station
data interpolation. Grid parameters can be generated via the ArcSWAT
software extension based on land cover, soil map and DEM data for
simplification (used in this study). Each HRU has unique meteorological
inputs (rather than sharing nearby weather station data within one
subbasin in SWAT). Control file (“file.cio”) including the spatial and
temporal configurations for the simulation has also been adapted to
the SWATG.
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3.2. Hierarchy of SWATG subroutines and OpenMP implementation

OpenMP is an Application Program Interface (API) that can be used
to explicitly direct multi-threaded, shared memory parallelism for
programs that can be used in major programming languages such as C/
Cþþ, FORTRAN and Java using thread libraries (Quinn, 2005). It is a
set of compiler directives that can enhance loop-level parallelism for
parallel programming via SMP systems. In this study, OpenMP parallel
method is integrated into SWATG to address the model's computational
efficiency problems. The shared variables' determination in the SWATG
model is a critical component for parallelization. When using OpenMP
to implement shared memory parallelization, we must overcome two
major challenges: 1) identifying and parallelizing suitable parts of the
code; and 2) avoiding data races due to parallel updates of
shared variables.

First, we must identify the most needed improved function (subrou-
tine) through SWATG. Some works have used the GNU gprof tool, a
performance analysis tool for Linux applications, to identify the slowest
subroutines in applications (Artes et al., 2015; Graham et al., 1983, 2004;
Ki et al., 2015). Themanual for gprof can be found at https://sourceware.
org/binutils/docs/gprof/. We created a SWATG with option “-pg” for
memory profiling and found that the most time-consuming subroutine
within the simulation subroutine is subbasin (Fig. 2). The modified
command subroutine controls the routing phase, including routing
water and sediment travelling to the main channel after subbasin simu-
lation. The subbasin subroutine, which is excluded from the original
command subroutine, controls the HRU loop, and so the time dedicated
to the subbasin subroutine is the total amount of HRU loop execution
time needed. The HRU loop controls the water balance simulation
executed in SWATG, including variable initialization (subroutine vari-
nit), rainfall-runoff processes (subroutines surface and percmain),
evapotranspiration (subroutines etact and etpot), plant growth (sub-
routine plantmod), sediment and nutrient generation and movement
(subroutine nutrient), and ground water process (subroutine gwmod).
Subroutines sumv and virtual are used to sum HRU level variables.
Based on this evaluation of SWATG, the HRU loop is the most critical
component in terms of computation costs. The SWATG model is paral-
lelized at the HRU level as HRU simulation is conducted independently
and the HRU loop (the most time-consuming procedure) must be made
more efficient.

Then, variable initialization and HRU simulation in related sub-
routines are modified to include the necessary OpenMP components. The
OpenMP directives used in this study mainly contain OMP PARALLEL
THREAD PRIVATE, FIRST PRIVATE, PARALLEL ATOMIC and PARALLEL
DO structures. THREAD PRIVATE is used to initialize and define global
variables that cannot be shared by the same memory address. FIRST
PRIVATE is used to initialize and define local variables that cannot be at
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Fig. 3. Representation of the structure of SWATGP. Black arrows indicate individual computational threads.
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the same memory address within specific computational regions. The
PARALLEL ATOMIC directive controls global variable updates or recur-
sion. PARALLEL DO is the most important operation because it distrib-
utes the HRU loop over computational threads to improve loop efficiency
levels. Parameter declaration and initialization subroutine (“mod-
parm.f”) is modified to contain the OMP THREAD PRIVATE directive to
redefine global variables as private. For example, each HRU contains a
memory address of inums that is unique for each HRU in SWATG. The
PARALLEL DO Directive is added to the HRU loop structure. The PAR-
ALLEL ATOMIC directive is added to subroutines where global variables
must be updated atomically rather than multiple threads to attempt to
write to it. At this point, each HRU simulation can be simultaneously
performed on individual threads. Once an HRU loop simulation is com-
plete, hydrological variables of the HRUs are summed to the subbasin
level or to the outlet of a subbasin. In this context, improving the effi-
ciency of SWATG through parallel computing is critical for practical fine
spatial resolution (HRU) watershed modeling.
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Finally, the SWATG routing function is performed on the main thread
to route water from upstream to downstream through reaches. The
sequential variables (e.g., subbasin runoff) input for routing phase
simulation are dependent on one another, and so they are difficult to
parallelize. The basic structure of the SWATGP is illustrated in Fig. 3. The
parallel implementation of SWATG is straightforward when using the
GNU library. When compiling SWATGP with the GNU compiler, the
“-fopenmp” flag is needed. A brief example of the modification codes is
provided in Appendix. Further information on the OpenMP parallel
method can be found at http://www.openmp.org.

3.3. Evaluation method

In this work, we complied the SWATG program using the gfortran
compiler, ran the standard simulation in the serial mode, and stored
output files in a separate directory. All serial output files were designated
as reference results to be compared with those of SWATGP. We used an
internal function system_clock to measure the time spent on SWATG and

http://www.openmp.org/


Table 1
Computer configuration used for model simulations.

Item Description

CPU Intel(R) Xeon(R) CPU E7- 4850 @ 2.00 GHz
Logical cores 80
Physical cores 40
CPUs 4
RAM 64 G
System type Linux 64-bit CentOS 6.5
Compiler GNU4.4.7 and Python3.4.1
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SWATGP execution. We added several FORTRAN calls as system_clock
in the subbasin subroutine to measure the execution time of HRU loop.
The following performance measure is commonly used to evaluate the
performance of parallel computations: speedup. Speedup for n parallel
sessions is defined as the ratio of the computed time dedicated to a task
when only one core is used to the computed time when n cores are used
(Ki et al., 2015).

The underlying architecture of OpenMP can be shared memory Uni-
form Memory Access (UMA) or Non-Uniform Memory Access (NUMA).
Under UMA, all processors share the same amount of physical memory.
Under NUMA, a processor can access its own local memory faster than
non-local memory. Thus, the parallelized high-performance SWATGwith
can benefit from specific memory and thread placement and optimized
memory locality (Kiefer et al., 2013). Different CPUs and logical cores in
our computer were employed to evaluate the NUMA effect on parallel
efficiency. We carried out experiments with SWATGP using combinations
of 1 CPU, two CPUs, three CPUs and four CPUs and threads of 1–80. The
Linux numactl tool was used to combine CPUs and threads and to allocate
memory among all CPUs (Kiefer et al., 2013). The manual for numactl
can be found at https://linux.die.net/man/8/numactl.

4. Case study and evaluation

4.1. Study area and data preparation

The Babaohe River, a tributary of the Heihe River originating from
the Qilian Mountains, flows through the county of Qilian in the arid re-
gion of northwestern China. The Babaohe basin covers an area of
2455 km2 and is positioned at 2678 m to 4883 m above sea level. Snow
and ice melt serve as the most important sources of water in this region
during the spring. The mean annual precipitation of the area is 400 mm,
whereas potential evapotranspiration is exceed 600 mm. The dominant
vegetation types include alpine meadows, sub-alpine shrubbery, and
alpine steppe.

The Babaohe Basin SWAT project was first initiated with the ArcS-
WAT extension of ArcGIS 10.0 software. Input datasets for the SWAT
project were acquired from the WestDC (http://westdc.westgis.ac.cn/)
online open-access resource, including the following required input data
for SWAT: digital elevation model (DEM) data, soil texture data
(Harmonized World Soil Database, HWSD) and a land use map
(WESTDC). Meteorological station data were extracted from gridded
forcing data and used as climate inputs and weather generator for SWAT.
Gridded forcing data (rainfall, air temperature, solar radiation, humidity
and wind) were generated from the WRF model (Pan et al., 2015). In the
sub-watershed discretization scheme, subbasins were delineated based
on DEM data. The spatial resolution of the grid (HRU) was set to
500 m � 500 m (250 m � 250 m was also used to evaluate the effects of
spatial scales). After being gridded, the Babaohe Basin was found to
contain 9707 HRUs, which is substantially greater than the original 654
HRUs delineated from ArcSWAT based on unique soil types, land use
types and terrain characteristic (slopes). The gridded parameters (e.g.,
available water content, soil hydraulic conductivity, soil bulk density,
soil albedo, soil organic carbon and crack volume, slope steepness, land
cover classification, HRU and subbasin identification numbers) were
prepared by converting the original SWAT project input data into gridded
232
data using ArcGIS lookup and conversion tools. Parameters of configure
and control files (“file.cio” and “basins.bsn”) for the SWATG versions
were also set for specific applications.

4.2. Computing environment and software description

A high-performance computer (high-end server) with multiple CPUs
or logical cores was used for model simulations. As stated in Section 3.1,
input data were prepared using ArcSWAT and Python software on a
personal computer. The high-end server's configuration details are
described in Table 1. The logical cores can be thought of as threads,
which are the finest computation units in a computer. The high-end
server used in this study included four CPUs and each CPU included 10
physical cores and 20 logical threads. The OpenMP parallel interface was
enabled. A GNU compiler was used as a FORTRAN language compiler,
and Python was used as a data processing tool to transform SWAT input
data into SWATG/SWATGP input data. It was necessary to install the
NetCDF FORTRAN and Python libraries for the present study.

SWATG software versions (SWATGs) used in this study included
the following:

(1) SWATG: a modified SWAT model based on SWAT2012 that treats
a grid cell as an HRU. The difference between the original SWAT
model and this modified model lies in its ability to accommodate
gridded forcing and parameter data.

(2) SWATGP: a modified SWATG model that can run on a multi-core
computing platform through the OpenMP parallel application
interface.

4.3. Parallel assessment of SWATGP

4.3.1. Experiment setup
To evaluate the simulation performance of SWATGP, we executed the

same Babaohe Basin modeling project with two separate models: SWATG
and SWATGP.

Parallel efficiency: We evaluated parallel efficiency levels of SWATGP
through the Babaohe Watershed modeling project relative to those of
SWATG. First, the time step was set as daily, and the temporal range
extended from January 1st to December 31st of 2008 for model evalua-
tion and subsequent research. Then, the Babaohe Basin project was
executed using versions of SWATG and the gridded data derived from the
WRF model (Pan et al., 2015). Each model run time was exported for
subsequent comparison. The run time of each subroutine within sub-
basin was also exported for both models.

Grid effect on parallel: To assess the grid method's effect on modeling
efficiency levels, we employed SWATGs for different spatial, temporal
and parallel configurations. Two Babaohe Basin projects were executed
using HRU resolutions of 250 m � 250 m and 500 m � 500 m to
demonstrate and evaluate the influence of the number of HRUs on the
model's performance. There were a total of 9707 and 97,240 HRUs in the
hydrological simulations of the 500 m � 500 m and 250 m � 250 m
resolutions, respectively. The time step was set to one day, and the
execution time of the HRU loop for each day was calculated as a daily
average over each time step. The total model execution times for the one-
, two-, five- and ten-year simulations were computed. NUMA effects were
also evaluated for different SWATGP resolutions.

4.3.2. Results and discussion
Output files including grid outputs (e.g., soil moisture, runoff and

evapotranspiration) simulated from SWATG and SWATGP were
compared for modification validation. We found no differences between
the SWATG and SWATGP simulation results for the same forcing data and
employed the diff tool to ensure this conclusion. Input/output file
reading/writing processes, which largely depend on computer hard disks
and memory sizes, are not our focus. The main modifications of SWATG
pertain to HRU-level water balance processes modeling specifications.

https://linux.die.net/man/8/numactl
http://westdc.westgis.ac.cn/


Fig. 4. Serial run time (Time) and speedup results for subbasin subroutines.

Fig. 5. Run time and speedup for daily SWATGP subbasin subroutine for different resolutions (500 m (a, b), 250 m (c, d)) based on different combinations of CPUs and threads.
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The other modeling phase (e.g., routing phase) is not modified and is not
affected by parallel implementation. We thus illustrate the parallel
computing performance of SWATGP only in relation to HRU simulation
processes (subbasin subroutine).

Different subroutines of subbasin may have different effects on the
speedup results. Fig. 4 shows the execution time for subroutines of the
subbasin and their speedup outcomes resulting from parallel imple-
mentation. As only one CPU (10 physical cores) is employed in this case,
a desirable speedup through parallel implementation can approach 13
when Hyper-Threading (two threads executed on each core) is enabled.
Because only up to 30% gains can be achieved using a certain programs
with Hyper-Threading enabled (Hennessy and Patterson, 2011; Hill and
Marty, 2008; Patterson, 2003). We also tested Hyper-Threading effects of
SWATGP and found that the speedup results were not significantly
improved when Hyper-Threading was enabled. The most time-
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consuming subroutine within subbasin was found to be varinit, which
initializes HRU variables at the start of the HRU loop. The speedup for
varinit is also impressive in its parallel use within subbasin. Subroutines
virtual and sumv also take a considerable amount of time within sub-
basin and can be improved considerably through parallel implementa-
tion. The nutrient subroutine includes many synchronization processes
(e.g., variable updating with atomic instruction) that can dramatically
affect parallel efficiency levels. Other water balance modeling sub-
routines (e.g., gwmod and etact) already cost little time, and their
speedups via parallel implementation can be disregarded and are thus
not shown here. There are 32 and 136 atomic instructions in virtual and
sumv, respectively. As the number of synchronized variables increases,
the speedup for the subroutine decreases. HRU variable initialization and
synchronization are key processes that affect parallel efficiency levels.
However, initialization and synchronization processes are difficult to



Table 2
Simulation settings and performance of the SWATG and SWATGP models.

Project resolution HRUs (grid cells) Run time of the daily subbasin
subroutine (seconds)

SWATG SWATGP

500 m � 500 m 9707 0.43 0.05 (1 CPU, 15 threads)
250 m � 250 m 97,240 11.2 3.31 (1 CPU, 4 threads)
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speed up. Using thread-local storage variables rather than synchronized
variables can further speed up parallel efficiency levels. While there are
several synchronized variables in subbasin whose dimensions are
determined by the number of subbasins and/or HRUs involved, con-
verting them to thread-local is not simple and should be studied at
more length.

As noted above, a program run on the NUMA systemmust be carefully
managed through the use of specific threads and memory placement
policies. Based on unique combinations of CPUs and threads, the run time
and speedup results for the daily SWATGP at different resolutions can be
seen in Fig. 5. The run time steadily declines until more than 15 threads
(for a 500-m resolution) or 4 threads (for a 250-m resolution) are used
(See Fig. 5). We find that the best parallelization for a 500-m SWATGP
can be achieved when using 1 CPU and 15 threads and when using 1 CPU
and 4 threads for a 250-m SWATGP. These results can be attributed to
thread migration and memory allocation problems. The amount of
memory allocated for a 500-m SWATGP is less than that for a 250-m
SWATGP as shown in our other findings (Fig. 5). In turn, less time is
required for thread migration for a 500-m SWATGP than for a 250-m
SWATGP. Thus, more threads can be used to accelerate a 500-m SWATGP
Fig. 6. Run time and speedup results for daily SWATGP subbasin subroutine conducted at
500-m (a) and 250-m (b) resolutions using interleaving and local allocation memory
allocation strategies (inter and local) and threads.

Fig. 7. Run time (a) and Log10 (run time) (b) for SWATG and SWATGP based on different
simulation durations and at different grid resolutions (250 m � 250 m
and 500 m � 500 m).
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than a 250-m SWATGP through faster communication. When more than
4 threads are involved (or 15 threads), the parallel overhead outweighs
the gain from parallel computations. In the default case (without
numactl), threads of all instances are applied to all sockets, and they
frequently migrate between CPUs, spurring fluctuations in run time se-
ries. Table 2 shows the results of SWATG and SWATGP based on appli-
cations of best NUMA scheduling strategies. With 1 CPU and 15 threads,
the speedup of SWATGP subbasin subroutine is roughly 8.6-fold at a 500-
m resolution. With 1 CPU and 4 threads, the speedup of SWATGP sub-
basin subroutine is roughly 3.4-fold at a 250-m resolution (Table 2).
When the thread count is higher/lower than a threshold, (e.g., 15 threads
for a 500-m SWATGP), the HRU loop run time decreases/increases as the
number of computational threads increases.

As the amount of memory allocated and thread migration processes
affect model performance, we carried out experiments using interleaving
and local memory allocation strategies and different threads for SWATGP
at 500-m and 250-m resolutions. Corresponding results are shown in
Fig. 6. For an interleaving memory policy, memory is allocated using
round robin on CPUs. Memory for threads can be allocated from the
current CPU or from other CPUs. As part of a local memory policy,
SWATGP only allocates memory from certain fixed CPUs. The time
required for remote memory access, thread migration and parallel
computation should be considered. For a 500-m resolution (Fig. 6a), the
runtime for interleaving and local memory allocation increases with an
increasing number of threads until 12 threads are used. When more than
12 threads are used, the run time of SWATGP steadily declines for both
strategies. Thread migrations take more time than parallel computations
when the number of threads involved is less than 12. When only four
threads (one thread for each CPU) are used, relatively more execution
time is required to access remote memory than for parallel computation;
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the local strategy thus is better than the interleaving strategy. Whenmore
than four threads are used, employing interleaved memory allocation for
parallel computation is better than employing the local strategy. For a
250-m resolution (Fig. 6b), the runtime for interleaving and local
memory allocation decreases with increasing number of threads until 12
threads are used. When more than 12 threads are used, the run time of
SWATGP slightly increases for both strategies. The interleaving strategy
performs nearly the same as the local strategy. When the amount of
memory allocated is relatively large (the HRU number is large), memory
allocation is distributed uniformly and either interleaving or local stra-
tegies can be used. When less memory and fewer threads are allocated, a
local strategy is sufficient. When numerous threads are involved, memory
resources can be better allocated via an interleaving strategy. For a
specific program used on a specific computer, thread migration and
memory allocation strategies should be balanced to achieve high levels of
computing performance.

Execution times for simulation periods of SWATG and SWATGP at
different grid resolutions (250 m � 250 m and 500 m � 500 m) are
shown in Fig. 7. The execution time for the one-year SWATG simulation
is slightly greater than that of SWATGP. However, according to a ten-year
simulation, the execution time for SWATG is dramatically higher than for
SWATGP. For example, the amount of execution time required for one-
year SWATG and SWATGP modeling at 250 m (SWATG250 and
SWATGP250) is roughly 4200 s and 1200 s respectively. The execution
time required for ten-year SWATG250 and SWATGP250 modeling is
roughly 42,000 s and 12,000 s respectively. Parallelization saved roughly
3000 s and 30,000 s for one-year and ten-year modeling respectively.
More time was saved as the simulation period extended. As the simula-
tion period was extended, SWATGP became more efficient than
SWATG (Fig. 7).

SWATGP simulation took substantially less time to complete than
SWATG simulation, and the amount of time required decreased as the
number of computational cores used increased. As the parallel scheme is
based on the HRU level involved, when the number of HRUs is
increased in a watershed as a result of finer discretization, the amount
of time required for HRU modeling also increases. As the simulation
time is extended, the advantages of SWATGP become more pronounced
than those of SWATG (Fig. 7). The above results show that the intro-
duction of parallelization is valuable for large-scale high-resolution
hydrological modeling. The SWATGP begins as a single process (master
thread) and is executed sequentially until the parallel region construct
(HRU loop) is encountered (see Fig. 3). SWATGP parallel region
initialization takes a considerable amount of time in a parallel run time
when more than 2000 global variables must be initialized. In this study,
we used the SWATG model without HRU routing, which means there
was no dependence between the HRUs but that their sum represents
subbasin-level characteristics. The HRU variable summation process (a
nested-loop) has limited effects on the performance of the paral-
lel procedure.

The performance of a parallelized model can be affected by the
number of cores (threads), the cache size, the memory bandwidth, and
networking topologies (Wang et al., 2013). The CPU used in this study
includes 10 physical cores, and each core has two threads when
Hyper-Threading is enabled (Table 1). Programs can only achieve 30%
performance improvement from Hyper-Threading on an Intel
Westmere-EP processor (Saini et al., 2011). Our results show that the best
speedup results are achieved when using 1 CPU and 15 threads with 56%
speedup efficiency (speedup per thread) with Hyper-Threading on.
SWATGP did not benefit considerably from Hyper-Threading. Given a
fixed amount of computing resources, the hybrid parallel mode may be
preferred to the pure MPI and OpenMP modes when using a cluster
platform with a large number of high-end servers. A symmetric multi-
processing (SMP) cluster that has been widely used in recent years is used
at our research institution and will be used as a platform for our
future research.
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When applying the model (SWATG and SWATGP) reading procedure,
500-m resolution models take 7.48 s to perform and 250-m resolution
models take 29.46 s to perform. As the higher resolution increases, more
file reading time is required. Output files output time is not considered
here due to the optional outputting attributes of output files. Input file
reading issues should be considered when very high spatial resolution
results are required. Long-term modeling can neglect reading procedure
time when the modeling time is dramatically longer.

5. Summary and outlooks

As a modified SWATmodel that integrates grid forcing and parameter
datasets, SWATG can generate more detailed hydrological process in-
formation. The SWATG model can serve as a valuable tool for water
resource research and applications based on flexible input/output for-
mats and spatial attributes. The time intensive nature of the model limits
its use for long-term and high-resolution simulations. When the spatial
resolution is high, the time-consuming nature of hydrological modeling is
more evident. In this study, a parallel tool called OpenMP API was
incorporated into SWATG to improve the model's computational effi-
ciency. The results show that SWATGP largely reduced the amount of
computational time required for the simulations relative to SWATG.
There are roughly 2000 shared variables subbasin subroutines. As the
number of synchronized variables increases, subbasin subroutine ac-
celeration declines. Variable initialization and synchronization processes
govern the parallel efficiency of SWATGP. Thread-local variables can be
used to improve the parallel efficiency of SWATGP, but this capacity is
constrained by the number and dimensions of shared variables involved.
NUMA effects observed for SWATGPs of different resolutions were also
assessed too. At resolutions of 250 m and 500 m, SWATGP was respec-
tively found to be up to three and nine times faster than SWATG in
modeling a 2000 km2 watershed for 1 CPU and 15 threads and for 1 CPU
and 4 threads. As the amount of simulation time increases, SWATGP
presents more obvious advantages.

Overall, the SWATGP presented here makes a unique contribution to
the existing SWATG model. With its capability to save time, SWATGP
can help SWAT users study and manage a watershed. As parallel
implementation can reduce the execution time of an individual model
run, the time required for model calibration can also be shortened. In
anticipation of the further development of computer technology (e.g.,
CPUs), it is worth studying SWATG parallelization strategies regardless
of hardware limitations involved (e.g., memory and hard disk limita-
tions) (Rouholahnejad et al., 2012). Different quantities of CPU cores
used in SWATGP can result in different levels of acceleration (Liu et al.,
2016). This is largely dependent on the levels of communication be-
tween CPU threads (CPU structures) (Ki et al., 2015). We believe that
the data transferring between CPU sockets constrains the use of more
CPUs for speeding up SWATGP. When the memory usage for the model
beyond the capable of a single CPU, the data transferring between CPUs
is not optimized by OpenMP. We thus plan to develop an MPI/OpenMP
hybrid parallel inference method for the SWATG model. With HRU
routing integrated, SWATG can also be parallelized through specific
parallel implementation methods (e.g., the method proposed by Burger
et al. (2014) and Liu et al. (2016)). With the rapid development of
computer and remote sensing technologies, opportunities to use
SWATGP for long-term, high-resolution hydrological modeling
are promising.
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